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ABSTRACT 

A series of spirocyclic compounds inspired by Eli Lilly’s phase 1 antidiabetic FFA1 receptor 

agonist LY2881835 was designed to include polar aromatic periphery groups and explore a 

possibility of building additional contacts with the target near the agonist binding site. The 

frontrunner compound in the series (9i) was shown to be a potent (EC50 = 260 nM) FFA1 agonist 

with excellent aqueous (PBS) solubility and good Caco-2 permeability. The observed structure-

activity relationships were rationalized by a docking study. The new series significantly expands 

the ligand landscape for the ongoing quest for new potent and more polar FFA1 agonists as 

fundamentally new class of therapeutic agents against type 2 diabetes mellitus. 

Keywords: Drug discovery; FFA1 agonists; antidiabetic agents; spirocyclic motifs; hydrophobic 

interactions; π−π stacking; reductive amination. 

1. Introduction 

De-orphaning of G-protein coupled receptor GPR40 in 2003 led to its being re-named as free fatty 

acid receptor 1 (FFA1) due to the demonstrated involvement of medium- to long-chain 

endogenous fatty acids in its activation [1]. Shortly thereafter, it was shown that the endogenous 

ligand binding to FFA1 regulates the secretion of insulin in pancreatic β-cells and is, therefore, 

linked to glucose homeostasis. Interestingly, the basal expression levels of FFA1 in normal state 
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are low but do become upregulated in hyperglycemic states, which makes the receptor an ideal 

target for therapeutic intervention. Moreover, once the glucose levels are normalized, the level of 

FFA1 expression goes back to normal thereby preventing hypoglycemia, even if an agonist is still 

in circulation [2]. Taken together, these observations unquestionably validated FFA1 as a 

therapeutic target of great promise in delivering new treatment for type 2 diabetes mellitus (T2DM) 

which would be devoid of adverse reactions of the drugs currently in clinical use. The interest 

toward this target from the industry and academic research teams was clearly evidenced by the 

discovery of a number of synthetic agonists over the decade following FFA1 validation as an 

antidiabetic target [3]. Unfortunately, the field was adversely affected by the discontinuation of 

the phase III clinical trials of Takeda’s fasiglifam (TAK-875) in December 2013 due to 

idiosynchratic liver toxicity observed within an extended patient population, which caused a sharp 

drop in the amount of effort worldwide to bring new FFA1 agonists as drugs to the market [4]. At 

the time of preparing this manuscript, only two phase I clinical studies (Piramal’s compound 

P11187 of undisclosed structure and SHR0534 or fusiglifam from Hengrui) were underway [5]. 

This is rather unfortunate as in fact, the proof of principle for the new therapeutic approach was 

clearly obtained in the course of TAK-875 clinical research [6]. Considering the fact that FFA1 is 

mainly expressed in the pancreas and in the brain [7], the hepatotoxicity of TAK-875 is likely 

related to the specific molecular structure of this (rather lipophilic [8]) molecule and not to the 

action at the receptor. In fact, much of the research in the last 3 years (i. e. after the discontinuation 

of TAK-875) has been focused on the discovery and development of more polar, less lipophilic 

FFA1 agonists [9].  

Figure 1. Polar-appendage (1-2) and scaffold-hopping (3-4) approaches toward less lipophilic 

FFA1 agonists. 
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Aiming at more polar FFA1 agonists could be considered a ‘tug of war’ as lipophilicity is a known 

driver of ligand potency for the free fatty acid receptors [10]. A sensible approach toward this goal 

typically includes fine-tuning of either the polar appendage groups around the 3-phenypropionic 

acid pharmacophore (as in, for example, 1 [11] and 2 [12]) or replacing this core with more polar 

heterocyclic congeners, i.e. applying the scaffold-hopping approach exemplified by 3 [13] and 4 

[14] (Figure 1). Ideally, this is done in conjunction with attempts to create new specific interactions 

with the target that could compensate for the affinity loss due to the decreased lipophilicity [12, 

14].  

Figure 2. LY2881835 and the rational design of the earlier reported (6-8) and newly developed 

(9) FFA1 agonists.  
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Recently, we became intrigued by the structure of LY2881835 (5), Eli Lilly’s advanced FFA1 

agonist, which progressed through phase I clinical trials [3]. In addition to 3-phenylpropanoic acid 

pharmacophoric core, the compound contains a spirocyclic piperidine moiety with a basic amine 

nitrogen atom, which constitutes an unusual feature for the FFA1 agonist landscape [4]. More 

importantly, it extends the range of structural motifs that can be explored as periphery ‘decoration’ 

of potential FFA1 agonists in the ongoing quest for more polar compounds (as the tertiary amine 

nitrogen will most likely be protonated at physiological pH). In this context, we saw a great 

opportunity to incorporate a greater diversity of spirocyclic motifs (amenable by our recently 

reported Prins cyclization protocol [15]) into a new series of FFA1 agonists inspired by 

LY2881835. Spirocyclic moieties in general are considered privileged structures for GPCR ligand 

design due to their pronounced three-dimensional character, better complementarity to the protein 

target of interest and lower off-target effects [16].  This prompted us to develop a series of 

spirocyclic compounds which delivered lead structure 6 [17]. It has a potency of 55 nM which is 

in sharp contrast with inactive compound 7 where the 1-oxa-9-azaspiro[5.5]undecane periphery is 

unsubstituted. More recently, we have also demonstrated that incorporation of significantly more 

polar isosteres (as in compound 8, which is somewhat less potent with an EC50 900 nM) was also 

possible and is not detrimental to compound’s potency [18]. For compound 6, we demonstrated 

that the presence of the benzyl substituent (which is absent in inactive compound 7) provides more 

than just a lipophilicity-driven potency increase. The benzyl group appeared to define a specific 

orientation of the spirocyclic moiety in 6 (pointing toward the intracellular side of the receptor) 

reinforced by a network of favorable hydrophobic interactions with L542.51,  L1354.54 and V813.27 

as well as a π-stacking interaction with W1314.50 [17]. Such a consideration prompted us to 

investigate a series of compounds 9 in which a polar heteroaromatic moiety (as that in compound 

8) would be attached to the crucial 1-oxa-9-azaspiro[5.5]undecane system via a more flexible, 3-

atom linker to enable the compound to assume a more energetically favored conformation and 

accommodate the azine periphery within the nearby binding pocket (Figure 2). Herein, we disclose 

our recent results in this regard. 

2. Results and discussion 

2.1  Chemistry 

Retrosynthetically, the target compounds could be disconnected to building blocks 10 and 13, 

gram-scale synthesis of which had been reported earlier [17, 19] (Figure 3).  

 

Figure 3. Retrosynthetic analysis of spirocyclic FFA1 agonists 9 investigated in this work. 
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This synthetic strategy was realized as shown in Scheme 1. Key spirocyclic ketone 13 was 

prepared on multigram scale via the Prins cyclization of 1-benzyl-4-piperidone and homoallyl 

alcohol followed by the protecting group exchange [15] and secondary alcohol oxidation with PDC 

[17].  

Scheme 1. Synthesis of compound 9a-m investigated as FFA1 agonists in this work. 
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Reagents and conditions: (i) EtOOCCH2P(O)(OEt)2, NaH, THF, 0 ºC  rt, 18 h; (ii) HCOONH4, 

10% Pd-C, EtOH, reflux, 12 h; (iii) LiAlH4, THF, rt, 2h; (iv) NaH, ArCl, DMF, 0 ºC  rt, 16 h 

(11b-l); (v) ArOH, DIAD, THF, 0 ºC  rt, 16 h (11a, 11m); (vi) TFA, CH2Cl2, 0 ºC, 6h; (vii) 10, 

Et3N, NaBH(OAc)3, CH2Cl2, 12 h, rt; (viii) 4M HCl, 1,4-dioxane, rt, 6h. 

The subsequent 2-hydroxyethyl side chain installation was achieved in three chemical operations 

including the Horner-Wadsworth-Emmons olefination reaction, double bond hydrogenation over 

a palladium catalyst using ammonium formate as a hydrogen source, and the LAH reduction of 

the ester functionality to the respective primary alcohol 12. A reasonable total chemical yield of 

41% was achieved for the three synthetic steps. Having installed the requisite 2-hydroxyethyl side 



chain, we proceeded to decorate it with a range of (hetero)aromatic groups. Most of these could 

be installed via a direct SNAr-type reaction of the alkoxide generated from 12 with heteroaromatics 

containing labile chloro-substituent.  Alternatively, respective hydroxyaromatic building block 

was coupled to 12 under the standard Mitsunobu conditions. Removal of the Boc protecting group 

with TFA furnished spirocyclic piperidine building blocks 11a-m which were alkylated with 

aldehyde 10 in reductive conditions (STAB) and, without purification, the resulting tert-butyl ester 

precursors were converted, using 4M HCl in 1.4-dioxane, to free carboxylic acids 9a-m, which 

were isolated as hydrochloride salts (Scheme 1). 

2.2 Biological activity 

Potential FFA1 agonists 9a-m synthesized as described above, were tested for their ability to 

activate FFA1 using calcium flux assay employing Chinese hamster ovary (CHO) cells engineered 

to stably express human FFA1. All compounds were tested in dose-response mode in order to 

calculate the respective EC50 values and determine % of maximum efficacy achieved for active 

compounds relative to commercially available reference FFA1 agonist GW9508 [20]. 

From the data obtained on activation of FFA1 receptor by compounds 9a-m (Table 1), it becomes 

evident that the idea of presenting polar aromatic periphery on an extended, three-atom linker 

resulted in low-micromolar potency for the majority of compounds (while the low potency of 9b 

is somewhat puzzling). Starting from the best compound in the azine-decorated series (8, EC50 = 

0.9 µM, vide supra) we reported earlier [18], the goal in present study was to optimize the same 

or similar polar azine (or other aromatic) periphery to be accommodated in the nearby binding 

pocket. The bioactivity data in Table 1 essentially reflect the gradual fine-tuning of the potency 

and the efficacy of compounds 9a-m until the best fit to the binding pocket manifests itself in 

compound 9i, which we regard as unquestionable frontrunner in this series. Compound 9i not only 

displays a pronounced restoration of the receptor affinity by the side chain present in it compared 

to its unsubstituted (inactive) counterpart 7, it also shows a significant improvement over its double 

homolog 8. Considering the fact that compounds 9h and 9i are mere positional isomers and, 

therefore, have an identical cLogP of 5.84 [21], the >4-fold difference in potency is likely 

attributable to the better accommodation of 9i by FFA1 (vide infra).  

 

 

 

 



Table 1. FFA1 agonists 9a-m studied in this work.  

N
O

O

O
OHArO

. nHCl

 

Compound Ar n FFA1 EC50 ± SD, µMa % efficacyb 

9a F *

 1 2.06 ± 0.34 55.0 

9b 
N

F3C *

 2 33.5 ± 1.54 79.2 

9c N
*

 
2 2.36 ± 0.61 83.4 

9d 
N

N
*

 
2 1.14 ± 0.15 80.2 

9e 
N

N *

 
2 1.26 ± 0.47 78.4 

9f 
N

N
*

 
2 1.48 ± 0.28 83.5 

9g N

N  
2 1.21 ± 0.52 60.5 

9h 
N

*

 
2 1.11 ± 0.12 110.3 

9i N
*

 
2 0.26 ± 0.07 100.3 

9j 
N

N
*

 
2 3.87 ± 1.01 54.5 

9k 
N

N
*

 
2 1.27 ± 0.44 104.9 

9l N *

 2 6.10 ± 1.23 48.5 

9m N
*

 2 2.56 ± 0.33 61.7 

a Each value is an average of n = 4. 

b Relative to GW9508 [20] (5 µM). 

We further profiled lead compound 9i for selectivity against other free fatty acid receptors 

(FFA3/GPR41, FFA2/GPR43 and FFA4/GPR120). FFA2 and FFA3 bind short-chain fatty acids 

preferentially, while FFA1 and FFA4 have a higher affinity to medium-and long chain fatty acids 



[22-23]. Compound 9i showed no activation of any of these receptors (except for FFA1) at 

concentrations as high as 10 µM (Table 2).  

Table 2. Selectivity profile of compound 9i.a 

 EC50 (µM) 

Human FFA1/GPR40 0.26 

Human FFA3/GPR41 >10 

Human FFA2/GPR43 >10 

Human FFA4/GPR120 >10 

a Each value is an average of n = 4 in the presence of 0.1% BSA. 

We also obtained the preliminary ADME profile of 9i by determining its Caco-1 permeability, 

stability toward incubation with mouse liver microsomes (MLM) and solubility in aqueous 

phosphate buffer solution (Table 3).  Unsurprisingly, the polar substituted pyridine periphery led 

to significant aqueous solubility and the compound had a good Caco-2 permeability. The metabolic 

stability was somewhat low which was already reported for compounds with a similar molecular 

scaffold [17]. The rapid MLM clearance can indeed be attributed to the presence of two 

heteroatom-substituted benzylic positions in 9i and/or β-unsubstituted which is a known weak spot 

of FFA1 agonists, prone to metabolic oxidation [4]. 

Table 3. ADME profile of compound 9i. 

  

Aqueous solubility (PBS, pH 7.4)a (µM) 228 

Metabolic stability  
(mouse liver microsomes) 

T1/2, min 22.9 

CLint, µL/min/mg 72.8 

A-B permeability (Caco-2, cm∙s-1)b (∙10-6) 7.3 

a Each value is an average of n = 4, measured at c = 1 µM. 
b Each value is an average of n = 2, measured at c = 10 µM. 

 

2.3 Docking studies 

In order to rationalize the dramatic difference in potency between unsubstituted spirocyclic 

compound 7 reported earlier [17] and frontrunner compound 9i identified in this study, which 

differ only in the presence of 2-[(6-methylpyrid-2-yl)oxy]ethyl side chain in the 1-oxa-9-



azaspiro[5.5]undecane portion of 9i, we docked these compounds in the FFA1 binding site (Figure 

4). 

Figure 4. Docked poses of compounds 7 and 9i at FFA1. (A) Overlay of 7 (green) and 9i (orange) 
in the FFA1 binding site. (B) Hydrophobic interactions of the 2-[(6-methylpyrid-2-yl)oxy]ethyl 
side chain. Protein-ligand interactions are only visualized for compound 9i. Hydrogen bonds, π−π 
and hydrophobic interactions are in brown, blue and yellow dashed-lines, respectively. Each 
transmembrane helix is labeled in red roman numerals. Residues are labeled with their position 
followed by the Ballesteros and Weinstein numbering [24] in subscript. EL2 refers to the 
extracellular loop 2. 

 

Both compounds assume similar positions within the biding site (Figure 4A) forming critical 

hydrogen bonds with R1835.39, Y913.37 and Y2406.51 while the aromatic ring of the 

phenylpropanoic acid moiety is in close proximity to F883.34, F1424.61, W174EL2 and F873.33. The 

docking results clearly demonstrate that the  2-[(6-methylpyrid-2-yl)oxy]ethyl side chain of 9i is 

within the hydrophobic cavity encompassed by L542.51, V813.27,  W1314.50 and L1354.54 (Figure 

4B). Apparently, the attachment of the pyridyl moiety to the spirocyclic fragment of 7 with a 

flexible, three-atom linker allows an optimal positioning of the periphery heterocycle within this 

cavity with negligible strain on the ligand. It is clearly visible that the 6-methyl substituent is 

buried within the cavity, which facilitates the formation of the π−π stacking contact between the 

pyridine ring and W1314.50. The latter appears to be vital for stabilizing the bound conformation 

of the ligand and its strength depends on the substituents in the aromatic rings involved in the 

interaction [25]. This observation could, for instance, help rationalize the significantly decreased 

potency of compound 9b (EC50 = 33.5 µM), which is the only one in the series that has a strongly 

electron-withdrawing substituent in the azine ring. 

 

 



3. Conclusions 

We have successfully explored the possibility of decorating the 1-oxa-9-azaspiro[5.5]undecane 

portion of inactive compound 7 (reported earlier as inspired by LY2881835) with polar 

(hetero)aromatic heterocycles attached via a flexible 3-atom linker to enable the optimal 

accommodation of these residues within the hydrophobic pocket identified earlier near the binding 

site of FFA1 agonists. One of the resulting compounds (9i) displayed a high potency and efficacy 

as FFA1 agonist and demonstrated excellent aqueous solubility, Caco-2 permeability and 

somewhat rapid metabolism in the presence of human liver microsomes. The compound clearly 

provides a strong proof-of-principle for the design approach taken toward new antidiabetic agents 

acting via FFA1 activation that includes the use of polar periphery residues. These findings 

significantly expand the FFA1 agonist chemistry space for the ongoing quest for new, more polar 

agents that would have a lesser chance of displaying idiosyncratic hepatotoxicity. 

4. Experimental protocols 

All reactions were conducted in oven-dried glassware in atmosphere of nitrogen. Melting points 

were measured with a Buchi В-520 melting point apparatus and were not corrected. Analytical 

thin-layer chromatography was carried out on Silufol UV-254 silica gel plates using appropriate 

mixtures of ethyl acetate and hexane. Compounds were visualized with short-wavelength UV light. 
1H NMR and 13C NMR spectra were recorded on Bruker MSL-300 spectrometers in DMSO-D6-

d6 using TMS as an internal standard. Mass spectra were recorded using Shimadzu LCMS-2020 

system with electron-spray (ESI) ionization. All and reagents and solvents were obtained from 

commercial sources and used without purification. 

All mass-spectroscopic measurements required for determination of ADME properties were 

performed using Shimadzu VP HPLC system including vacuum degasser, gradient pumps, reverse 

phase HPLC column, column oven and autosampler. The HPLC system was coupled with tandem 

mass spectrometer API 3000 (PE Sciex). The TurboIonSpray ion source was used in both positive 

and negative ion modes. Acquisition and analysis of the data were performed using Analyst 1.5.2 

software (PE Sciex). 

4.1 Synthesis 

4.1.1 tert-Butyl 4-(2-hydroxyethyl)-1-oxa-90-azaspiro[5.5]undecane-9-carboxylate (12).  

To a 0 ºC, vigorously stirred suspension of NaH (6.54 g, 163 mmol, 60% dispersion in mineral 

oil) in THF (300 mL) thriethylphosphonoacetate (45 g, 200 mmol) was added dropwise under 

argon. The stirring continued at that temperature for 1 h, whereupon a solution of 13 (40 g, 149 



mmol), prepared as described earlier [17], in THF (100 mL) was added. The reaction mixture was 

allowed to reach r. t. and was stirred at that temperature for 18 h. The reaction mixture was poured 

into water (500 mL) and the aqueous phase was extracted with ethyl acetate (3 x 200 mL). The 

combined organic extracts wer washed with 3% aqueous citric acid, 5% aqueous NaHCO3, brine, 

dried over anhydrous Na2SO4, filtered and concentrated in vacuo. The residue was fractionated on 

silica gel using 05% ethyl acetate in hexanes as eluent. The fractions containing the olefination 

product (according to LC MS analysis) were pooled and concentrated to dryness (yielding 32.7 g 

of the material). The residue (10.9 g) was dissolved in EtOH (200 mL), HCOONH4 (2.8 g, 0.44 

mmol) and 10% Pd on carbon (300 mg) were added and the resulting mixture was heated at reflux 

for 12 h. The mixture was cooled to r. t. and filtered through a plug of Celite (subsequently washing 

the latter with EtOH). The combined filtrate and washings were concentrated to dryness. The 

residue was partitioned between water (150 mL) and ethyl acetate (150 mL). The organic layer 

was separated and the aqueous layer was additionally extracted with ethyl acetate (2 x 150 mL). 

The combined organic extracts were washed with 3% aqueous citric acid, 5% aqueous NaHCO3 

and brine, dried over anhydrous Na2SO4, filtered and concentrated in vacuo.  The residue was 

dissolved in dry THF (200 mL) and to this solution, LiAlH4 (1.1 g, 29.3 mmol) was added in small 

portions on vigorous stirring. The stirring continued at room temperature for 2 h whereupon water 

(1.1 mL), 15% aqueous NaOH (1.1 mL) and water (3.3 mL) were sequentially added. The residue 

formed was filtered off, washed with THF (2 x 50 mL) and the combined filtrate and washings 

were concentrated in vacuo to provide the analytically pure title compound. 

Amorphous solid, yield  18,266 mg (41% over 3 steps); 1H NMR (300 MHz, CDCl3) δ 3.77 – 3.63 

(m, 5H), 3.56 (td, J = 12.3, 2.2 Hz, 1H), 3.23 – 3.12 (m, 1H), 3.06 – 2.94 (m, 1H), 2.26 (s, 1H), 

2.19 – 2.10 (m, 1H), 1.94 – 1.78 (m, 1H), 1.66 – 1.52 (m, 2H), 1.51 – 1.45 (m, 3H), 1.43 (s, 9H), 

1.32 – 0.99 (m, 4H); 13C NMR (75 MHz, CDCl) δ 155.0, 79.3, 70.4, 60.7, 59.8, 42.9, 39.9, 39.8, 

39.8, 39.2, 32.7, 29.2, 28.5, 26.7; MS m/z 300.4 (M+H+). 

4.1.2 General procedure 1 (GP1): preparation of 1-oxa-9-azaspiro[5.5]undecanes 11b-l 

To 0 ºC suspension of NaH (60% suspension in mineral oil, 220 mg, 5.6 mmol) in dry DMF (100 

mL) a solution of 13 (1.0 g, 3.3 mmol) in dry DMF (20 mL) was added. The resulting mixture was 

stirred at 0 ºC for 30 min and then treated with a solution of the respective 2-chloroazine (5.0 

mmol) in dry DMF (10 mL). The mixture was allowed to warm up to r. t. and stirred at that 

temperature for 16 h. It was poured into water (200 mL) and the resulting slurry was extracted 

with ethyl acetate (3 x 200 mL). The combined organic extracts were washed with 5% aqueous 

citric acid, 5% aqueous NaHCO3, brine and dried over anhydrous Na2SO4. The solid drying agent 

was filtered off and the filtrate was concentrated in vacuo. The residue was dissolved in CH2Cl2 



(10 mL), the solution was cooled to 0 ºC and TFA (3 mL) was added. The mixture thus obtained 

was stirred at 0 ºC for 6 h and then concentrated in vacuo to dryness to provide, after crystallization 

from isopropyl alcohol, the target compounds as ditrifluoroacetate salts. 

4.1.3  4-(2-{[5-(Trifluoromethyl)pyridin-2-yl]oxy}ethyl)-1-oxa-9-azaspiro[5.5]undecane 

ditrifluoroacetate (11b) 

Viscous oil, yield 67%;  1H NMR (300 MHz, DMSO-d6) δ 8.56 – 8.53 (m, 1H), 8.33 (s, 1H), 8.03 

(dd, J1 = 2.61 Hz, J2 = 8.80 Hz, 1H), 6.97 (d, J = 8.74 Hz, 1H), 4.37 (t, J = 6.65 Hz, 2H), 3.68 – 

3.62 (m, 1H), 3.52 – 3.44 (m, 1H), 3.11 – 2.99 (m, 3H), 2.89 – 2.78 (m, 1H), 2.36 – 2.28 (m, 1H), 

1.93 – 1.80 (m, 1H), 1.72 – 1.52 (m, 6H), 1.46 – 1.35 (m, 1H), 1.19 – 0.97 (m, 2H); 13C NMR (75 

MHz, DMSO-d6) δ 165.7, 144.9 (q, J = 4.5 Hz), 136.4 (q, J = 3.1 Hz), 124.2 (q, J = 271.1 Hz), 

118.7 (q, J = 32.5 Hz), 111.4, 68.2, 63.9, 60.1, 41.8, 35.4, 32.0, 26.5, 25.6; MS m/z 345.5 (M+H+). 

4.1.4        4-[2-(Quinolin-2-yloxy)ethyl]-1-oxa-9-azaspiro[5.5]undecane ditrifluoroacetate (11с) 

Viscous oil, yield 24%;  1H NMR (300 MHz, DMSO-d6) δ 8.53 (s, 1H), 8.22 (d, J = 8.86 Hz, 1H), 

7.87 (d, J = 7.93 Hz, 1H), 7.75 (d, J = 8.29 Hz, 1H), 7.70 – 7.61 (m, 1H), 7.46 – 7.39 (m, 1H), 

6.99 (d, J = 8.84 Hz, 1H), 4.46 (t, J = 6.54 Hz, 2H), 3.71 – 3.63 (m, 1H), 3.56 – 3.42 (m, 1H), 3.14 

– 2.77 (m, 4H), 2.39 – 2.30 (m, 1H), 2.00 – 1.84 (m, 1H), 1.76 – 1.36 (m, 7H), 1.24 – 1.01 (m, 

2H); 13C NMR (75 MHz, DMSO-d6) δ 161.6, 145.9, 139.3, 129.8, 127.8, 126.6, 124.8, 124.1, 

113.0, 68.1, 63.0, 60.1, 41.9, 35.6, 35.4, 32.1, 28.4, 26.6, 25.6; MS m/z 327.4 (M+H+). 

4.1.5    4-{2-[(3,6-Dimethylpyrazin-2-yl)oxy]ethyl}-1-oxa-9-azaspiro[5.5]undecane 

ditrifluoroacetate (11d) 

Viscous oil, yield 45%;  1H NMR (300 MHz, DMSO-d6) δ 8.55 (s, 1H), 7.90 (s, 1H), 4.33 (t, J = 

6.41 Hz, 2H), 3.73 – 3.63 (m, 1H), 3.56 – 3.44 (m, 1H), 3.13 – 2.78 (m, 4H), 2.36 – 2.29 (m, 7H), 

1.96 – 1.81 (m, 1H), 1.72 – 1.55 (m, 6H), 1.47 – 1.35 (m, 1H), 1.21 – 1.00 (m, 2H); 13C NMR (75 

MHz, DMSO-d6) δ 157.1, 147.5, 140.1, 134.0, 68.2, 63.2, 60.2, 41.8, 35.4, 32.2, 26.7, 25.5, 20.3, 

18.4; MS m/z 306.3 (M+H+). 

4.1.6 4-[2-(6,7-Dihydro-5H-cyclopenta[d]pyrimidin-4-yloxy)ethyl]-1-oxa-9-

azaspiro[5.5]undecane ditrifluoroacetate (11e) 

Viscous oil, yield 45%;  1H NMR (300 MHz, DMSO-d6) δ 8.73 (s, 1H), 8.46 (d, J = 46.70 Hz, 

2H), 4.48 (t, J = 6.46 Hz, 2H), 3.67 (dd, J = 11.75, 4.34 Hz, 1H), 3.49 (t, J = 11.53 Hz, 1H), 3.09 

– 2.85 (m, 6H), 2.80 (t, J = 7.44 Hz, 2H), 2.33 (d, J = 14.23 Hz, 1H), 2.15 – 2.02 (m, 2H), 1.84 (d, 



J = 3.34 Hz, 1H), 1.71 – 1.11 (m, 9H); 13C NMR (75 MHz, DMSO-d6) δ 171.8, 166.0, 155.1, 

120.7, 68.1, 64.5, 60.1, 41.7, 35.4, 35.2, 32.8, 32.1, 26.6, 26.3, 25.5, 21.3; MS m/z 318.3 (M+H+). 

4.1.7 4-[2-(6,7-Dihydro-5H-cyclopenta[d]pyrimidin-4-yloxy)ethyl]-1-oxa-9-

azaspiro[5.5]undecane ditrifluoroacetate (11f) 

Viscous oil, yield 24%;  1H NMR (300 MHz, DMSO-d6) δ 8.47 (d, J = 49.34 Hz, 2H), 8.28 (s, 

1H), 8.20 – 8.18 (m, 2H), 4.34 (t, J = 6.59 Hz, 2H), 3.67 (dd, J = 11.69, 4.52 Hz, 1H), 3.49 (t, J = 

11.49 Hz, 1H), 3.12 – 2.77 (m, 4H), 2.33 (d, J = 14.60 Hz, 1H), 1.86 (d, J = 3.65 Hz, 1H), 1.69 – 

1.35 (m, 7H), 1.32 – 0.97 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 159.8, 140.8, 136.7, 135.37, 

68.1, 63.4, 60.1, 41.8, 35.4, 35.3, 32.0, 26.5, 25.6; MS m/z 278.5 (M+H+). 

4.1.8 4-{2-[(2-Cyclopropyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)oxy]ethyl}-1-oxa-9-

azaspiro[5.5]undecane ditrifluoroacetate (11g) 

Viscous oil, yield 40%;  1H NMR (300 MHz, DMSO-d6) δ 8.42 (s, 1H), 4.48 (t, J = 6.58 Hz, 2H), 

3.72 – 3.63 (m, 1H), 3.54 – 3.44 (m, 1H), 3.11 – 2.97 (m, 5H), 2.90 – 2.81 (m, 1H), 2.75 (t, J = 

7.55 Hz, 2H), 2.37 – 2.29 (m, 1H), 2.27 – 2.18 (m, 1H), 2.16 – 2.05 (m, 2H), 1.90 – 1.77 (m, 1H), 

1.71 – 1.52 (m, 6H), 1.47 – 1.36 (m, 1H), 1.25 – 1.01 (m, 6H); 13C NMR (75 MHz, DMSO-d6) δ 

168.7, 168.0, 166.6, 118.5, 68.1, 65.0, 60.0, 41.8, 35.4, 35.1, 31.9, 31.8, 26.5, 26.0, 25.5, 21.5, 

15.6, 11.6; MS m/z 358.2 (M+H+). 

4.1.9   4-{2-[(4-Methylpyridin-2-yl)oxy]ethyl}-1-oxa-9-azaspiro[5.5]undecane ditrifluoroacetate 

(11h) 

Viscous oil, yield 33%;  1H NMR (300 MHz, DMSO-d6) δ 8,03 (d, J = 5.35 Hz, 1H), 6.86 (d, J = 

6.12 Hz, 1H), 6.73 (s, 1H), 4.29 (t, J = 6.59 Hz, 2H), 3.71 – 3.62 (m, 1H), 3.56 – 3.43 (m, 1H), 

3.13 – 2.98 (m, 3H), 2.92 – 2.79 (m, 1H), 2.39 – 2.27 (m, 4H), 1.92 – 1.78 (m, 1H), 1.72 – 1.52 

(m, 6H), 1.47 – 1.35 (m, 1H), 1.23 – 0.99 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 163.0, 151.6, 

145.2, 118.5, 110.6, 68.1, 63.5, 60.1, 41.8, 35.6, 35.4, 32.1, 26.5, 25.6, 20.5; MS m/z 291.4 

(M+H+). 

4.1.10 4-{2-[(6-Methylpyridin-2-yl)oxy]ethyl}-1-oxa-9-azaspiro[5.5]undecane  ditrifluoroacetate 

(11i) 

Viscous oil, yield 40%;  1H NMR (300 MHz, DMSO-d6) δ 7.67 – 7.60 (m, 1H), 6.85 (d, J = 7.27 

Hz, 1H), 6.65 (d, J = 8.28 Hz, 1H), 4.28 (t, J = 6.59 Hz, 2H), 3.71 – 3.64 (m, 1H), 3.54 – 3.44 (m, 

1H), 3.08 – 2.82 (m, 4H), 2.38 (s, 3H), 2.36 – 2.29 (m, 1H), 1.92 – 1.80 (m, 1H), 1.71 – 1.55 (m, 

6H), 1.48 – 1.34 (m, 1H), 1.15 – 0.99 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 162.5, 155.2, 



140.2, 116.0, 107.3, 68.1, 63.1, 60.1, 41.9, 35.6, 35.4, 32.1, 26.5, 25.6, 23.3; MS m/z 291.2 

(M+H+). 

4.1.11 4-[2-(Pyrimidin-2-yloxy)ethyl]-1-oxa-9-azaspiro[5.5]undecane ditrifluoroacetate (11j) 

Viscous oil, yield 58%;  1H NMR (300 MHz, DMSO-d6) δ 8.59 (s, 1H), 8.57 (s, 1H), 7.11 (t, J = 

4.75 Hz, 1H), 4.34 (t, J = 6.50 Hz, 2H), 3.72 – 3.62 (m, 1H), 3.56 – 3.43 (m, 1H), 3.13 – 2.99 (m, 

3H), 2.91 – 2.79 (m, 1H), 2.38 – 2.30 (m, 1H), 1.94 – 1.78 (m, 1H), 1.72 – 1.53 (m, 6H), 1.48 – 

1.36 (m, 1H), 1.22 – 0.98 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 164.7, 159.6, 115.4, 68.1, 

64.3, 60.1, 41.8, 35.4, 32.0, 26.5, 25.6; MS m/z 278.0 (M+H+). 

4.1.12 4-{2-[(3-Methylpyrazin-2-yl)oxy]ethyl}-1-oxa-9-azaspiro[5.5]undecane ditrifluoroacetate  

(11k) 

Viscous oil, yield 46%;  1H NMR (300 MHz, DMSO-d6) δ 8.44 (dd, J = 55.56, 2.37 Hz, 2H), 8.08 

– 7.98 (m, 2H), 4.35 (t, J = 6.57 Hz, 2H), 3.67 (dd, J = 11.73, 4.47 Hz, 1H), 3.49 (dd, J = 19.25, 

8.64 Hz, 1H), 3.14 – 2.75 (m, 4H), 2.40 – 2.29 (m, 4H), 1.95 – 1.78 (m, 1H), 1.75 – 1.32 (m, 7H), 

1.23 – 0.99 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 157.9, 143.9, 138.3, 135.4, 68.1, 63.4, 60.1, 

41.8, 35.4, 35.3, 32.1, 26.7, 25.5, 19.0; MS m/z 292.5 (M+H+). 

4.1.13 4-[2-(Pyridin-4-yloxy)ethyl]-1-oxa-9-azaspiro[5.5]undecane  ditrifluoroacetate (11l) 

Viscous oil, yield 58%;  1H NMR (300 MHz, DMSO-d6) 8.77 (d, J = 7.32 Hz, 2H), 7.56 (d, J = 

7.36 Hz, 2H), 4.38 (t, J = 6.59 Hz, 2H), 3.73 – 3.64 (m, 1H), 3.56 – 3.45 (m, 1H), 3.14 – 2.97 (m, 

3H), 2.93 – 2.78 (m, 1H), 2.37 – 2.29 (m, 1H), 1.95 – 1.81 (m, 1H), 1.74 – 1.54 (m, 6H), 1.49 – 

1.36 (m, 1H), 1.24 – 1.01 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 170.6, 143.4, 112.98, 68.1, 

60.0, 41.5, 35.3, 34.9, 31.8, 26.3, 25.5; MS m/z 276.8 (M+H+). 

4.1.14 General procedure 2 (GP2): preparation of 1-oxa-9-azaspiro[5.5]undecanes 11a and 11m 

 To a 0 ºC solution of 13 (1.0 g, 3.3 mmol), hydroxyaromatic coupling partner (4.3 mmol) and 

triphenylphosphine (1.29 g, 4.9 mmol) in dry THF (100 mL) a solution of DIAD (1.0 g, 4.9 mmol) 

in dry THF (10 mL) was added dropwise. The resulting mixture was stirred for 16 h at r.t., poured 

into water (100 mL) and the resulting slurry extracted with ethyl acetate (3 x 50 mL). The 

combined organic extracts were dried over anhydrous Na2SO4, filtered and concentrated in vacuo. 

The residue was dissolved in 7:3 diethyl ether-hexane mixture (30 mL) and the solution cooled to 

5 ºC. The precipitate of triphenylphosphine oxide was filtered off and the filtrate concentrated in 

vacuo. The residue was fractionated on a short column of silica gel using 0  5% ethyl acetate in 

hexane as eluent. The fractions containing the Mitsunobu reaction product (according to LC MS 



analysis) were pooled and the solvent was evaporated. The residue was dissolved in CH2Cl2 (10 

mL), the solution was cooled to 0 ºC and TFA (3 mL) was added. The mixture thus obtained was 

stirred at 0 ºC for 6 h and then concentrated in vacuo to dryness to provide, after crystallization 

from isopropyl alcohol, the target compounds as mono- (11a) or ditrifluoroacetate (11m) salts. 

4.1.14 4-[2-(4-Fluorophenoxy)ethyl]-1-oxa-9-azaspiro[5.5]undecane hydrochloride (11a) 

The trifluoroacetate salt obtained according to GP2, was transformed into hydrochloride salt by 

trituration with 4M solution of HCl in 1,4-dioxane (to avoid absorption of moisture by the 

hygroscopic TFA salt).  

White crystals, mp = 183-186 ºC, yield 64%; 1H NMR (300 MHz, DMSO-d6) δ 8.95 (s, 2H), 7.13 

– 7.06 (m, 2H), 6.96 – 6.90 (m, 2H), 3.96 (t, J = 6.41 Hz, 2H), 3.69 – 3.62 (m, 1H), 3.52 – 3.44 

(m, 1H), 3.07 – 2.74 (m, 4H), 2.33 – 2.29 (m, 1H), 1.87 – 1.44 (m, 8H), 1.19 – 0.97 (m, 2H); 13C 

NMR (75 MHz, DMSO-d6) δ 156.4 (d, J = 235.6 Hz), 154.9 (d, J = 1.73 Hz), 115.8 (d, J = 16.6 

Hz), 115.6 (d, J = 1.2 Hz), 68.2, 65.5, 60.0, 41.8, 35.7, 35.2, 32.0, 26.4, 25.4; MS m/z 294.5 

(M+H+). 

4.1.15 4-[2-(Pyridin-3-yloxy)ethyl]-1-oxa-9-azaspiro[5.5]undecane ditrifluoroacetate (11m) 

Viscous oil, yield 48%. 1H NMR (300 MHz, DMSO-d6) δ 8.66 – 8.63 (m, 1H), 8.51– 8.46 (m, 

1H), 8.09 – 8.05 (m, 1H), 7.92 – 7.85 (m, 1H), 4.23 (t, J = 6.5 Hz, 2H), 3.73 – 3.65 (m, 1H), 3.55 

– 3.45 (m, 1H), 3.13 – 2.99 (m, 3H), 2.93 – 2.80 (m, 1H), 2.38 – 2.30 (m, 1H), 1.97 – 1.83 (m, 

1H), 1.74 – 1.55 (m, 6H), 1.49 – 1.37 (m, 1H), 1.23 – 1.01 (m, 2H); 13C NMR (75 MHz, DMSO-

d6) δ 156.6, 135.7, 131.1, 129.8, 127.2, 68.1, 67.0, 60.1, 41.7, 35.4, 35.3, 31.9, 26.4, 25.6; MS m/z 

277.4 (M+H+). 

4.1.16 General procedure 3 (GP3): preparation of compounds 9a-m 

A solution of the respective spirocyclic piperidine salt 11a-m (0.46 mmol) in CH2Cl2 (5 mL) was 

treated with triethylamine (n x 0.46 mmol, where n = number of salt parts per molecule) followed 

by a solution of 10 (0.44 mmol) in CH2Cl2 (5 mL). After a brief stirring (15 min), sodium 

triacetoxyborohydride (STAB, 1.32 mmol) was added and the stirring continued for 12 h at r. t. 

The reaction was poured into 10% aqueous NaHCO3 (20 mL). Organic phase was separated and 

the aqueous phase was extracted with CH2Cl2 (2 x 10 mL). The combined organic extracts were 

washed with brine, dried over anhydrous Na2SO4, filtered and concentrated in vacuo. The residue 

was fractionated on silica gel using 01% MeOH in CH2Cl2. The fractions containing the 

reductive amination product (according to LC MS analysis) were pooled and concentrated in 

vacuo. The residue was dissolved in CH2Cl2 (3 mL) and treated with TFA (1 mL). The mixture 



was stirred at r. t. for 18 h and concentrated in vacuo. 2M HCl in ether (3 mL) was added to the 

residue and the later was triturated (with occasional sonication) until a crystalline hydrochloride 

salt formed. The latter was separated by filtration, washed with ether and dried in vacuo to provide 

analytically pure compounds 9a-m. 

4.1.17 3-(4-{[4-({4-[2-(4-Fluorophenoxy)ethyl]-1-oxa-9-azaspiro[5.5]undec-9-

yl}methyl)benzyl]oxy}phenyl)propanoic acid hydrochloride (9a) 

White crystalline solid, mp = 198-201 ºC, yield 83 mg (0.132 mmol, 30%); 1H NMR (300 MHz, 

DMSO-d6) δ 11.11 (s, 1H), 7.67 (d, J = 7.91 Hz, 2H), 7.49 (d, J = 7.91 Hz, 2H), 7.13 (d, J = 8.56 

Hz, 2H), 7.08 (t, J = 8.74 Hz, 2H), 6.95 – 6.90 (m, 4H), 5.09 (s, 2H), 4.39 – 4.23 (m, 2H), 3.97 (t, 

J = 6.50 Hz, 2H), 3.70 – 3.60 (m, 1H), 3.53 – 3.45 (m, 1H), 3.13 – 2.85 (m, 4H), 2.75 (t, J = 7.55 

Hz, 2H), 2.48 (t, J = 7.55 Hz, 2H), 2,45 – 4.41 (m, 1H), 2.05 –1.47 (m, 8H), 1.17 – 1.02 (m, 2H); 
13C NMR (75 MHz, DMSO-d6) δ 173.7, 156.5, 156.3 (d, J = 235.4 Hz), 154.9 (d, J = 1.9 Hz), 

138.5, 133.1, 131.5, 129.3, 129.2, 127.7, 115.7 (d, J = 22.4 Hz), 115.6, 114.5, 68.6, 67.8, 65.5, 

60.0, 58.3, 46.9, 46.9, 41.8, 35.7, 35.5, 32.0, 29.4, 26.6, 25.5; HRMS (ESI), m/z calcd for 

C34H40FNO5 [M+H+] 562.2969, found 562.2963. 

4.1.18  3-{4-[(4-{[4-(2-{[5-(Trifluoromethyl)pyridin-2-yl]oxy}ethyl)-1-oxa-9-

azaspiro[5.5]undec-9-yl]methyl}benzyl)oxy]phenyl}propanoic acid dihydrochloride (9b) 

White crystalline solid, mp = 198-201 ºC, yield 40 mg (0.059 mmol, 13.4%); 1H NMR (300 MHz, 

DMSO-d6) δ 10.60 (s, 1H), 8.56 (s, 1H), 8.04 (dd, J1 = 2.31 Hz, J2 = 8.87 Hz, 1H), 7.50 (dd, J1 = 

7.86 Hz, J2 = 37.80 Hz, 4H), 7.13 (d, J = 8.54 Hz, 2H), 7.04 – 6.95 (m, 1H), 6.92 (d, J = 8.51 Hz, 

2H), 5.09 (s, 2H), 4.38 – 4.27 (m, 4H), 3.69 – 3.61 (m, 1H), 3.58 – 3.41 (m, 1H), 3.15 – 2.83 (m, 

4H), 2.74 (t, J = 7.55 Hz, 2H), 2.48 (t, J = 7.55 Hz, 2H), 2.44 – 2.40 (m, 1H), 2.02 – 1.78 (m, 2H), 

1.69 – 1.40 (m, 4H), 1.23 – 0.97 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 173.8, 165.6, 156.5, 

145.0 (q, J = 4.3 Hz), 138.5, 136.4 (q, J = 2.9 Hz), 133.1, 131.5, 129.3, 129.27, 127.8, 124.1 (q, J 

= 271.1 Hz), 118.6 (q, J = 32.4 Hz), 114.5, 111.4, 68.6, 67.8, 63.9, 60.0, 58.4, 47.0, 46.9, 41.8, 

35.5, 35.5, 32.0, 30.7, 29.5, 26.6, 25.6; HRMS (ESI), m/z calcd for C34H39F3N2O5 [M+H+] 

613.2889, found 613.2883. 

4.1.19 3-(4-{[4-({4-[2-(Quinolin-2-yloxy)ethyl]-1-oxa-9-azaspiro[5.5]undec-9-

yl}methyl)benzyl]oxy}phenyl)propanoic acid dihydrochloride (9c) 

White crystalline solid, mp = 118-124 ºC, yield 136 mg (0.204 mmol, 44.3%); 1H NMR (300 MHz, 

DMSO-d6) δ 10.88 (s, 1H), 8.24 (d, J = 8.9 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 8.1 Hz, 

1H), 7.64 (d, J = 8.0 Hz, 3H), 7.49 (d, J = 7.9 Hz, 2H), 7.42 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 8.4 



Hz, 2H), 7.00 (d, J = 8.8 Hz, 1H), 6.91 (d, J = 8.4 Hz, 2H), 5.08 (s, 2H), 4.45 (t, J = 6.4 Hz, 2H), 

4.37 – 4.25 (m, 2H), 3.70 – 3.62 (m, 1H), 3.49 (t, J = 11.9 Hz, 1H), 3.14 – 2.82 (m, 2H), 2.74 (t, J 

= 7.5 Hz, 2H), 2.46 (t, J = 7.7 Hz, 2H), 2.46 – 2.41 (m, 1H), 2.05 – 1.85 (m, 2H), 1.73 – 1.50 (m, 

6H), 1.25 – 1.01 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 173.8, 161.6, 156.6, 145.5, 139.7, 

138.5, 133.1, 131.6, 129.9, 129.3, 129.3, 127.8, 126.4, 124.7, 124.2, 117.0, 114.6, 112.9, 68.7, 

67.9, 66.4, 63.3, 60.1, 58.4, 47.0, 46.9, 42.0, 35.6, 32.1, 30.7, 29.5, 26.8, 25.6; HRMS (ESI), m/z 

calcd for C37H42N2O5 [M+H+] 595.3172, found 595.3166. 

4.1.20  3-[4-({4-[(4-{2-[(3,6-Dimethylpyrazin-2-yl)oxy]ethyl}-1-oxa-9-azaspiro[5.5]undec-9-

yl)methyl]benzyl}oxy)phenyl]propanoic acid dihydrochloride (9d) 

White crystalline solid, mp = 137-144 ºC, yield 81 mg (0.126 mmol, 27.4%); 1H NMR (300 MHz, 

DMSO-d6) δ 11.14 (s, 1H), 7.92 (s, 1H), 7.66 (d, J = 7.41 Hz, 2H), 7.48 (d, J = 7.59 Hz, 2H), 7.13 

(d, J = 8.19 Hz, 2H), 6.91 (d, J = 8.14 Hz, 2H), 5.08 (s, 2H), 4.36 – 4.23 (m, 4H), 3.69 – 3.62 (m, 

1H), 3.55 – 3.43 (m, 1H), 3.12 – 2.81 (m, 4H), 2.74 (t, J = 6.95 Hz, 2H), 2.48 (t, J = 6.95 Hz, 2H), 

2.38 – 2.32 (m, 7H), 2.05 – 1.98 (m, 1H), 1.92 – 1.79 (m, 1H), 1.72 – 1.49 (m, 6H), 1.21 – 1.03 

(m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 173.9, 157.3, 156.6, 148.1, 139.8, 138.5, 133.2, 133.0, 

131.7, 129.4, 129.3, 127.9, 114.6, 68.7, 67.9, 63.4, 60.1, 58.4, 47.0, 47.0, 35.6, 35.5, 35.3, 32.2, 

30.8, 29.5, 26.8, 25.5, 20.5, 18.1; HRMS (ESI), m/z calcd for C34H43N3O5 [M+H+] 574.3281, found 

574.3275. 

4.1.21  3-(4-{[4-({4-[2-(6,7-Dihydro-5H-cyclopenta[d]pyrimidin-4-yloxy)ethyl]-1-oxa-9-

azaspiro[5.5]undec-9-yl}methyl)benzyl]oxy}phenyl)propanoic acid dihydrochloride (9e) 

Amorphous solid, yield 44 mg (0.067 mmol, 14.6%); 1H NMR (300 MHz, DMSO-d6) δ 10.87 (s, 

1H), 8.73 (s, 1H), 7.64 (d, J = 7.9 Hz, 2H), 7.49 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 6.91 

(d, J = 8.5 Hz, 2H), 5.08 (s, 2H), 4.47 (t, J = 6.6 Hz, 2H), 4.40 – 4.24 (m, 2H), 3.65 (dd, J = 11.3, 

3.8 Hz, 1H), 3.57 – 3.42 (m, 1H), 3.15 – 2.70 (m, 10H), 2.46 (t, J = 7.2 Hz, 2H), 2.45 – 2.38 (m, 

1H), 2.13 – 2.02 (m, 2H), 2.01 – 1.52 (m, 8H), 1.27 – 1.01 (m, 2H); 13C NMR (75 MHz, DMSO-

d6) δ 173.8, 171.7, 165.9, 156.5, 154.9, 138.5, 133.1, 131.6, 129.3, 129.2, 127.8, 120.7, 114.5, 

68.6, 67.8, 64.4, 60.0, 58.3, 47.0, 46.9, 41.8, 35.5, 35.2, 32.7, 32.0, 30.7, 29.5, 26.7, 26.2, 25.5, 

21.3; HRMS (ESI), m/z calcd for C35H43N3O5 [M+H+] 586.3281, found 586.3294. 

4.1.22 3-(4-{[4-({4-[2-(Pyrazin-2-yloxy)ethyl]-1-oxa-9-azaspiro[5.5]undec-9-

yl}methyl)benzyl]oxy}phenyl)propanoic acid dihydrochloride (9f) 

White crystalline solid, mp = 196-199 ºC, yield 92 mg (0.149 mmol, 32.4%); 1H NMR (300 MHz, 

DMSO-d6) δ 11.00 (s, 1H), 8.78 (t, J = 6.0 Hz, 1H), 7.81 (d, J = 6.3 Hz, 2H), 7.66 (d, J = 8.2 Hz, 



2H), 7.50 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 5.09 (s, 2H), 4.51 

(dd, J = 5.6, 2.4 Hz, 2H), 4.42 – 4.25 (m, 2H), 3.66 (d, J = 7.6 Hz, 1H), 3.50 (t, J = 11.3 Hz, 1H), 

3.13 – 2.81 (m, 4H), 2.75 (t, J = 7.5 Hz, 2H), 2.47 (t, J = 7.4 Hz, 2H), 2.47 – 2.42 (m, 1H), 2.19 – 

1.92 (m, 4H), 1.74 – 1.38 (m, 4H), 1.21 – 1.01 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 174.2, 

172.0, 160.0, 157.0, 142.5, 138.9, 133.6, 132.0, 129.8, 129.7, 128.2, 125.0, 115.0, 69.1, 68.3, 60.4, 

58.7, 47.4, 47.4, 42.8, 42.1, 36.0, 35.8, 32.3, 29.9, 27.8, 25.9; HRMS (ESI), m/z calcd for 

C32H39N3O5 [M+H+] 546.2968, found 546.2986. 

4.1.23 3-[4-({4-[(4-{2-[(2-Cyclopropyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)oxy]ethyl}-

1-oxa-9-azaspiro[5.5]undec-9-yl)methyl]benzyl}oxy)phenyl]propanoic acid dihydrochloride (9g) 

Amorphous solid, yield 108 mg (0.155 mmol, 33.7%); 1H NMR (300 MHz, DMSO-d6) δ 11.10 (s, 

1H), 7.58 (dd, J1 = 8.06 Hz, J2 = 52.18 Hz, 4H), 7.03 (dd, J1 = 8.56 Hz, J2 = 66.37 Hz, 4H), 5.08 

(s, 2H), 4.48 (t, J = 6.58 Hz, 2H), 4.40 – 4.24 (m, 2H), 3.70 – 3.62 (m, 1H), 3.53 – 3.43 (m, 1H), 

3.15 – 2.99 (m, 5H), 2.92 – 2.83 (m, 1H), 2.79 – 2.70 (m, 4H), 2.48 (t, J = 7.55 Hz, 2H), 2.44 – 

2.34 (m, 2H), 2.19 – 2.09 (m, 2H), 2.06 – 1.95 (m, 1H), 1.89 – 1.76 (m, 1H), 1.72 – 1.43 (m, 6H), 

1.31 – 1.02 (m, 6H); 13C NMR (75 MHz, DMSO-d6) δ 173.7, 167.6, 167.5, 167.4, 166.8, 156.5, 

138.5, 133.1, 131.5, 129.3, 129.2, 127.7, 119.1, 114.5, 68.6, 67.8, 65.4, 60.0, 58.3, 46.9, 46.8, 41.8, 

35.5, 35.4, 34.9, 31.9, 31.4, 29.5, 26.6, 25.9, 25.4, 21.6, 15.0, 12.0; HRMS (ESI), m/z calcd for 

C38H47N3O5 [M+H+] 626.3594, found 626.3574. 

4.1.24 3-[4-({4-[(4-{2-[(4-Methylpyridin-2-yl)oxy]ethyl}-1-oxa-9-azaspiro[5.5]undec-9-

yl)methyl]benzyl}oxy)phenyl]propanoic acid dihydrochloride (9h) 

White crystalline solid, mp = 30-32 ºC, yield 112 mg (0.177 mmol, 38.5%); 1H NMR (300 MHz, 

DMSO-d6) δ 11.15 (s, 1H), 8.07 (d, J = 5.49 Hz, 1H), 7.58 (dd, J1 = 8.10 Hz, J2 = 54.84 Hz, 4H), 

7.14 (d, J = 8.69 Hz, 2H), 6.99 – 6.87 (m, 4H), 5.09 (s, 2H), 4.41 – 4.23 (m, 4H), 3.69 – 3.62 (m, 

1H), 3.56 – 3.43 (m, 1H), 3.14 – 2.99 (m, 3H), 2.95 – 2.83 (m, 1H), 2.75 (t, J = 7.55 Hz, 2H), 2.48 

(t, J = 7.55 Hz, 2H), 2.45 – 2.39 (m, 1H), 2.34 (s, 3H), 2.09 – 1.95 (m, 1H), 1.90 – 1.78 (m, 1H), 

1.72 – 1.47 (m, 6H), 1.25 – 1.00 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 173.7, 162.1, 156.5, 

153.8, 143.6, 138.4, 133.1, 131.6, 129.3, 129.2, 127.7, 118.7, 114.5, 110.7, 68.6, 67.8, 64.6, 60.0, 

58.3, 46.9, 46.8, 41.8, 35.5, 35.4, 32.0, 29.5, 26.6, 25.5, 20.8; HRMS (ESI), m/z calcd for 

C34H42N2O5 [M+H+] 559.3172, found 559.3166. 

4.1.25    3-[4-({4-[(4-{2-[(6-Methylpyridin-2-yl)oxy]ethyl}-1-oxa-9-azaspiro[5.5]undec-9-

yl)methyl]benzyl}oxy)phenyl]propanoic acid dihydrochloride  (9i) 



White crystalline solid, mp = 147-150 ºC, yield 127 mg (0.202 mmol, 43.9%); 1H NMR (300 MHz, 

DMSO-d6) δ 11.04 (s, 1H), 7.76 – 7.64 (m, 3H), 7.52 – 7.47 (m, 2H), 7.14 (d, J = 8.65 Hz, 2H), 

6.95 – 6.88 (m, 3H), 6.78 – 6.72 (m, 1H), 5.09 (s, 2H), 4.41 – 4.24 (m, 4H), 3.70 – 3.63 (m, 1H), 

3.55 – 3.43 (m, 1H), 3.13 – 2.83 (m, 4H), 2.75 (t, J = 7.59 Hz, 2H), 2.48 (t, J = 7.59 Hz, 2H), 2.46 

– 2.42 (m, 1H), 2.41 (s, 3H), 2.07 – 1.95 (m, 1H), 1.91 – 1.79 (m, 1H), 1.74 – 1.45 (m, 6H), 1.25 

– 1.03 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 173.8, 162.0, 156.5, 154.6, 138.5, 133.1, 131.6, 

129.3, 129.2, 127.8, 116.4, 114.5, 107.4, 68.6, 67.8, 64.0, 60.0, 58.3, 47.0, 46.9, 41.9, 35.5, 35.5, 

32.0, 29.5, 26.5, 26.6, 25.5, 22.6; HRMS (ESI), m/z calcd for C34H42N2O5 [M+H+] 559.3172, found 

559.3164. 

4.1.26 3-(4-{[4-({4-[2-(Pyrimidin-2-yloxy)ethyl]-1-oxa-9-azaspiro[5.5]undec-9-

yl}methyl)benzyl]oxy}phenyl)propanoic acid dihydrochloride  (9j) 

Amorphous solid, yield 112 mg (0.182 mmol, 39.6%); 1H NMR (300 MHz, DMSO-d6) δ 11.07 (s, 

1H), 8.31 – 8.26 (m, 1H), 8.22 – 8.17 (m, 2H), 7.66 (d, J = 7.31 Hz, 2H), 7.48 (d, J = 7.51 Hz, 

2H), 7.14 (d, J = 8.33 Hz, 2H), 6.92 (d, J = 8.42 Hz, 2H), 5.09 (s, 2H), 4.39 – 4.23 (m, 4H), 3.70 

– 3.61 (m, 1H), 3.57 – 3.42 (m, 1H), 3.16 – 3.00 (m, 3H), 2.95 – 2.82 (m, 1H), 2.75 (t, J = 7.55 

Hz, 2H), 2.48 (t, J = 7.55 Hz, 2H), 2.45 – 2.40 (m, 1H), 2.08 – 1.95 (m, 1H), 1.91 – 1.77 (m, 1H), 

1.73 – 1.47 (m, 6H), 1.26 – 1.01 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 173.7, 159.7, 156.5, 

140.8, 138.4, 136.6, 135.2, 133.1, 131.5, 129.2, 127.7, 114.5, 68.6, 67.8, 63.9, 60.0, 58.3, 46.9, 

46.8, 41.8, 35.5, 35.4, 35.3, 31.9, 29.4, 26.6, 25.5; HRMS (ESI), m/z calcd for C32H39N3O5 [M+H+] 

546.2968, found 546.2962. 

4.1.27  3-[4-({4-[(4-{2-[(3-Methylpyrazin-2-yl)oxy]ethyl}-1-oxa-9-azaspiro[5.5]undec-9-

yl)methyl]benzyl}oxy)phenyl]propanoic acid dihydrochloride  (9k) 

Amorphous solid, yield 80 mg (0.127 mmol, 27.6%); 1H NMR (300 MHz, DMSO-d6) δ 10.92 (s, 

1H), 8.08 – 8.00 (m, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.5 Hz, 

2H), 6.91 (d, J = 8.5 Hz, 2H), 5.08 (s, 2H), 4.39 – 4.25 (m, 4H), 3.66 (dd, J = 11.7, 4.8 Hz, 1H), 

3.49 (dd, J = 13.0, 10.7 Hz, 1H), 3.15 – 2.80 (m, 4H), 2.74 (t, J = 7.5 Hz, 2H), 2.46 (t, J = 7.5 Hz, 

2H), 2.44 – 2.36 (m, 4H), 2.06 – 1.77 (m, 2H), 1.72 – 1.48 (m, 6H), 1.21 – 1.00 (m, 2H); 13C NMR 

(75 MHz, DMSO-d6) δ 173.7, 157.9, 156.5, 143.7, 138.5, 138.37, 135.23, 133.14, 131.54, 129.29, 

129.19, 127.73, 114.59, 68.69, 67.80, 63.41, 60.09, 58.4, 47.0, 46.9, 41.8, 35.5, 35.2, 32.1, 30.6, 

29.4, 26.8, 25.5, 18.8; HRMS (ESI), m/z calcd for C33H41N3O5 [M+H+] 560.3124, found 560.3116. 

4.1.28 3-(4-{[4-({4-[2-(Pyridin-4-yloxy)ethyl]-1-oxa-9-azaspiro[5.5]undec-9-

yl}methyl)benzyl]oxy}phenyl)propanoic acid dihydrochloride (9l) 



White crystalline solid, mp = 33-36 ºC, yield 144 mg (0.234 mmol, 50.9%); 1H NMR (300 MHz, 

DMSO-d6) δ 11.20 (s, 1H), 8.74 (d, J = 6.86 Hz, 2H), 7.67 (d, J = 7.96 Hz, 2H), 7.55 (d, J = 6.77 

Hz, 2H), 7.48 (d, J = 8.05 Hz, 2H), 7.13 (d, J = 8.60 Hz, 2H), 6.92 (d, J = 8.64 Hz, 2H), 5.09 (s, 

2H), 4.43 – 4.25 (m, 4H), 3.70 – 3.63 (m, 1H), 3.54 – 3.45 (m, 1H), 3.13 – 2.84 (m, 4H), 2.75 (t, 

J = 7.55 Hz, 2H), 2.48 (t, J = 7.55 Hz, 2H), 2.45 – 2.40 (m, 1H), 2.08 – 1.96 (m, 1H), 1.93 – 1.80 

(m, 1H), 1.76 – 1.50 (m, 6H), 1.27 – 1.05 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 175.4, 162.3, 

158.3, 152.2, 140.9, 139.9, 132.7, 130.0, 128.9, 127.9, 115.7, 106.1, 76.5, 70.3, 66.4, 62.7, 60.3, 

51.3, 38.1, 36.3, 35.9, 35.4, 33.9, 33.7, 32.6, 30.1; HRMS (ESI), m/z calcd for C33H40N2O5 [M+H+] 

545.3015, found 545.3010. 

4.1.29 3-(4-{[4-({4-[2-(Pyridin-3-yloxy)ethyl]-1-oxa-9-azaspiro[5.5]undec-9-

yl}methyl)benzyl]oxy}phenyl)propanoic acid dihydrochloride (9m) 

White crystalline solid, mp = 168-171 ºC, yield 127 mg (0.206 mmol, 44.8%); 1H NMR (300 MHz, 

DMSO-d6) δ 11.11 (s, 1H), 8.73 – 8.64 (m, 1H), 8.49 – 8.46 (m, 1H), 8.13 – 8.08 (m, 1H), 7.94 – 

7.86 (m, 1H), 7.58 (dd, J = 7.96, 52.28 Hz, 4H), 7.02 (dd, J = 8.01, 66.37 Hz, 4H), 5.08 (s, 2H), 

4.41 – 4.21 (m, 4H), 3.70 – 3.63 (m, 1H), 3.54 – 3.45 (m, 1H), 3.15 – 3.03 (m, 3H), 2.93 – 2.84 

(m, 1H), 2.75 (t, J = 7.55 Hz, 2H), 2.48 (t, J = 7.55 Hz, 2H), 2.44 – 2.40 (m, 1H), 2.09 – 1.95 (m, 

1H), 1.91 – 1.80 (m, 1H), 1.74 – 1.50 (m, 6H), 1.24 – 1.04 (m, 2H); 13C NMR (75 MHz, DMSO-

d6) δ 173.7, 156.6, 156.5, 138.5, 135.1, 133.1, 131.6, 131.1, 130.3, 130.3, 129.3, 129.2, 127.9, 

127.7, 127.3, 114.6, 68.6, 67.8, 67.1, 60.0, 58.3, 46.9, 46.8, 41.6, 35.5, 35.4, 35.2, 31.9, 29.5, 26.5, 

25.5; HRMS (ESI), m/z calcd for C33H40N2O5 [M+H+] 545.3015, found 545.3006. 

4.2 Biological and ADME assays 

4.2.1 Determination of agonistic activity of compounds against FFA1 (GPR40), FFA3 (GPR41), 

FFA2 (GPR43) and FFA4 (GPR120) receptors 

CHO cells stably expressing human GPR40 (stable CHO-GPR40 line created at Enamine Ltd.) 

were seeded (12,500 cells/well) into 384-well black-wall, clear-bottom microtiter plates 24 h prior 

to assay. Cells were loaded for 1 h with fluorescent calcium dye (Fluo-8 Calcium Assay kit, Abcam, 

ab112129) and tested using fluorometric imaging plate reader (FLIPR Tetra® High Throughput 

Cellular Screening System, Molecular Devices Corp.). Maximum change in fluorescence over 

base line was used to determine agonist response. A potent and selective agonist for FFA1 

(GPR40) GW9508 (Selleckchem, S8014) was tested with the test compounds as a positive control. 

Concentration response curve data were fitted using Molecular Devices ScreenWorks® System 

Control Software (Molecular Devices). For specificity screening for possible GPR41, GPR43 and 



GPR120 agonism, CHO cell lines stably expressing the respective receptors (purchased from The 

European Collection of Cell Cultures, ECACC) were used. 

4.2.2 Determination of aqueous solubility (PBS, pH 7.4) 

The test compound (9i) and the reference compound (Ondansetron hydrochloride, Sigma-Aldrich, 

O3639), were assessed for kinetic solubility in phosphate-buffered saline: 138 mM NaCl, 2.7 mM 

KCl, 10 mM K-phosphate, pH 7.4 with 2% final DMSO. Solubility measurements were done using 

filter microplate technique with UV-quantification for all compounds. Using a 40 mM stock 

solution of each compound in 100% DMSO, dilutions were prepared to a theoretical concentration 

of 800 μM in duplicates in phosphate-buffered saline pH 7.4 with 2% final dimethyl sulfoxide 

(DMSO) and then transferred to a 96-well, deep well polypropylene collection plate. In parallel, 

compound dilutions in 50% methanol/PBS mixes were prepared at concentrations of 0 μM (blank), 

200 μM and 400 μM in duplicates to generate calibration curves. The experimental compound 

dilutions in PBS were further allowed to equilibrate at 25°C on a thermostatic orbital shaker for 

two hours and then filtered through HTS solubility filter plates (EMD Millipore, MSSLBPC)  

using a vacuum manifold. The filtrates adjusted for the calibration sample non-aqueous solvent 

content by 2-fold dilution with methanol, and the calibrating solutions were analyzed using 

SpectraMax UV-Vis microplate reader (200-550 nm absorbance scan, 5 nm step increment). The 

concentrations of compounds in PBS filtrate were determined using a dedicated Microsoft Excel 

calculation script. Proper absorbance wavelengths for calculations were selected for each 

compound manually based on absorbance maxima (absolute absorbance unit values for the 

minimum and maximum concentration points within 0 - 3 OD range). Each of the final datasets 

was additionally visually evaluated by the operator and goodness of fit (R2) was calculated for 

each calibration curve. The reference compound was included in every separate solubility 

experiment to control proper assay performance.  

4.2.3 Assessment of metabolic stability in mouse liver microsomes 

The metabolic stability of compound 9i as well as the reference compounds (Imipramine, 

Propranolol) was determined in liver microsomes at five time points over 40 minutes using HPLC-

MS. Mouse hepatic microsomes were isolated from pooled (50), perfused livers of BALB/c male 

mice according to the standard protocol [26]. The batch of microsomes was tested for quality 

control using a commercial comparator preparation (Sigma-Aldrich M9441) and verapamil and 

propranolol as reference compounds. Microsomal incubations were carried out in 96-well plates 

in 5 aliquots of 40 μL each (one for each time point). Liver microsomal incubation medium 

contained potassium phosphate buffer (100 mM, pH 7.4), MgCl2 (3.3 mM), NADPН (3 mM), 



glucose-6-phosphate (5.3 mM), glucose-6-phosphate dehydrogenase (0.67 units/ml) with 0.42 mg 

of liver microsomal protein per mL. In addition, control incubations were performed replacing the 

NADPH-regenerating system with 100 mM phosphate buffer pH 7.4. Test compounds (2 μM, final 

solvent concentration 1.6 %) were incubated at 37°C under vortexing at 100 rpm. Five time points 

over 40 minutes had been analyzed. The reactions were stopped by adding 12 volumes of 90% 

acetonitrile-water to 40 μL incubation aliquots, followed by plasma protein precipitation by 

centrifuging at 5500 rpm for 3 minutes. Incubations were performed in duplicates. Supernatants 

were analyzed using the HPLC system coupled with tandem mass spectrometer. The elimination 

constant (kel), half-life (T1/2) and intrinsic clearance (Clint) were determined in plot of ln(AUC) 

versus time, using linear regression analysis: 

kel = - slope 

T1/2 = 0.693/kel 

CLint = (0.693/ T1/2) x (µl incubation/mg microsomes) 

4.2.4 Caco-2 permeability assay. 

Caco-2 cells (human colorectal adenocarcinoma line, ATCC, Cat. HTB-37) were cultivated in 

DMEM medium supplemented with 10% FBS, 1% non-essential amino acids solution and 0,1% 

penicillin-streptomycin in humidified atmosphere at 37oC in 5% CO2 to 70 – 80% confluence and 

then were seeded at 1x105 cells/well on 24-well semipermeable insert plates (Millicell Multiwell 

PCF 0.4 µm or similar). The medium was changed every two days. After 10 days of cell growth 

the integrity of differentiated Caco-2 monolayers was verified by transepithelial electrical 

resistance (TEER) measurements using Milicell-ERS Voltohmmeter (Millipore EMD). Caco-2 

cell monolayers were considered acceptable for transport studies if the final values of TEER were 

greater than 1000 ohm/cm2. For the permeability studies, 24-well insert plate was removed from 

its feeder plate and placed in a new sterile 24-well receiver plate. The cell layer was washed twice 

with Phosphate-Buffered Saline. Aliquots (300 µL) of the test compound solution (in duplicates, 

at 10 µM, in HBSS with 5,6 mM glucose buffered with 10 mM HEPES, pH 7.4) were added into 

the apical compartments of the trans-well insert and 1000 µL of the same buffer was added to the 

basolateral compartments. The plates were then incubated for 2h at 37 ºC. High, low and 

intermediate permeability controls (Atenolol, Propranolol, Quinidine) were run with every 

experimental batch to verify assay validity. The concentrations of the compounds tested in the A-

B permeability assay were determined using HPLC-MS method. The LC system comprised 

Shimadzu liquid chromatograph equipped with isocratic pumps (Shimadzu LC-10ADvp), 

autosampler (Shimadzu SIL-HTc), switching valve (FCV-14AH) and degasser (Shimadzu DGU-

14A). Mass spectrometric analysis was performed using API 3000 (triple-quadrupole) instrument 



from PE Sciex with electro-spray (ESI) interface. The data acquisition and system control were 

performed using Analyst 1.5.2 software from PE Sciex. 

The formula for calculating Papp (expressed in 10-6 cm/sec) was as follows: 

Papp = (VA/((Area) x (Time)) x  ([drug]acc/[drug]init,d), where 

VA - volume of transport buffer in acceptor well, 

Area - surface area of the insert (equals to effective growth area of the insert), 

Time - time of the assay, 

[drug]acc - concentration of test compound in the acceptor well, 

[drug]init,d - initial concentration of test compound in the donor well. 

 

4.3 Docking studies 

The 3D coordinates for GPR40 co-crystalized with TAK-875 was obtained from the Protein Data 

Bank (PDB ID: 4PHU) [27] and used for subsequent docking procedures. Protein preparation, 

refinement and docking was performed within Schrodinger’s Maestro, version 2016-1 [28].  To 

prepare FFA1 receptor for docking, hydrogens and missing atoms were added, alternate residue 

positions were defined and the hydrogen bonding network was further optimized by re-orientating 

hydroxyls, amides and imidazole rings (of histidine residues) using the Protein Preparation Wizard 

[29]. For selecting an appropriate docking protocol, TAK-875 was re-docked onto FFA1 and 

compared to the crystal structure orientation, RMSD < 2.5 Å.  The remaining parameters and steps 

for receptor grid generation, ligand preparation and docking protocols were similar to the 

methodology of our previous studies [14b, 17]. Here we utilized the MacroModel [30], LigPrep 

[31] and GLIDE [32] modules of Schrödinger’s Maestro. To allow the comparison of residue 

positions within the GPCR family, the labels of residues are shown the Ballesteros Weinstein 

indexing system in subscript [24].  
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