
An Energy-Efficient and Error-Resilient Server Ecosystem Exceeding
Conservative Scaling Limits

Tovletoglou, K., Chalios, C., Karakonstantis, G., Mukhanov, L., Vandierendonck, H., Nikolopoulos, D., ...
Gizopoulos, D. (Accepted/In press). An Energy-Efficient and Error-Resilient Server Ecosystem Exceeding
Conservative Scaling Limits. Paper presented at Workshop on Energy-efficient Servers for Cloud and Edge
Computing 2017, Stockholm, Sweden.

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:09. Sep. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74407764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/an-energyefficient-and-errorresilient-server-ecosystem-exceeding-conservative-scaling-limits(32e0f2b1-3865-4bf4-9798-79161257b837).html

ABSTRACT
The explosive growth of Internet-connected devices will result in a
flood of generated data, which will increase the demand for network
bandwidth as well as compute power to process the generated data.
Consequently, there is a need for more energy efficient servers to
empower traditional centralized (Cloud) data-centers as well as
emerging decentralized data-centers at the Edges of the Internet. In this
paper, we present our approach, which aims at developing a new class
of micro-servers – the UniServer - that exceed the conservative energy
and performance scaling boundaries by introducing novel mechanisms
at all layers of the design stack. The main idea lies on the realization
of the intrinsic hardware heterogeneity and the development of
mechanisms that will automatically expose the unique varying
capabilities of each hardware component and allow their operation at
new Extended Operating Points (EOP). Low overhead schemes are
employed to monitor and predict the hardware behavior and report it
to the system software. The system software is responsible for
optimizing the system operation in terms of energy or performance,
while guaranteeing non-disruptive operation under EOP. To efficiently
manage any potential fault that may incur under EOP, we aim at
identifying critical/vulnerable software structures and developing low
cost techniques for protecting them. This eventually, allows us to
enhance the fault tolerance of the overall system software that is
representative of any state-of-the-art cloud data-center, since it adopts
a virtualization environment as well as popular resource management
packages. Our initial experiments indicate that there are significant
pessimistic margins in processors and DRAMs, and reveal the
invariable impact of potential faults on various structures of the system
software.

1. INTRODUCTION

The number of intelligent Internet-connected devices is growing day
by day and will soon be in the orders of tens of billions, forming the
Internet of Things (IoT). Each of these devices is pushing data to the
Internet and this data is expected to reach 24.3 exabytes in 2019 [1].
This rapid data growth will put a lot of pressure on the current Internet
infrastructure and centralized data-centers, which are already
oversubscribed. Coping with this imminent data flood requires not
only enhancement of the processing capabilities of the current servers
but also rethinking of the way we communicate and process data across
the Internet.
 A recently introduced approach that has the potential to ensure the
viability and scaling of the Internet in the IoT era is Edge computing.
The premise of Edge computing is to execute services closer to the data
sources. Edge computing can reduce application latency [2], and
decrease bandwidth requirements between the end user and the data-
center. Realizing such an approach requires the design of new server
ecosystems that can be deployed closer to the data sources without the
need of any expensive cooling or power infrastructure. This is
contingent on designing such ecosystems with substantially improved

energy efficiency than the current state-of-the-art without
compromising performance, availability, programmability, reliability
and security properties of the existing cloud data-centers.
 However, realizing such server ecosystems is extremely challenging
due to the stagnant voltage scaling (the most effective power saving
knob), and the worsening process variations [3], [4] that nanometer
circuits are experiencing. In fact, as transistors are being pushed to the
atomic scale, it is becoming very difficult to fabricate circuits with the
expected specifications leading to large static and dynamic variations
[3]. To cope with the significant hardware variability and to hide it
from the upper layers of system and application software,
manufacturers adopt pessimistic voltage and frequency guard-bands
based on the worst-case scenarios. However, such guard-bands limit
the circuits to work less efficiently than they could, essentially
constraining the power and performance of all manufactured circuits
based on the worst-case parts. As shown in Table 1 the voltage guard-
bands currently adopted against a variety of issues are already
significant. Such margins are becoming more prominent with the use
of more cores per chip, the increased voltage droops [5], reliability
issues at low voltages (Vmin) [6], and core-to-core variations. As an
indication, recent measurements in ARM processors indicated more
than 30% timing and voltage margins in 28nm [4].
 Realizing that the power and performance overheads imposed by the
current pessimistic design paradigm is unavoidable, in this paper we
introduce a radical approach that plans to turn the table around by
treating the intrinsic hardware heterogeneity as an opportunity and not
as a problem. In particular, in UniServer we put forward the following
question: Why allow the worse margins of fabricated chips to
artificially constrain the performance and energy of today’s systems?
The reality is that each manufactured processor and each memory
module is inherently different and lies on a distinct performance bin
(Figure 1). Based on such observation, the UniServer approach plans
to substitute the existing conservative margins with the real

Konstantinos Tovletoglou
Charalampos Chalios

Georgios Karakonstantis
Lev Mukhanov

Hans Vandierendonck
Dimitrios S. Nikolopoulos
Queen's University Belfast

Panos Koutsovasilis
Manolis Maroudas

Christos Antonopoulos
University of Thessaly

Arnau Prat-Perez
Sparsity

M. Mustafa Rafique
Srikumar Venugopal

IBM Research -
Ireland

Andreas Diavastos
Zacharias Hadjilambrou

Panagiota Nikolaou
Yiannakis Sazeides

Pedro Trancoso
University of Cyprus

George Papadimitriou
Manolis Kaliorakis

Athanasios Chatzidimitriou
Dimitris Gizopoulos
University of Athens

 An Energy-Efficient and Error-Resilient Server Ecosystem
Exceeding Conservative Scaling Limits

Figure 1: Each manufactured chip is intrinsically different in
terms of capabilities

Table 1: Sources of variations and voltage guard-bands
Reasons for guard-bands Voltage Up-scaling
Voltage droops ~20%
Vmin ~15%
Core-to-core variations ~5%

capabilities of each individual core and memory-array. This will
enable us to exceed the energy and performance scaling boundaries
adopted in servers. In order to achieve this goal, the UniServer project
introduces the following technical innovations at all system layers:
i) automatically reveal the possible Extended Operating Points

EOP (i.e., voltage, frequency, refresh rate) of each hardware
component (i.e. cores and memories);

ii) monitor and predict the operating status of the underlying
hardware components by introducing new low-level software
daemons;

iii) optimize the system operation by adjusting the
power/performance/reliability trade-offs based on the enhanced
policies and kernel modules;

iv) enable monitoring of the hardware status by all layers of the
system software by extending existing interfaces;

v) enhance the fault tolerance of all layers of the system software by
providing sufficient protection to critical software structures;

vi) adapt software packages for virtualization (i.e. KVM) and
resource management (i.e. OpenStack) to leverage EOP on next-
generation servers;

vii) develop a tool for estimating the Total Cost of Ownership (TCO)
gains against other solutions that can be achieved by deploying
UniServer in Edge and cloud data-centers; and

viii) analyze security threats in servers operating under the new EOP
and provide low cost countermeasures.

With the introduction of the above breakthroughs, UniServer aims at
substantially improving the energy efficiency and/or the performance
of future servers. UniServer1 is a project funded by the Horizon 2020
Research Programme of the European Commission that is in its early
phase having started on February 2016. The purpose of this paper, is
to introduce the proposed approach and present our initial results.
 The rest of the paper is organized as follows. Section 2 presents the
cross layer UniServer approach. Section 3 discusses the innovation at
the hardware and firmware layer. Section 4 discusses the innovation at
the System Software. Section 5 compares the proposed approach with
existing state of the art. Section 6 discusses the targeted improvements
and presents the initial results. Finally, conclusions are drawn in
Section 7.

2. THE UNISERVER APPROACH

Figure 1, depicts the different layers of the UniServer ecosystem. The
most fundamental idea of the project lies on the hypothesis that each
hardware component (i.e. core, cache, DRAM) may have intrinsically
different capabilities in terms of energy, performance and reliability.
 Starting from the low layers we develop techniques that aim at
revealing new EOP for each hardware component based on the
component’s true capabilities. This is achieved by stress-testing the
hardware components during a pre-deployment phase under different
points using various stress kernels. During deployment, a HealthLog
daemon is monitoring the health status of the hardware under any used
voltage/frequency/refresh rate (V-F-R) point and informs the system
software by propagating information vectors about the performance,
power, temperature, and any incurred errors. Moreover, another Linux
daemon, the StressLog, is responsible for periodic offline, on-demand
stress testing of the hardware components and for producing an output
vector containing the new safe system V-F-R margins that will be
suggested to the software (i.e. Hypervisor) for future usage. It also
produces log files recording errors (correctable or uncorrectable),
system configuration values, sensor readings and performance
counters. Using the information provided by the HealthLog and
StressLog the Predictor develops probability failure models and tries
to predict the hardware behavior under any operating point and
eventually helping the system software to decide on the optimum
configuration.

1 UniServer website: http://www.uniserver2020.eu/

 UniServer targets a wide range of use cases, ranging from
deployments in remote locations close to the end users to deployments
in cloud data-centers. To facilitate such diverse use cases, the
UniServer platform must be equipped with a complete software stack
that can efficiently manage any compute and storage resources by
offering easy installation, migration and replication of tasks, either at
the node or server-rack level. To this end, state-of-the-art software
packages for virtualization (Hypervisor) and resource management
(OpenStack) are being adopted. Such packages, apart from managing
the virtual machines (VMs) at the node level (Hypervisor) and the
resources at a rack/data-center level (OpenStack), they are also being
enhanced for optimizing the system operation and the available
resources by fine tuning the extended V-F-R points. In particular, the
Hypervisor will aim at limiting the effects of the potential faults to
higher software layers by reconfiguring the system to operate within
safe margins and isolating problematic processing and memory
resources that affect the VMs. This is achieved by utilizing the
information delivered by the HealthLog/StressLog/Predictor daemons
and developing a new set of configuration properties. The optimization
of operations at the EOP in UniServer is guided by the system
requirements of the end-user for each VM, which are typically
communicated to the Cloud provider through Service Level
Agreements (SLAs). These workload-specific requirements reflect the
key metrics of interest based on which OpenStack manages the nodes
that constitute any data-centre. Note that in UniServer an additional
node reliability metric is added to the traditional metrics of interest,
which are node availability, utilization and energy usage. Altogether,
these metrics will help in system optimization. The system
optimization will be also assisted by developing a tool for estimating
the potential TCO gains that can be achieved by various configuration
properties of the platform and deployments on Cloud or Edge
environments.
 The exposure of new EOP, which if not used carefully may result
in system failure, entail new security risks. UniServer plans to identify
potential security threats (i.e., side channel attacks) that might be
caused to micro-servers and develop low cost countermeasures against
them. The main chassis of the UniServer is a state-of-the-art 64-bit
ARM based Server-on-Chip on which the developed technologies are
ported. However, the analysis and developed technologies will not be

Figure 2: UniServer - Cross-Layer Error-Resilient Ecosystem

tied to a particular platform and special consideration will be given to
enable their seamless integration with other servers.

3. EXPOSING MARGINS AND MONITORING HARDWARE

BEHAVIOR
UniServer will use the following technical approach for revealing
optimistic margins. Firstly, at the pre-deployment stage, the system
goes through a batch of stress-tests to determine the more efficient but
safe per-component margins. Secondly, at normal operation in the
field, a daemon is constantly recording any possible errors (even if
correctable) to fine-tune the margins after deployment. If the number
of errors rises above a certain threshold a new stress-test cycle may be
triggered to determine new efficient safe margins. This is useful to
better adapt to the workloads and also to the aging of the system.
Thirdly, during runtime a predictor daemon is running to observe
different metrics and advise the Hypervisor on possible execution
modes (e.g. high-performance or low-power).

A. Revealing the margins within on-board components
Heterogeneity exists among cores located on the same chip, DRAM
and cache memory banks. Each resource may perform better or worse
than others but certainly not as any other similar resource on the board.
In UniServer we plan to characterize each core and memory bank
individually. For example, for each cache memory bank UniServer
will reveal the minimum voltage that allows correct operation. This
information will be revealed to software and can be exploited towards
better energy-efficiency.

B. Stress-test development
First of all, we will stress the underlying cores and memories using
diagnostic viruses. We plan to use genetic algorithms for generating
these viruses [2], [3]. These viruses will cause maximum voltage noise,
power consumption and error rates. The viruses will represent a
pathogenic worst case scenario that is unlikely to be encountered in
real-life workloads. Safety margins are more pessimistic than these
worst-case viruses [1], [2], therefore these stress tests will reveal initial
EOP. In addition, real-life workloads will probably allow even more
efficient margins since they produce significant less voltage noise,
power consumption and error rates compared to stress viruses.

C. HealthLog Daemon
Operating outside the nominal values may introduce hardware errors
during the system’s lifetime. Thus, there is a need for a runtime
mechanism that will monitor the system and report errors occurring
during uptime. Such mechanisms already exist for different platforms
but important information is missing. Therefore, in UniServer we are
extending existing knowledge to create a UniServer-specific
monitoring mechanism. We will extend the error reporting capabilities
of existing mechanisms with system configuration values, sensor
readings and performance counters. We call this mechanism the
HealthLog monitor that records runtime system metrics in the form of
an information vector, stored in a system logfile. The HealthLog
monitor will also interact and exchange information with higher
system layers (e.g. the Predictor and the Hypervisor). The HealthLog
monitor will provide two types of services: (a) Event-driven services,
where it will collect information based on event occurrences in the
system (e.g. errors) and (b) On-demand services, where the monitor
will respond to requests from higher layers for specific information.

D. StressLog Daemon
The aim of the UniServer project is to change the nominal V-F-R
values, in order to reduce the power consumption of each server in the
system. These new values may need to be updated several times over
the lifetime of a server due to the aging effects of the machine or
unexpected errors observed. Therefore, a mechanism is needed, to
produce new nominal values that will still guarantee the safe
operations of the server. This mechanism will stress test the machine
using predefined applications and compute new safe operating V-F-R
margins. We call this mechanism the StressLog monitor.
 The StressLog monitor will be spawned either periodically during
a machines lifetime (e.g. every 2-3 months) or will be triggered by
higher system layers in the case of erratic or anomalous machine
behavior. The machine being tested will be taken offline and as soon

as the monitor receives the input stress target parameters from the
higher system layers, it will initiate the stress test scenarios. The
StressLog monitor will also include a workload suite, consisting of
different benchmarks and kernels that either represent real-life
applications or are hand-coded to stress specific components of the
system. During a stress test, the HealthLog monitor will execute in
parallel to record system events (errors, system values, sensors and
performance counters). The StressLog monitor will take the output of
the HealthLog and will wrap the needed information (defined in the
stress target parameters) into a vector to be passed to the higher system
layers.

E. Predictor
In order to advise the system regarding the best V-F-R mode depending
on the current workload and runtime characteristics of the system, we
will develop a machine-learning predictor that interacts with the
HealthLog and StressLog monitors to provide advice to the Hypervisor
for choosing the desired operation mode.

4. MANAGING OPERATION AT EXTENDED MARGINS AT

SYSTEM SOFTWARE

A. Virtualization
One of the major breakthroughs in the UniServer ecosystem is the
ability to explore and allow operation when possible at EOP. In fact,
such points may dynamically change depending on the workload,
variations of environmental conditions, chip aging etc. and thus the
system should be able to decide on the best energy efficient
configuration parameters in a fast and reliable way. At the same time,
operating so close to the points of failure requires mechanisms to deal
with potential, inadvertently introduced faults.
 UniServer follows a Hypervisor-based approach based on KVM,
to leverage all benefits of virtualization, such as easier deployment,
administration, replication and migration, which are necessary for the
targeted data-centers at the Edge of the Cloud.
 In the context of UniServer, the Hypervisor has additional roles. It
is responsible for creating an appropriate execution environment for
Virtual Machines (VMs) by manipulating the
power/performance/reliability tradeoffs in an educated and safe
manner. Specifically, it sets the system at a just-right configuration,
which reduces the power footprint of each node by eliminating
unnecessary hardware guard-bands, without introducing negative
effects on the services running within the VMs. As discussed earlier,
the best configuration depends on a number of different parameters,
including the characteristics of application software, the capabilities of
the specific hardware parts at the specific time and under the specific
environmental conditions, as well as the quality of service (QoS)
requirements introduced by the cloud management framework
(OpenStack).
 Despite applying sophisticated configuration policies within the
limits specified by the StressLog, sporadic errors may still
inadvertently occur due to the elimination of guard-bands. The
Hypervisor needs to offer VMs a reliable virtual execution
environment on top of potentially unreliable hardware. In other words,
it needs to transparently mask errors from upper software layers. At
the same time, it needs to protect the whole system from catastrophic
failures. Being the lowest level of system software, the Hypervisor
itself needs to be resilient to errors. Beyond selecting a realistic
hardware configuration, the Hypervisor isolates problematic
processing and memory resources experiencing high error rates, as
reported by the HealthLog. This is exactly one of the main aims at the
Hypervisor layer and probably less complex than the upper software
layers. In particular, the Hypervisor will be enhanced with mechanisms
to transparently mask errors from upper software layers, and protect
the whole system from catastrophic failures while choosing the right
EOP for any given condition/user requirement.

B. Resource Management - OpenStack
The next layer of software is the cloud computing platform. OpenStack
[30] makes an ideal candidate for this layer as it is a widely used open
source middleware for cloud setups, and it pairs well with the popular
enterprise and open source technologies. Our extended version of
OpenStack, includes support for monitoring VMs and determining
their dynamically changing characteristics and virtual resource
utilization at a finer granularity than the existing state-of-the-art. This
resource monitoring information will be exploited to design and
develop new scheduling policies, as well as to assess the susceptibility
of VMs to experience catastrophic errors due to hardware faults. The
new scheduling policies, will also focus on incurring minimal
overhead and being non-intrusive in real-world scenarios where
OpenStack would manage streams of incoming and terminating VMs.
Developing such an error-resilient software stack will not only help to
avoid system crashes even at EOP but will also help in characterizing
and exploring the server operation at aggressive V-F-R scaling points
by exploiting the characteristics of real world workloads. Furthermore,
by porting the OpenStack on a micro-server will enable resource
management capabilities from classical Cloud data centers at the Edge.

5. IMPACT – ENHANCING THE STATE-OF-THE-ART

A. Prior work on DVFS and Variation-Aware Hardware
A wealth of work exists on Dynamic Voltage and Frequency Scaling
(DVFS) and turning-off certain parts of the hardware [6] for
combatting Dark Silicon and limiting on-chip power consumption.
UniServer does not attempt to simply identify the best V-F-R point for
a given workload. UniServer attempts to go beyond nominal V-F-R
and reveal at runtime new optimistic operating points. Prior suggested
attempts to tackle hardware heterogeneity include product binning and
utilizing redundancy or using the worst-case for all the parts. With the
increasing variability product binning becomes less effective. Many
components are being discarded or sold at lower price, thus reducing
the yield and revenues [7]. Built-in redundancy (Error Correcting
Codes (ECC), extra hardware) may help in maintaining high yield but
as the number of faults increases in scaled technologies, the amount of
power and resources that are typically wasted is getting large [8].
 In addition, pessimistic design margins in voltage and frequency
based on the worst-case core or memory cell may reduce the number
of faults, however, these do not allow the circuits to operate at the
minimum voltage or at the highest frequency that they can, eventually
limiting the returns from technology scaling [9]. Instead, UniServer
proposes hardware online monitoring and updating the margins
accordingly. This way power and silicon is not wasted as with built-in
redundancy. Moreover, cost per hardware part may be reduced as parts
that previously would have been discarded by binning procedure, will
be useful with UniServer approach. UniServer also promises the
reduction of data-center acquisition and operating expenses. Related
work [1], [10], [11] tries to reduce the margins operating at reduced
voltage or higher frequency by occasionally detecting and correcting
timing errors that may occur and replaying any faulty instruction. In
constrast, the UniServer approach has minimum hardware intrusion
and does not require application side modification. UniServer relies on
existing hardware detection and correction mechanisms, mechanisms
that have become mainstream in high performance and embedded
processors.

B. Prior work on Fault Tolerant System Software
A handful of previous works focuses on the implementation of fault
tolerant system software. Gu et al. [12] use fault injection to
characterize the behavior of the Linux kernel in the presence of faults.
In [13] the authors follow a microkernel approach to harden the OS,
by moving functionality from the kernel to middleware and then
separating system state from the server. Srivastava et al. [14] apply the
concept of trust zones between different OS components and control
data exchange between components of different levels of trust.

Moreover, they restructure OS data structures, so that they can use the
standard memory protection mechanisms at the page granularity to
control data exchange between trust zones. Finally, the authors in [15]
investigate mechanisms to heal the OS in the presence of faults,
without rebooting and destroying the state of – potentially unharmed –
applications. In the context of Hypervisors, FT-Xen [16] routes all
writes to mutable state through a single core which is considered
reliable. However, this requires extensive Hypervisor modifications,
unless the Hypervisor is inherently non-symmetric. The latter is the
case with Xen, which is used as the basis for FT-Xen, but not with
KVM. Non-symmetric approaches introduce performance and
scalability bottlenecks. At the same time, the correctness is not
guaranteed, even on the reliable core, due to the potential propagation
of errors from non-reliable cores (through cache coherence or due to
non-reliable MCUs). UniServer is based on a symmetric Hypervisor,
thus such approaches are not applicable. The UniServer Hypervisor
seeks resilience through a careful characterization of the criticality and
sensitivity of Hypervisor data structures and code, and educated
checking and selective checkpointing mechanisms, driven by this
analysis. Other approaches, such as [17] and VMware vLockstep [18]
achieve resilience by maintaining coherent replicas of VMs on
different physical servers. This approach is not practical neither in
Edge computing environments, where replication may not be possible,
nor in power- or energy-constrained deployments
 Several recent efforts have tried to improve the fault tolerance of a
data-center by developing techniques to detect and predict the failures
that may occur in a cloud data-center. These techniques [19], [20], [21]
generally leverage machine learning or statistical analysis techniques
to process the log data generated from the physical or virtual servers
to understand the causes of the past failures, and use this information
to detect and predict future failures in real time. An unsupervised
failure detection and prediction method is proposed in [21] that
leverages Bayesian models to improve the reliability and availability
of the data-center by detecting the anomaly in the gathered data from
the cluster health monitoring tools. Along similar lines, ANCOR [22]
proposes a diagnostic system that links resource usage anomalies with
the system failures by analyzing the cluster log data. Work presented
in [23] uses machine learning approach based on recurrent neural
networks for job level and task level failures. A failure prediction
method is proposed in [24] for cloud data-centers that uses the pattern
of the system log messages to predict a failure by classifying the
messages by their similarities in real-time. All these, and similar other,
techniques are independent of the cloud middleware and are not
integrated with the latest available OpenStack framework. To the best
of our knowledge, there is no fault tolerance technique specific to
OpenStack framework that detects and predicts system level failures
to perform any proactive action to prevent the system failure or to
improve the availability of the running application. UniServer’s
approach is to extend OpenStack framework and have an integrated
fault tolerance component, by adapting existing or developing new
techniques to efficiently predict the system level failures and
proactively migrate the running workloads on the healthy nodes, which
is critical to sustain high-availability especially for high value and
user-facing workloads

6. SAVINGS PROJECTIONS AND INITIAL RESULTS

As we said, the UniServer project is at its initial phase, focusing on the
characterization of the available margins in commercial servers and the
identification of the vulnerability of different system software
structures. In this section se present our initial characterization results
for state-of-the-art cores and DRAMs under different V-F-R points,
and different Hypervisor structures. Furthermore, we discuss an initial
total cost of ownership analysis for indicating the potential
improvements.

A. Characterization of CPUs
We performed an experimental evaluation on two state-of-the-art x86-
64 microprocessors, (a low-end Intel Core i5-4200U and a high-end
Intel Core i7-3970X) to study: (1) the crash points for each individual
core for all the benchmark for voltage offsets below nominal
conditions, (2) the core-to-core variation of the crash points among the
cores for the same benchmark, and (3) the amount of cache ECC errors

while we reduce the voltage and keep their frequency values
unaffected at the highest values. The nominal voltage for the
microprocessors under test is 0.844V and 1.365V and the frequency of
operation is 2.6GHz and 4.0GHz, for the Intel Core i5-4200U and the
Intel Core i7-3970X, respectively. Table 2 presents the findings for our
initial experiments using 8 benchmarks (bzip2, mcf, namd, milc,
hmmer, h264ref, gobmk, zeusmp) with diverse behaviors from the
SPEC CPU2006 benchmark suite [28]:

Table 2: Initial results for two Intel microprocessors

 i5-4200U i7-3970X
min max Min max

crash points below
nominal VID - 10% - 11.2% - 8.4% - 15.4%

core-to-core
variation 0% 2.7% 3.7% 8%

number of cache
ECC Errors 1 17 - -

We performed 3 consecutive runs for each benchmark. The crash
points present the minimum and maximum offset (as percentage) from
the nominal voltage, where the system crashes. Similarly, the core-to-
core variation presents the minimum and maximum variability among
all available cores for the same benchmark. The min and max values
refer to the benchmark that provided the least and the most variability,
respectively. The cache ECC errors were exposed only by the low-end
microprocessor. On the average for all our experiments, the voltage
offset before the crash, where the ECC errors begin to appear is 15mV.

B. DRAM Characterization
To quantify the pessimistic margins adopted in the refresh-rate of the
DRAMs, we have instrumented a framework for modifying the refresh
rate of various 8GB DDR3 DIMMs on a commodity server while
running a full-fledged Linux. In our setup, we have separated the main
memory into domains (based on the available channels) whose refresh-
rate can be set independently. This allowed us to isolate critical kernel
code and stack data by placing them on a reliable memory domain
(using nominal refresh-rate), and avoid any system crash that may
occur under the various relaxed refresh rates that we experimented
with. Using random test patterns and various refresh rates, our initial
experiments revealed that the refresh rate can be relaxed from 64ms
even to 1.5 seconds with no errors introduced to the data, same results
found on [32]. Note that the server is in an air-conditioned server room,
while the ECC is disabled. In fact, we have observed that even with
higher refresh intervals up to 5 seconds (78x higher than the nominal
value), the cumulative Bit Error Rate (BER) is in the order of 10-9,
which is within the BERs targeted by commercial DRAMs. Note also
that classical ECC-SECDED [27] can handle error rates up to 10-6.
Relaxing the refresh rate to 1.5 seconds or even to 5seconds can help
significantly reduce the refresh power that is responsible for the 9% in
today’s 2Gb DIMMs and is expected to count for more than 34% of
the overall memory power in future 32Gb DIMMs [26].

C. Error-Resilient System Software
 System Software and especially the Hypervisor of UniServer must
be resilient against memory and CPU errors. However, the overhead
of resiliency should not outweigh the energy efficiency benefits
achieved at EOP. A careful characterization of code and data structures
is thus necessary to enable a selective and effective protection strategy.
As a first step, we quantitatively evaluated the memory overhead of
Hypervisor data structures, with respect to the memory occupied by
VMs and applications running on top of it. We measured the
Hypervisor memory footprint by repeatedly executing four instances
of VMs, each of which accommodates a graph database benchmark
(LDBC Social Network Benchmark [29] on top of Sparksee Graph
Database). This application stresses the CPU, disk I/O and network.
As shown in Figure 3, the Hypervisor footprint (red line) is always less
than 7% compared to total utilized memory of the system. Similar
observations hold for other applications we experimented with. This
dictates placing the whole Hypervisor in a reliable-memory (operated

at nominal V-F-R) domain can help ensure non-disruptive operation
with low cost.
 The Hypervisor can be affected by CPU errors as well. In order to
characterize the sensitivity and significance of Hypervisor internal data
structures and code, we have applied fault injection using QEMU [33].
More specifically, for each statically allocated object of the Hypervisor
(total 16820 objects), we introduced, in independent executions (total
5 executions), Silent Data Corruptions (SDCs). Afterwards, for each
execution we checked whether the data corruption resulted to a non-
responsive Hypervisor, and marked this object accordingly as crucial
or non-crucial for the Hypervisor state. In addition, we experimented
both with and without VMs running on top of the victim Hypervisor.
Figure 4 depicts the results. It can be observed that the same fault
injection rate lead to an order of magnitude more Hypervisor crashes
in the presence of active VMs, compared with an unloaded system. At
the same time, however, it is clear that there is a clustering in the
criticality and sensitivity of data structures and kernel code, according
to their functionality. For example, data structures responsible for file
system (fs), kernel, network (net) operations are sensitive and should
be protected. Interestingly, the sensitive data structures appear to be
the same, irrespective of the load on top of the Hypervisor.

D. Total Cost of Ownership
 Table 3 shows the overall realistic energy efficiency and TCO gains
that the UniServer project can achieve in 2019 (estimated project end)
over an ARM based server platform. The main sources of the
improvements are expected to be (i) technology scaling and leakage
reduction due to finfet adoption, (ii) software maturity for ARM based
servers, (iii) improved efficiency from running in the Edge, and (iv)
operating at EOP using the UniServer approach. By taking in account
only the energy efficiency gains we estimate 1.15x TCO improvement.
The actual TCO improvement will be even more because of lower chip
cost due to higher yield. A tool will be developed in the context of
UniServer for end-to-end estimation of the TCO and data-center
design exploration. Among other parameters, the TCO tool will
consider specific requirements and architecture of both the Cloud and
the Edge. It will estimate capital and operational expenses.

Figure 4: Hypervisor fatal failures in case of errors

in different structures

0

50

100

150

200

250

0

500

1,000

1,500

2,000

2,500

3,000

3,500

bl
oc

k

dr
iv

er
s fs

in
it

ke
rn

el

m
m pc

i

po
w

er

se
cu

rit
y

vd
so

Failuresof H
ypervisor w

ith no w
orkloadFa

ilu
re

s
of

 H
yp

er
vi

so
r w

ith
 w

or
kl

oa
d

Categories of Hypervisor data structures

Failures with workload Failures with no workload

Figure 3: Memory footprint of Hypervisor, VMs and Application

 By allowing services to run closer to the devices that generate the
data it is possible to improve energy efficiency as whole. Specifically,
the latency to communicate through the public network to a cloud
resource can be leveraged to run a service with much less power or get
more work done in the same power envelope. Currently, this latency is
in the same order of magnitude with the overall latency targeted by the
interactive cloud services (tens to hundreds of milliseconds) [2].
Therefore, a hypothetical IoT service with a target end-to-end latency
of 200ms can easily, for a roundtrip to the cloud, expect to spend half
of its budget in the network. This leaves a very tight time budget for
the actual processing to be done at the data-center. Edge processing
has the potential to eliminate most, if not all, of the communication
latency and, therefore, can permit to run the service at lower frequency
and voltage. For example, operating at 50% of the peak frequency with
30% less voltage translates to running with 50% less energy and 75%
less power. Besides addressing the power challenge, the envisioned
ecosystem also contributes to assure sustainability, programmability,
privacy and security concerns by enabling running services at the
Edge. Such services can relieve the public network from the Big Data
burden, while ensuring the required quality of service in response and
latency sensitive applications. The complete software ecosystem
enables seamless administration of cloud and edge data-centers, and
reduces the programmability effort that would otherwise be required
for porting a service to specialized hardware in the cloud. Finally, the
ability of Edge resources to provide a complete service within a home
or at the premises of an organization naturally results in improved
privacy since the data do not need to be transmitted through the public
network and reside in third party data-centers.

7. CONCLUSIONS

In the paper we presented the basic ideas of the UniServer project
which attempts to reduce hardware safety margins by utilizing
representative stress cases, constant hardware monitoring and
predictive mechanisms. The complete system stack approach includes
a modified error-resilient Hypervisor and a cloud resource
management software. Our initial results indicate the possible margins
existing in the state of the art CPUs and DRAMs, while revealing the
few kernel structures that are critical for maintaining non-disruptive
system operation. In the next 2 years the project plans to realize the
testing, monitoring and prediction daemons along with the described
fault tolerant hypervisor and OpenStack on a 64-bit ARM based
Server-on-Chip. The developed technologies will be evaluated using
smart emerging applications deployed in classical cloud business data-
centres as well as in new environments closer to the data sources. By
doing so the developed prototype aspires to drive Edge computing and
turn the opportunities in the emerging Big Data and IoT markets into
real, smarter products.

ACKNOWLEDGEMENTS

The presented research effort has received funding from the European
Community’s Horizon 2020 programme under grant no. 688540
(UniServer). - http://www.uniserver2020.eu/

REFERENCES

 [1] Cisco. Visual networking index: Global mobile data traffic forecast update
2014-2019.

[2] HP. White paper. http : // h30507:www3:hp:com/t5/Cloud -Source-Blog/,
2014.

[3] K. A. Bowman, et al. “A 45 nm resilient microprocessor core for dynamic
variation tolerance”. IEEE JSSC, 2011.

[4] P. N. Whatmough, et al. “14.6 an all-digital power-delivery monitor for
analysis of a 28nm dual-core arm cortex-a57 cluster”, ISSCC 2015.

[3] Y. Kim, et al. “AUDIT: Stress testing the automatic way”, IEEE MICRO,
2012.

[4] A. Bacha, et al. “Dynamic Reduction of Voltage Margins by Leveraging
On-chip ECC in Itanium II Processors”, ISCA, 2013.

[5] V. J. Reddi et al. "Voltage smoothing: Characterizing and mitigating voltage
noise in production processors via software-guided thread scheduling."
MICRO, 2010.

[6] H. Esmaeilzadeh et al. "Dark silicon and the end of multicore scaling."
ISCA, 2011.

[7] S. Borkar et al., “Parameter variations and impact on circuits and
microarchitecture,” DAC, 2003.

[8] G. Karakonstantis et al. “Containing the nanometer pandora-box: Cross-
layer design techniques for variation aware low power systems,” IEEE
JETCAS, 2011.

[9] L. Leem et al. “Cross-layer error resilience for robust systems” IEEE
ICCAD 2010.

[10] S. Das et al., “RazorII: In Situ Error Detection and Correction for PVT and
SER Tolerance,” JSSCC 2009.

[11] D. M. Bull et al., “A Power-Efficient 32 bit ARM Processor Using Timing-
Error Detection and Correction for Transient-Error Tolerance and
Adaptation to PVT Variation” IEEE JSSC, 2011

[12] W. Gu, et al. “Characterization of Linux Kernel Behavior under Errors”.
IEEE DSN, 2003.

[13] T.-Y. Lee et al. “Fault isolation using stateless server model in L4
microkernel.” ICCAE, 2010.

[14] A. Srivastava et al. “Efficient protection of kernel data structures via object
partitioning.” In Proceedings of the 28th annual Computer Security
Applications Conference, 2012.

[15] F. M. David et al., “Building a self-healing operating system” IEEE DASC,
2007.

[16] X. Jin, et al. “FTXen: Making Hypervisor resilient to hardware faults on
relaxed cores.” IEEE HPCA, 2015.

[17] T. Bressoud, et al. “Hypervisor-based fault tolerance.” ACM TOCS,, 1996.
[18] VMware (2009), 'VMware vSphere™ 4 Fault Tolerance: Architecture and

Performance'
[19] A. Bahga et al., “Analyzing Massive Machine Maintenance Data in a

Computing Cloud,” IEEE TPDS, 2012.
[20] Daniel Dean, et al. “UBL: unsupervised behavior learning for predicting

performance anomalies in virtualized cloud systems”. ICAC, 2012.
[21] P. Gaikwad et al., “Anomaly detection for scientific workflow applications

on networked clouds”. HPCS, 2016.
[22] Guan, Qiang, et al. “A Failure Detection and Prediction Mechanism for

Enhancing Dependability of Data Centers,” Journal of Computer Theory
and Engineering, 2012.

[23] E. Chuah et al., "Linking Resource Usage Anomalies with System Failures
from Cluster Log Data" SRDS, 2013.

[24] X. Chen, et al. "Failure Prediction of Jobs in Compute Clouds: A Google
Cluster Case Study," ISSREW, Naples, 2014, pp. 341-346.

[25] Y. Watanabe, et al. "Online failure prediction in cloud data-centers by real-
time message pattern learning," CloudCom, 2012.

[26] J. Liu et al., “RAIDR: Retention-aware intelligent DRAM refresh,” ISCA,
2013.

[27] P. J. Nair et al., “ArchShield: architectural framework for assisting DRAM
scaling by tolerating high error rates,” SIGARCH Comput. Archit., 2013

[28] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. September 2006.

[29] O. Erling et al., “The LDBC Social Network Benchmark: Interactive
Workload,” ACM SIGMOD 2015.

[30] OpenStack, “Open source software for creating private and public
clouds,” [Online]. Available: https://www.openstack.org/.

[31] D. Hardy et al., “An Analytical Framework for Estimating TCO and
Exploring Data Center Design Space,” IEEE ISPASS, 2013.

[32] J. Liu et al., “An experimental study of data retention behavior in modern
DRAM devices: implications for retention time profiling mechanisms,”
SIGARCH, 2013.

[33] Fabrice Bellard. “QEMU, a fast and portable dynamic translator”.
USENIX ATEC, 2005.

Table 3: Energy efficiency and TCO improvement estimations along
with the sources of improvement [31]

EE improvement TCO
Scaling Sw maturity Fog Margins Overall

1.15 4 2 3 1.5 36

