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ABSTRACT 
The explosive growth of Internet-connected devices will result in a 
flood of generated data, which will increase the demand for network 
bandwidth as well as compute power to process the generated data. 
Consequently, there is a need for more energy efficient servers to 
empower traditional centralized (Cloud) data-centers as well as 
emerging decentralized data-centers at the Edges of the Internet. In this 
paper, we present our approach, which aims at developing a new class 
of micro-servers – the UniServer - that exceed the conservative energy 
and performance scaling boundaries by introducing novel mechanisms 
at all layers of the design stack. The main idea lies on the realization 
of the intrinsic hardware heterogeneity and the development of 
mechanisms that will automatically expose the unique varying 
capabilities of each hardware component and allow their operation at 
new Extended Operating Points (EOP). Low overhead schemes are 
employed to monitor and predict the hardware behavior and report it 
to the system software. The system software is responsible for 
optimizing the system operation in terms of energy or performance, 
while guaranteeing non-disruptive operation under EOP. To efficiently 
manage any potential fault that may incur under EOP, we aim at 
identifying critical/vulnerable software structures and developing low 
cost techniques for protecting them. This eventually, allows us to 
enhance the fault tolerance of the overall system software that is 
representative of any state-of-the-art cloud data-center, since it adopts 
a virtualization environment as well as popular resource management 
packages. Our initial experiments indicate that there are significant 
pessimistic margins in processors and DRAMs, and reveal the 
invariable impact of potential faults on various structures of the system 
software.   

1. INTRODUCTION 

The number of intelligent Internet-connected devices is growing day 
by day and will soon be in the orders of tens of billions, forming the 
Internet of Things (IoT). Each of these devices is pushing data to the 
Internet and this data is expected to reach 24.3 exabytes in 2019 [1]. 
This rapid data growth will put a lot of pressure on the current Internet 
infrastructure and centralized data-centers, which are already 
oversubscribed. Coping with this imminent data flood requires not 
only enhancement of the processing capabilities of the current servers 
but also rethinking of the way we communicate and process data across 
the Internet.  
    A recently introduced approach that has the potential to ensure the 
viability and scaling of the Internet in the IoT era is Edge computing. 
The premise of Edge computing is to execute services closer to the data 
sources. Edge computing can reduce application latency [2], and 
decrease bandwidth requirements between the end user and the data-
center. Realizing such an approach requires the design of new server 
ecosystems that can be deployed closer to the data sources without the 
need of any expensive cooling or power infrastructure. This is 
contingent on designing such ecosystems with substantially improved 

energy efficiency than the current state-of-the-art without 
compromising performance, availability, programmability, reliability 
and security properties of the existing cloud data-centers. 
    However, realizing such server ecosystems is extremely challenging 
due to the stagnant voltage scaling (the most effective power saving 
knob), and the worsening process variations [3], [4] that nanometer 
circuits are experiencing. In fact, as transistors are being pushed to the 
atomic scale, it is becoming very difficult to fabricate circuits with the 
expected specifications leading to large static and dynamic variations 
[3]. To cope with the significant hardware variability and to hide it 
from the upper layers of system and application software, 
manufacturers adopt pessimistic voltage and frequency guard-bands 
based on the worst-case scenarios. However, such guard-bands limit 
the circuits to work less efficiently than they could, essentially 
constraining the power and performance of all manufactured circuits 
based on the worst-case parts. As shown in Table 1 the voltage guard-
bands currently adopted against a variety of issues are already 
significant. Such margins are becoming more prominent with the use 
of more cores per chip, the increased voltage droops [5], reliability 
issues at low voltages (Vmin) [6], and core-to-core variations. As an 
indication, recent measurements in ARM processors indicated more 
than 30% timing and voltage margins in 28nm [4]. 
    Realizing that the power and performance overheads imposed by the 
current pessimistic design paradigm is unavoidable, in this paper we 
introduce a radical approach that plans to turn the table around by 
treating the intrinsic hardware heterogeneity as an opportunity and not 
as a problem. In particular, in UniServer we put forward the following 
question: Why allow the worse margins of fabricated chips to 
artificially constrain the performance and energy of today’s systems? 
The reality is that each manufactured processor and each memory 
module is inherently different and lies on a distinct performance bin 
(Figure 1). Based on such observation, the UniServer approach plans 
to substitute the existing conservative margins with the real 
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Figure 1: Each manufactured chip is intrinsically different in 
terms of capabilities 

 

Table 1: Sources of variations and voltage guard-bands 
Reasons for guard-bands Voltage Up-scaling 
Voltage droops ~20% 
Vmin ~15% 
Core-to-core variations ~5% 

 



capabilities of each individual core and memory-array. This will 
enable us to exceed the energy and performance scaling boundaries 
adopted in servers. In order to achieve this goal, the UniServer project 
introduces the following technical innovations at all system layers:  
i) automatically reveal the possible Extended Operating Points 

EOP (i.e.,  voltage, frequency, refresh rate) of each hardware 
component (i.e. cores and memories); 

ii) monitor and predict the operating status of the underlying 
hardware components by introducing new low-level software 
daemons; 

iii) optimize the system operation by adjusting the 
power/performance/reliability trade-offs based on the enhanced 
policies and kernel modules;     

iv) enable monitoring of the hardware status by all layers of the 
system software by extending existing interfaces; 

v) enhance the fault tolerance of all layers of the system software by 
providing sufficient protection to critical software structures; 

vi) adapt software packages for virtualization (i.e. KVM) and 
resource management (i.e. OpenStack) to leverage EOP on next-
generation servers; 

vii) develop a tool for estimating the Total Cost of Ownership (TCO) 
gains against other solutions that can be achieved by deploying 
UniServer in Edge and cloud data-centers; and 

viii) analyze security threats in servers operating under the new EOP 
and provide low cost countermeasures.  

With the introduction of the above breakthroughs, UniServer aims at 
substantially improving the energy efficiency and/or the performance 
of future servers. UniServer1 is a project funded by the Horizon 2020 
Research Programme of the European Commission that is in its early 
phase having started on February 2016. The purpose of this paper, is 
to introduce the proposed approach and present our initial results.        
    The rest of the paper is organized as follows. Section 2 presents the 
cross layer UniServer approach. Section 3 discusses the innovation at 
the hardware and firmware layer. Section 4 discusses the innovation at 
the System Software. Section 5 compares the proposed approach with 
existing state of the art. Section 6 discusses the targeted improvements 
and presents the initial results. Finally, conclusions are drawn in 
Section 7.   

2. THE UNISERVER APPROACH  

Figure 1, depicts the different layers of the UniServer ecosystem. The 
most fundamental idea of the project lies on the hypothesis that each 
hardware component (i.e. core, cache, DRAM) may have intrinsically 
different capabilities in terms of energy, performance and reliability. 
    Starting from the low layers we develop techniques that aim at 
revealing new EOP for each hardware component based on the 
component’s true capabilities. This is achieved by stress-testing the 
hardware components during a pre-deployment phase under different 
points using various stress kernels. During deployment, a HealthLog 
daemon is monitoring the health status of the hardware under any used 
voltage/frequency/refresh rate (V-F-R) point and informs the system 
software by propagating information vectors about the performance, 
power, temperature, and any incurred errors. Moreover, another Linux 
daemon, the StressLog, is responsible for periodic offline, on-demand 
stress testing of the hardware components and for producing an output 
vector containing the new safe system V-F-R margins that will be 
suggested to the software (i.e. Hypervisor) for future usage. It also 
produces log files recording errors (correctable or uncorrectable), 
system configuration values, sensor readings and performance 
counters. Using the information provided by the HealthLog and 
StressLog the Predictor develops probability failure models and tries 
to predict the hardware behavior under any operating point and 
eventually helping the system software to decide on the optimum 
configuration.   
 

1 UniServer website: http://www.uniserver2020.eu/ 

  UniServer targets a wide range of use cases, ranging from 
deployments in remote locations close to the end users to deployments 
in cloud data-centers. To facilitate such diverse use cases, the 
UniServer platform must be equipped with a complete software stack 
that can efficiently manage any compute and storage resources by 
offering easy installation, migration and replication of tasks, either at 
the node or server-rack level. To this end, state-of-the-art software 
packages for virtualization (Hypervisor) and resource management 
(OpenStack) are being adopted.  Such packages, apart from managing 
the virtual machines (VMs) at the node level (Hypervisor) and the 
resources at a rack/data-center level (OpenStack), they are also being 
enhanced for optimizing the system operation and the available 
resources by fine tuning the extended V-F-R points. In particular, the 
Hypervisor will aim at limiting the effects of the potential faults to 
higher software layers by reconfiguring the system to operate within 
safe margins and isolating problematic processing and memory 
resources that affect the VMs. This is achieved by utilizing the 
information delivered by the HealthLog/StressLog/Predictor daemons 
and developing a new set of configuration properties. The optimization 
of operations at the EOP in UniServer is guided by the system 
requirements of the end-user for each VM, which are typically 
communicated to the Cloud provider through Service Level 
Agreements (SLAs). These workload-specific requirements reflect the 
key metrics of interest based on which OpenStack manages the nodes 
that constitute any data-centre. Note that in UniServer an additional 
node reliability metric is added to the traditional metrics of interest, 
which are node availability, utilization and energy usage. Altogether, 
these metrics will help in system optimization. The system 
optimization will be also assisted by developing a tool for estimating 
the potential TCO gains that can be achieved by various configuration 
properties of the platform and deployments on Cloud or Edge 
environments. 
     The exposure of new EOP, which if not used carefully may result 
in system failure, entail new security risks. UniServer plans to identify 
potential security threats (i.e., side channel attacks) that might be 
caused to micro-servers and develop low cost countermeasures against 
them. The main chassis of the UniServer is a state-of-the-art 64-bit 
ARM based Server-on-Chip on which the developed technologies are 
ported. However, the analysis and developed technologies will not be 

Figure 2: UniServer - Cross-Layer Error-Resilient Ecosystem 
 



tied to a particular platform and special consideration will be given to 
enable their seamless integration with other servers.  

3. EXPOSING MARGINS AND MONITORING HARDWARE 

BEHAVIOR 
UniServer will use the following technical approach for revealing 
optimistic margins. Firstly, at the pre-deployment stage, the system 
goes through a batch of stress-tests to determine the more efficient but 
safe per-component margins. Secondly, at normal operation in the 
field, a daemon is constantly recording any possible errors (even if 
correctable) to fine-tune the margins after deployment. If the number 
of errors rises above a certain threshold a new stress-test cycle may be 
triggered to determine new efficient safe margins. This is useful to 
better adapt to the workloads and also to the aging of the system. 
Thirdly, during runtime a predictor daemon is running to observe 
different metrics and advise the Hypervisor on possible execution 
modes (e.g. high-performance or low-power).  

A. Revealing the margins within on-board components 
Heterogeneity exists among cores located on the same chip, DRAM 
and cache memory banks. Each resource may perform better or worse 
than others but certainly not as any other similar resource on the board. 
In UniServer we plan to characterize each core and memory bank 
individually. For example, for each cache memory bank UniServer 
will reveal the minimum voltage that allows correct operation. This 
information will be revealed to software and can be exploited towards 
better energy-efficiency. 

B. Stress-test development 
First of all, we will stress the underlying cores and memories using 
diagnostic viruses. We plan to use genetic algorithms for generating 
these viruses [2], [3]. These viruses will cause maximum voltage noise, 
power consumption and error rates. The viruses will represent a 
pathogenic worst case scenario that is unlikely to be encountered in 
real-life workloads. Safety margins are more pessimistic than these 
worst-case viruses [1], [2], therefore these stress tests will reveal initial 
EOP. In addition, real-life workloads will probably allow even more 
efficient margins since they produce significant less voltage noise, 
power consumption and error rates compared to stress viruses. 

C. HealthLog Daemon 
Operating outside the nominal values may introduce hardware errors 
during the system’s lifetime. Thus, there is a need for a runtime 
mechanism that will monitor the system and report errors occurring 
during uptime. Such mechanisms already exist for different platforms 
but important information is missing. Therefore, in UniServer we are 
extending existing knowledge to create a UniServer-specific 
monitoring mechanism. We will extend the error reporting capabilities 
of existing mechanisms with system configuration values, sensor 
readings and performance counters. We call this mechanism the 
HealthLog monitor that records runtime system metrics in the form of 
an information vector, stored in a system logfile. The HealthLog 
monitor will also interact and exchange information with higher 
system layers (e.g. the Predictor and the Hypervisor). The HealthLog 
monitor will provide two types of services: (a) Event-driven services, 
where it will collect information based on event occurrences in the 
system (e.g. errors) and (b) On-demand services, where the monitor 
will respond to requests from higher layers for specific information.  

D. StressLog Daemon 
The aim of the UniServer project is to change the nominal V-F-R 
values, in order to reduce the power consumption of each server in the 
system. These new values may need to be updated several times over 
the lifetime of a server due to the aging effects of the machine or 
unexpected errors observed. Therefore, a mechanism is needed, to 
produce new nominal values that will still guarantee the safe 
operations of the server. This mechanism will stress test the machine 
using predefined applications and compute new safe operating V-F-R 
margins. We call this mechanism the StressLog monitor.  
     The StressLog monitor will be spawned either periodically during 
a machines lifetime (e.g. every 2-3 months) or will be triggered by 
higher system layers in the case of erratic or anomalous machine 
behavior. The machine being tested will be taken offline and as soon 

as the monitor receives the input stress target parameters from the 
higher system layers, it will initiate the stress test scenarios. The 
StressLog monitor will also include a workload suite, consisting of 
different benchmarks and kernels that either represent real-life 
applications or are hand-coded to stress specific components of the 
system. During a stress test, the HealthLog monitor will execute in 
parallel to record system events (errors, system values, sensors and 
performance counters). The StressLog monitor will take the output of 
the HealthLog and will wrap the needed information (defined in the 
stress target parameters) into a vector to be passed to the higher system 
layers.  

E. Predictor 
In order to advise the system regarding the best V-F-R mode depending 
on the current workload and runtime characteristics of the system, we 
will develop a machine-learning predictor that interacts with the 
HealthLog and StressLog monitors to provide advice to the Hypervisor 
for choosing the desired operation mode.  

4. MANAGING OPERATION AT EXTENDED MARGINS AT 

SYSTEM SOFTWARE 

A. Virtualization   
One of the major breakthroughs in the UniServer ecosystem is the 
ability to explore and allow operation when possible at EOP. In fact, 
such points may dynamically change depending on the workload, 
variations of environmental conditions, chip aging etc. and thus the 
system should be able to decide on the best energy efficient 
configuration parameters in a fast and reliable way. At the same time, 
operating so close to the points of failure requires mechanisms to deal 
with potential, inadvertently introduced faults.  
      UniServer follows a Hypervisor-based approach based on KVM, 
to leverage all benefits of virtualization, such as easier deployment, 
administration, replication and migration, which are necessary for the 
targeted data-centers at the Edge of the Cloud.  
      In the context of UniServer, the Hypervisor has additional roles. It 
is responsible for creating an appropriate execution environment for 
Virtual Machines (VMs) by manipulating the 
power/performance/reliability tradeoffs in an educated and safe 
manner. Specifically, it sets the system at a just-right configuration, 
which reduces the power footprint of each node by eliminating 
unnecessary hardware guard-bands, without introducing negative 
effects on the services running within the VMs. As discussed earlier, 
the best configuration depends on a number of different parameters, 
including the characteristics of application software, the capabilities of 
the specific hardware parts at the specific time and under the specific 
environmental conditions, as well as the quality of service (QoS) 
requirements introduced by the cloud management framework 
(OpenStack). 
     Despite applying sophisticated configuration policies within the 
limits specified by the StressLog, sporadic errors may still 
inadvertently occur due to the elimination of guard-bands. The 
Hypervisor needs to offer VMs a reliable virtual execution 
environment on top of potentially unreliable hardware. In other words, 
it needs to transparently mask errors from upper software layers. At 
the same time, it needs to protect the whole system from catastrophic 
failures. Being the lowest level of system software, the Hypervisor 
itself needs to be resilient to errors. Beyond selecting a realistic 
hardware configuration, the Hypervisor isolates problematic 
processing and memory resources experiencing high error rates, as 
reported by the HealthLog. This is exactly one of the main aims at the 
Hypervisor layer and probably less complex than the upper software 
layers. In particular, the Hypervisor will be enhanced with mechanisms 
to transparently mask errors from upper software layers, and protect 
the whole system from catastrophic failures while choosing the right 
EOP for any given condition/user requirement. 



B. Resource Management - OpenStack   
The next layer of software is the cloud computing platform. OpenStack 
[30] makes an ideal candidate for this layer as it is a widely used open 
source middleware for cloud setups, and it pairs well with the popular 
enterprise and open source technologies. Our extended version of 
OpenStack, includes support for monitoring VMs and determining 
their dynamically changing characteristics and virtual resource 
utilization at a finer granularity than the existing state-of-the-art. This 
resource monitoring information will be exploited to design and 
develop new scheduling policies, as well as to assess the susceptibility 
of VMs to experience catastrophic errors due to hardware faults. The 
new scheduling policies, will also focus on incurring minimal 
overhead and being non-intrusive in real-world scenarios where 
OpenStack would manage streams of incoming and terminating VMs. 
Developing such an error-resilient software stack will not only help to 
avoid system crashes even at EOP but will also help in characterizing 
and exploring the server operation at aggressive V-F-R scaling points 
by exploiting the characteristics of real world workloads. Furthermore, 
by porting the OpenStack on a micro-server will enable resource 
management capabilities from classical Cloud data centers at the Edge. 

5. IMPACT – ENHANCING THE STATE-OF-THE-ART 

A. Prior work on DVFS and Variation-Aware Hardware  
A wealth of work exists on Dynamic Voltage and Frequency Scaling 
(DVFS) and turning-off certain parts of the hardware [6] for 
combatting Dark Silicon and limiting on-chip power consumption. 
UniServer does not attempt to simply identify the best V-F-R point for 
a given workload. UniServer attempts to go beyond nominal V-F-R 
and reveal at runtime new optimistic operating points. Prior suggested 
attempts to tackle hardware heterogeneity include product binning and 
utilizing redundancy or using the worst-case for all the parts. With the 
increasing variability product binning becomes less effective. Many 
components are being discarded or sold at lower price, thus reducing 
the yield and revenues [7]. Built-in redundancy (Error Correcting 
Codes (ECC), extra hardware) may help in maintaining high yield but 
as the number of faults increases in scaled technologies, the amount of 
power and resources that are typically wasted is getting large [8]. 
    In addition, pessimistic design margins in voltage and frequency 
based on the worst-case core or memory cell may reduce the number 
of faults, however, these do not allow the circuits to operate at the 
minimum voltage or at the highest frequency that they can, eventually 
limiting the returns from technology scaling [9]. Instead, UniServer 
proposes hardware online monitoring and updating the margins 
accordingly. This way power and silicon is not wasted as with built-in 
redundancy. Moreover, cost per hardware part may be reduced as parts 
that previously would have been discarded by binning procedure, will 
be useful with UniServer approach. UniServer also promises the 
reduction of data-center acquisition and operating expenses. Related 
work [1], [10], [11] tries to reduce the margins operating at reduced 
voltage or higher frequency by occasionally detecting and correcting 
timing errors that may occur and replaying any faulty instruction. In 
constrast, the UniServer approach has minimum hardware intrusion 
and does not require application side modification. UniServer relies on 
existing hardware detection and correction mechanisms, mechanisms 
that have become mainstream in high performance and embedded 
processors. 

B. Prior work on Fault Tolerant System Software   
A handful of previous works focuses on the implementation of fault 
tolerant system software. Gu et al. [12] use fault injection to 
characterize the behavior of the Linux kernel in the presence of faults. 
In [13] the authors follow a microkernel approach to harden the OS, 
by moving functionality from the kernel to middleware and then 
separating system state from the server. Srivastava et al. [14] apply the 
concept of trust zones between different OS components and control 
data exchange between components of different levels of trust. 

Moreover, they restructure OS data structures, so that they can use the 
standard memory protection mechanisms at the page granularity to 
control data exchange between trust zones. Finally, the authors in [15] 
investigate mechanisms to heal the OS in the presence of faults, 
without rebooting and destroying the state of – potentially unharmed – 
applications. In the context of Hypervisors, FT-Xen [16] routes all 
writes to mutable state through a single core which is considered 
reliable. However, this requires extensive Hypervisor modifications, 
unless the Hypervisor is inherently non-symmetric. The latter is the 
case with Xen, which is used as the basis for FT-Xen, but not with 
KVM. Non-symmetric approaches introduce performance and 
scalability bottlenecks. At the same time, the correctness is not 
guaranteed, even on the reliable core, due to the potential propagation 
of errors from non-reliable cores (through cache coherence or due to 
non-reliable MCUs). UniServer is based on a symmetric Hypervisor, 
thus such approaches are not applicable. The UniServer Hypervisor 
seeks resilience through a careful characterization of the criticality and 
sensitivity of Hypervisor data structures and code, and educated 
checking and selective checkpointing mechanisms, driven by this 
analysis. Other approaches, such as [17] and VMware vLockstep [18] 
achieve resilience by maintaining coherent replicas of VMs on 
different physical servers. This approach is not practical neither in 
Edge computing environments, where replication may not be possible, 
nor in power- or energy-constrained deployments 
    Several recent efforts have tried to improve the fault tolerance of a 
data-center by developing techniques to detect and predict the failures 
that may occur in a cloud data-center. These techniques [19], [20], [21] 
generally leverage machine learning or statistical analysis techniques 
to process the log data generated from the physical or virtual servers 
to understand the causes of the past failures, and use this information 
to detect and predict future failures in real time. An unsupervised 
failure detection and prediction method is proposed in [21] that 
leverages Bayesian models to improve the reliability and availability 
of the data-center by detecting the anomaly in the gathered data from 
the cluster health monitoring tools. Along similar lines, ANCOR [22] 
proposes a diagnostic system that links resource usage anomalies with 
the system failures by analyzing the cluster log data. Work presented 
in [23] uses machine learning approach based on recurrent neural 
networks for job level and task level failures. A failure prediction 
method is proposed in [24] for cloud data-centers that uses the pattern 
of the system log messages to predict a failure by classifying the 
messages by their similarities in real-time. All these, and similar other, 
techniques are independent of the cloud middleware and are not 
integrated with the latest available OpenStack framework. To the best 
of our knowledge, there is no fault tolerance technique specific to 
OpenStack framework that detects and predicts system level failures 
to perform any proactive action to prevent the system failure or to 
improve the availability of the running application. UniServer’s 
approach is to extend OpenStack framework and have an integrated 
fault tolerance component, by adapting existing or developing new 
techniques to efficiently predict the system level failures and 
proactively migrate the running workloads on the healthy nodes, which 
is critical to sustain high-availability especially for high value and 
user-facing workloads 

6. SAVINGS PROJECTIONS AND INITIAL RESULTS 

As we said, the UniServer project is at its initial phase, focusing on the 
characterization of the available margins in commercial servers and the 
identification of the vulnerability of different system software 
structures. In this section se present our initial characterization results 
for state-of-the-art cores and DRAMs under different V-F-R points, 
and different Hypervisor structures. Furthermore, we discuss an initial 
total cost of ownership analysis for indicating the potential 
improvements.  

A. Characterization of CPUs 
We performed an experimental evaluation on two state-of-the-art x86-
64 microprocessors, (a low-end Intel Core i5-4200U and a high-end 
Intel Core i7-3970X) to study: (1) the crash points for each individual 
core for all the benchmark for voltage offsets below nominal 
conditions, (2) the core-to-core variation of the crash points among the 
cores for the same benchmark, and (3) the amount of cache ECC errors 



while we reduce the voltage and keep their frequency values 
unaffected at the highest values. The nominal voltage for the 
microprocessors under test is 0.844V and 1.365V and the frequency of 
operation is 2.6GHz and 4.0GHz, for the Intel Core i5-4200U and the 
Intel Core i7-3970X, respectively. Table 2 presents the findings for our 
initial experiments using 8 benchmarks (bzip2, mcf, namd, milc, 
hmmer, h264ref, gobmk, zeusmp) with diverse behaviors from the 
SPEC CPU2006 benchmark suite [28]: 
 

Table 2: Initial results for two Intel microprocessors 

 i5-4200U i7-3970X 
min max Min max 

crash points below 
nominal VID - 10% - 11.2% - 8.4% - 15.4% 

core-to-core 
variation 0% 2.7% 3.7% 8% 

number of cache 
ECC Errors 1 17 - - 

 
We performed 3 consecutive runs for each benchmark. The crash 
points present the minimum and maximum offset (as percentage) from 
the nominal voltage, where the system crashes. Similarly, the core-to-
core variation presents the minimum and maximum variability among 
all available cores for the same benchmark. The min and max values 
refer to the benchmark that provided the least and the most variability, 
respectively. The cache ECC errors were exposed only by the low-end 
microprocessor. On the average for all our experiments, the voltage 
offset before the crash, where the ECC errors begin to appear is 15mV. 

B. DRAM Characterization  
To quantify the pessimistic margins adopted in the refresh-rate of the 
DRAMs, we have instrumented a framework for modifying the refresh 
rate of various 8GB DDR3 DIMMs on a commodity server while 
running a full-fledged Linux. In our setup, we have separated the main 
memory into domains (based on the available channels) whose refresh-
rate can be set independently. This allowed us to isolate critical kernel 
code and stack data by placing them on a reliable memory domain 
(using nominal refresh-rate), and avoid any system crash that may 
occur under the various relaxed refresh rates that we experimented 
with. Using random test patterns and various refresh rates, our initial 
experiments revealed that the refresh rate can be relaxed from 64ms 
even to 1.5 seconds with no errors introduced to the data, same results 
found on [32]. Note that the server is in an air-conditioned server room, 
while the ECC is disabled. In fact, we have observed that even with 
higher refresh intervals up to 5 seconds (78x higher than the nominal 
value), the cumulative Bit Error Rate (BER) is in the order of 10-9, 
which is within the BERs targeted by commercial DRAMs. Note also 
that classical ECC-SECDED [27] can handle error rates up to 10-6. 
Relaxing the refresh rate to 1.5 seconds or even to 5seconds can help 
significantly reduce the refresh power that is responsible for the 9% in 
today’s 2Gb DIMMs and is expected to count for more than 34% of 
the overall memory power in future 32Gb DIMMs [26].     

C. Error-Resilient System Software 
     System Software and especially the Hypervisor of UniServer must 
be resilient against memory and CPU errors. However, the overhead 
of resiliency should not outweigh the energy efficiency benefits 
achieved at EOP. A careful characterization of code and data structures 
is thus necessary to enable a selective and effective protection strategy.  
As a first step, we quantitatively evaluated the memory overhead of 
Hypervisor data structures, with respect to the memory occupied by 
VMs and applications running on top of it. We measured the 
Hypervisor memory footprint by repeatedly executing four instances 
of VMs, each of which accommodates a graph database benchmark 
(LDBC Social Network Benchmark [29] on top of Sparksee Graph 
Database). This application stresses the CPU, disk I/O and network. 
As shown in Figure 3, the Hypervisor footprint (red line) is always less 
than 7% compared to total utilized memory of the system. Similar 
observations hold for other applications we experimented with.  This 
dictates placing the whole Hypervisor in a reliable-memory (operated 

at nominal V-F-R) domain can help ensure non-disruptive operation 
with low cost.  
    The Hypervisor can be affected by CPU errors as well. In order to 
characterize the sensitivity and significance of Hypervisor internal data 
structures and code, we have applied fault injection using QEMU [33].  
More specifically, for each statically allocated object of the Hypervisor 
(total 16820 objects), we introduced, in independent executions (total 
5 executions), Silent Data Corruptions (SDCs). Afterwards, for each 
execution we checked whether the data corruption resulted to a non-
responsive Hypervisor, and marked this object accordingly as crucial 
or non-crucial for the Hypervisor state. In addition, we experimented 
both with and without VMs running on top of the victim Hypervisor. 
Figure 4 depicts the results. It can be observed that the same fault 
injection rate lead to an order of magnitude more Hypervisor crashes 
in the presence of active VMs, compared with an unloaded system. At 
the same time, however, it is clear that there is a clustering in the 
criticality and sensitivity of data structures and kernel code, according 
to their functionality. For example, data structures responsible for file 
system (fs), kernel, network (net) operations are sensitive and should 
be protected. Interestingly, the sensitive data structures appear to be 
the same, irrespective of the load on top of the Hypervisor.  

D. Total Cost of Ownership  
    Table 3 shows the overall realistic energy efficiency and TCO gains 
that the UniServer project can achieve in 2019 (estimated project end) 
over an ARM based server platform. The main sources of the 
improvements are expected to be (i) technology scaling and leakage 
reduction due to finfet adoption, (ii) software maturity for ARM based 
servers, (iii) improved efficiency from running in the Edge, and (iv) 
operating at EOP using the UniServer approach. By taking in account 
only the energy efficiency gains we estimate 1.15x TCO improvement. 
The actual TCO improvement will be even more because of lower chip 
cost due to higher yield. A tool will be developed in the context of 
UniServer for end-to-end estimation of the TCO and data-center 
design exploration. Among other parameters, the TCO tool will 
consider specific requirements and architecture of both the Cloud and 
the Edge. It will estimate capital and operational expenses. 

 
Figure 4: Hypervisor fatal failures in case of errors  

in different structures 
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Figure 3: Memory footprint of Hypervisor, VMs and Application 

 



     By allowing services to run closer to the devices that generate the 
data it is possible to improve energy efficiency as whole. Specifically, 
the latency to communicate through the public network to a cloud 
resource can be leveraged to run a service with much less power or get 
more work done in the same power envelope. Currently, this latency is 
in the same order of magnitude with the overall latency targeted by the 
interactive cloud services (tens to hundreds of milliseconds) [2]. 
Therefore, a hypothetical IoT service with a target end-to-end latency 
of 200ms can easily, for a roundtrip to the cloud, expect to spend half 
of its budget in the network. This leaves a very tight time budget for 
the actual processing to be done at the data-center. Edge processing 
has the potential to eliminate most, if not all, of the communication 
latency and, therefore, can permit to run the service at lower frequency 
and voltage. For example, operating at 50% of the peak frequency with 
30% less voltage translates to running with 50% less energy and 75% 
less power. Besides addressing the power challenge, the envisioned 
ecosystem also contributes to assure sustainability, programmability, 
privacy and security concerns by enabling running services at the 
Edge. Such services can relieve the public network from the Big Data 
burden, while ensuring the required quality of service in response and 
latency sensitive applications. The complete software ecosystem 
enables seamless administration of cloud and edge data-centers, and 
reduces the programmability effort that would otherwise be required 
for porting a service to specialized hardware in the cloud. Finally, the 
ability of Edge resources to provide a complete service within a home 
or at the premises of an organization naturally results in improved 
privacy since the data do not need to be transmitted through the public 
network and reside in third party data-centers.  

7. CONCLUSIONS  

In the paper we presented the basic ideas of the UniServer project 
which attempts to reduce hardware safety margins by utilizing 
representative stress cases, constant hardware monitoring and 
predictive mechanisms. The complete system stack approach includes 
a modified error-resilient Hypervisor and a cloud resource 
management software. Our initial results indicate the possible margins 
existing in the state of the art CPUs and DRAMs, while revealing the 
few kernel structures that are critical for maintaining non-disruptive 
system operation. In the next 2 years the project plans to realize the 
testing, monitoring and prediction daemons along with the described 
fault tolerant hypervisor and OpenStack on a 64-bit ARM based 
Server-on-Chip. The developed technologies will be evaluated using 
smart emerging applications deployed in classical cloud business data-
centres as well as in new environments closer to the data sources. By 
doing so the developed prototype aspires to drive Edge computing and 
turn the opportunities in the emerging Big Data and IoT markets into 
real, smarter products.  
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Table 3: Energy efficiency and TCO improvement estimations along 
with the sources of improvement [31] 

EE improvement TCO  
Scaling Sw maturity Fog Margins Overall 

1.15 4 2 3 1.5 36 
 
 


