
Learning Bayesian Networks with Incomplete Data by Augmentation

Adel , T., & de Campos, C. P. (2016). Learning Bayesian Networks with Incomplete Data by Augmentation. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI Conference on Artificial
Intelligence ). Association for the Advancement of Artificial Intelligence (AAAI).

Published in:
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74407486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/learning-bayesian-networks-with-incomplete-data-by-augmentation(f48efe18-ba89-4966-a2cd-defbb3346fb4).html


Learning Bayesian Networks with Incomplete Data by
Augmentation

de Campos, C. P., & Adel Hesham, T. (2016). Learning Bayesian Networks with Incomplete Data by
Augmentation. In The Thirty-First AAAI Conference on Artificial Intelligence. (AAAI Conference on Artificial
Intelligence ). Association for the Advancement of Artificial Intelligence (AAAI).

Published in:
The Thirty-First AAAI Conference on Artificial Intelligence

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:05. Jan. 2017

http://pure.qub.ac.uk/portal/en/publications/learning-bayesian-networks-with-incomplete-data-by-augmentation(f48efe18-ba89-4966-a2cd-defbb3346fb4).html


Learning Bayesian Networks with Incomplete Data by Augmentation

Tameem Adel
University of Manchester, UK
tameem.hesham@gmail.com

Cassio P. de Campos
Queen’s University Belfast, UK

c.decampos@qub.ac.uk

Abstract

We present new algorithms for learning Bayesian networks
from data with missing values using a data augmentation ap-
proach. An exact Bayesian network learning algorithm is ob-
tained by recasting the problem into a standard Bayesian net-
work learning problem without missing data. As expected, the
exact algorithm does not scale to large domains. We build on
the exact method to create an approximate algorithm using
a hill-climbing technique. This algorithm scales to large do-
mains so long as a suitable standard structure learning method
for complete data is available. We perform a wide range of
experiments to demonstrate the benefits of learning Bayesian
networks with such new approach.

Introduction
Missing entries in real-world data exist due to various reasons.
For instance, it can be due to damage of the device used to
record feature values; a metal detector might fail to produce
a signal denoting the existence of a metal due to a certain
malfunction. Results can be incomplete in an industrial exper-
iment due to mechanical breakdowns not necessarily related
to the performed experiment (Little and Rubin 1987). Rec-
ommendation data can have missing values since participants
in the recommendation system did not rate all the available
songs, films, books, etc. While data missingness in the above
examples can mostly be assumed to be generated by a random
process which depends only on the observed data, usually
referred to as missing at random (MAR) (Little and Rubin
1987), this assumption might fail in other examples. People
seeking for health insurance might refuse to give an answer
to certain questions in order to reduce the costs, e.g. ‘do you
smoke?’, and in many cases this can be seen as an indication
of one specific answer. In such cases we say that data are
missing not at random, or MNAR (see for instance (Van den
Broeck et al. 2014)).

Given a dataset with categorical random variables, the
Bayesian network structure learning problem refers to finding
the best network structure (a directed acyclic graph, or DAG)
according to a score function based on the data (Heckerman,
Geiger, and Chickering 1995). As well known, learning a
Bayesian network from complete data is NP-complete (Chick-

ering 1996), and the task becomes even harder with incom-
plete data. In spite of that, the problem of learning a Bayesian
network from incomplete data by (an optimistic) augmenta-
tion belongs to the same complexity class, as we will show
later on. Because of such result, we investigate and obtain a
new exact algorithm for the problem, based on reformulating
it into a standard structure learning without missing data.
This is the first exact algorithm for the problem, to the best of
our knowledge. In contrast to previous work, our algorithm
performs both tasks, namely structure learning and data im-
putation, in a single shot rather than learning the Bayesian
network and then dealing with the missing data, possibly in
an iterative manner (Friedman 1998). Based on the optimiza-
tion that is required to solve the problem and on the exact
algorithm, we devise a hill-climbing approximate algorithm.
The hill-climbing regards the completions of the missing
values only, while the structure optimization is performed
by any off-the-shelf algorithm for structure learning under
complete data.

Most previous work to learn the structure of Bayesian
networks from incomplete data has focused on MAR. The
seminal algorithm of Friedman (1998) introduced an itera-
tive method based on the Expectation-Maximization (EM)
technique, referred to as structural EM. Implementation of
structural EM begins with an initial graph structure, followed
by steps where the probability distribution of variables with
missing values is estimated by EM, alternated with steps
in which the expectation of the score of each neighbouring
graph is computed. After convergence, the graph maximizing
the score is chosen. Many other algorithms have used ideas
from structural EM and deal separately with the missing val-
ues and the structure optimization using complete data (Bor-
chani, Amor, and Mellouli 2006; Leray and Francois 2005;
Meila and Jordan 1998; Ramoni and Sebastiani 1997;
Riggelsen 2006; Riggelsen and Feelders 2005). In (Rancoita
et al. 2016), structures are learned from incomplete data us-
ing a structural EM whose maximization step is performed
by an anytime method, and the ‘expectation’ step imputes
the missing values using expected means, or modes, of the
current estimated joint distribution. By using modes in each
iteration (Ramoni and Sebastiani 1997), the EM method is
sometimes called hard EM, and is close to our work. In some
sense, we work with a global optimization version of hard
EM. While this is not exactly considering data to be MNAR,



such approach fits less the observed data and performs well
for MNAR missing data when compared to structural EM,
as we will empirically show. We emphasize that the actual
missingness process is not disclosed to the methods and is
not assumed to be somehow known, and that we are mainly
interested in structure learning. Given the difficulties of struc-
ture learning itself, we assume that the underlying distribu-
tion is identifiable (in short terms, provided enough data are
available, one could reconstruct such distribution, see for
instance (Mohan, Pearl, and Tian 2013)).

We perform experiments on a set of heterogeneous datasets.
We base the evaluation on imputation accuracy in its pure
form, as well as in the forms of classification accuracy and
semi-supervised learning accuracy. Experiments show the
improvements achieved by the proposed algorithms in all
scenarios. Regarding the comparison between our exact and
approximate methods, experiments suggest that accuracy
levels achieved by the approximate algorithm are close to
those achieved by the optimal learning algorithm, with the
former being much faster and scalable.

Bayesian Network Structure Learning
Let X = (X1, . . . , Xm) refer to a vector of categorical ran-
dom variables, taking values in OX = ×iOXi

, where OX

represents the Cartesian product of the state space, OXi
, of

each Xi. Denote by D an n-instance dataset where each in-
stance Du = (du,1, du,2, . . . , du,m) is such that du,i is either
an observed value ou,i ∈ OXi

or a special symbol denoting
the entry is missing. Let Zu denote a completion for variables
with missing values in instance u and zu,i for the missing
value of Xi.

A Bayesian network,M, is a probabilistic graphical model
based on a structured dependency among random variables
to represent a joint probability distribution in a compact and
tractable manner. Here, it represents a joint probability distri-
bution PrM over a collection of categorical random variables,
X. We define a Bayesian network as a tripleM = (G,X,P),
where G = (VG , EG) is a directed acyclic graph (DAG) with
VG a collection of m nodes associated to the random vari-
ables X (a node per variable), and EG a collection of arcs;
P is a collection of conditional probabilities PrM(Xi|PAi)
where PAi denotes the parents ofXi in the graph (PAi may be
empty), corresponding to the relations of EG . In a Bayesian
network, the Markov condition states that every variable is
conditionally independent of its non-descendants given its
parents. This structure induces a joint probability distribution
by the expression PrM(X1, . . . , Xm) =

∏
i PrM(Xi|PAi).

We define ri ≥ 2 as the number of values in OXi
, i.e.

ri = |OXi
|, and rPAi

as the number of possible realizations of
the parent set, that is, rPAi

=
∏

Xl∈PAi
rl. Let R = maxi ri.

Given a complete dataset D with n instances, the struc-
ture learning problem in Bayesian networks is to find a
DAG G that maximizes a given score function, that is, we
look for G∗ = argmaxG∈G sD(G), with G the set of all
DAGs over node set X. We consider here the score func-
tion sD to be the Bayesian Dirichlet Equivalent Uniform
(BDeu) criterion (Buntine 1991; Cooper and Herskovits
1992) (other decomposable scores could be used too), so
we have sD(G) =

∑
i sD(Xi,PAi). We however have to

deal with the missing part of the data, which we treat by
completing the missing values in the best possible way (an
optimistic completion):

(G∗,Z∗) = argmax
G∈G, Z∈Z

sD(G,Z) =

argmax
G∈G, Z∈Z

∑
i

sD(Xi,PAi;Z{Xi}∪PAi
) (1)

where Z = ×uOZu
and sD(G,Z) is the score sD(G) eval-

uated for the complete data when its missing values are re-
placed byZ , while sD(Xi,PAi;Z{Xi}∪PAi

) is the local score
for a nodeXi with parent set PAi (note that such computation
only depends on the completion Z{Xi}∪PAi

of the involved
variables). We refer to this optimization task as the structure
learning problem by optimistic augmentation. It can be ap-
plied to MAR data, but we argue that it is particularly suitable
to MNAR when compared to the standard techniques such
as structural EM. From the optimization viewpoint, this can
be seen as a global optimization approach to hard EM, since
we complete the data with their mode, but we do it globally
instead of in an iterative process such as EM. As well known,
hard EM can be seen as a subcase of EM, since it is equiva-
lent to allowing EM to use only degenerate mass functions
in its expectation step.
Theorem 1. The decision version associated to the structure
learning problem by optimistic augmentation is NP-complete.

Proof. Hardness is obtained by realizing that this problem
generalizes the structure learning problem without missing
data, which is NP-hard (Chickering 1996). Pertinence in NP
holds since given G and Z , the score function sD can be
computed in polynomial time.

Since the problem is a combinatorial optimization over
a discrete domain (both DAGs and completions of data are
discrete entities), we could resort to enumerating all possible
solutions. This is obviously infeasible for both: the number of
DAGs grows super-exponentially in the number of variables
and the number of completions grows exponentially in the
number of missing values. We will now present an exact
algorithm for the problem which transforms it into a standard
structure learning problem, and later we modify the approach
to perform approximate learning. In this respect, we define
as a t-local optimal solution for Equation (1) a pair (G,Z)
such that sD(G,Z) ≥ sD(G′,Z ′) for all G′ and all Z ′ with
HD(Z,Z ′) ≤ t, where HD is the Hamming distance, that
is, (G,Z) is optimal with respect to any other pair whose
completion of the data has at most t elements different from
Z . A global optimal solution is a∞-local optimal solution.

Optimal (Exact) Learning Algorithm
We assume that a standard structure learning algorithm for
complete data is available to us, which is based on the frame-
work of two main optimizations: (i) parent set identification
and (ii) structure optimization. Step (i) concerns building a
list of candidate parent sets for each variable, while Step
(ii) optimizes the selection of a parent set for each vari-
able in a way to maximize the total score while ensuring
that the graph is a DAG. This latter step can be tackled by



exact or approximate methods (Bartlett and Cussens 2013;
Scanagatta et al. 2015) (in our experiments we will employ
an exact method such that we are sure that the quality of
results is only affected/related to the proper treatment of the
missing data, but for very large domains any approximate
method could be used too).

The exact algorithm for solving Equation (1) is based on
modifying the parent set identification step. This step has no
known polynomial-time solution if we do not impose a maxi-
mum number of parents (Koivisto 2006), so we will assume
that such a bound k is given. We compute the candidate list
by using one of the available approaches (de Campos and Ji
2011; Scanagatta et al. 2015) to guide the search, but for each
candidate to be evaluated, the corresponding variables in the
dataset might contain missing values. The first part of the
transformation is to create gadgets composed of some new
artificial variables which will be related to the missing values
and will enable the inclusion of all possible replacements of
missing values by augmenting the original domain.

Over the whole dataset, for each and every missing value,
let us denote it by (u, i) for sample u and variable Xi, we in-
clude artificial variablesX(u,i),1, . . . , X(u,i),ri . EachX(u,i),j

has two parent set candidates: (i) X ∪ {X(u,i),1+(j mod ru)}
with score zero (assuming all other score values are negative,
without loss of generality) and (ii) ∅ with score −λ, with λ
a large enough value (e.g. greater than the sum of all other
absolute scores). We further illustrate the idea via an example
for variable X1 with r1 = 3: Assume m = 3, r1 = 3 and
there is one missing value at (u, 1). An artificial variable is
included for each possible completion zu,1, resulting in a
total of three new variables, X(u,1),1, X(u,1),2, X(u,1),3. The
following gadget, consisting of two parent set candidates per
artificial variable, is added to the list of parent set scores (we
know that only one parent set per variable will be chosen
during the optimization phase later on):

s(X(u,1),1, {X(u,1),2, X1, X2, X3}) = 0,

s(X(u,1),1, ∅) = −λ,
s(X(u,1),2, {X(u,1),3, X1, X2, X3}) = 0,

s(X(u,1),2, ∅) = −λ,
s(X(u,1),3, {X(u,1),1, X1, X2, X3}) = 0,

s(X(u,1),3, ∅) = −λ.

According to this gadget, each artificial variable will either
have no parent variables or all other original variables as well
as one other artificial variable as its set of parents. The case
with no parents leaves open the opportunity to choose the
variable representing such completion as a potential parent for
all original variables. In contrast, the cases with all variables
as parents disables such completion from being chosen as
a parent by the original variables, otherwise it would create
a cycle. Due to including one artificial variable as a parent
of the next artificial variable, at least one parent set among
those with score zero cannot be chosen (otherwise a cycle
is formed), and because they are all very good scores when
compared to −λ, all but one will certainly be chosen. There
is one such gadget per missing value in the original dataset,

so we spend time O(R ·m · C), where C is the number of
missing values.

Finally, we return to the computation of the score for
a given variable and parent set. Let Xi be the variable
of interest and PAi = {Xi1 , . . . , Xiq} for which the
score must be evaluated. At this moment, we consider all
possible completions Z{Xi}∪PAi

and compute the scores
sD(Xi,PAi;Z{Xi}∪PAi

) for each one of them. In order to
reduce the problem to a standard structure learning without
missing data, we must index these scores somehow. This is
made possible via the new artificial variables:

sD(Xi,PAi;Z{Xi}∪PAi
) =

sD(Xi,PAi ∪ {X(u,i),zu,j
: zu,j ∈ Z{Xi}∪PAi

}),

that is, for each imputed missing value zu,j appearing for
variable Xi or PAi we will have an extra parent within the
parent set that tells which completion was used for that miss-
ing value, according to the completion Z{Xi}∪PAi

. This idea
is applied to every evaluation of the score of a parent set, for
every possible completion Z{Xi}∪PAi

, so the final list of can-
didates will include only parent sets for which the completion
of the data is ‘known’ at the time that the score is computed.
In order to ensure that the completions are compatible among
different local score computations, the gadgets explained be-
fore are enough, since they force that a certain completion be
chosen for each missing value.

Theorem 2. The exact algorithm transforms the structure
learning problem by augmentation into a standard structure
learning without missing data in time O(R · m · C), plus
time O(n · k ·Rc) per parent set evaluation, where C is the
total number of missing values and c is the maximum number
of missing values appearing in the variable of interest or in
variables in the parent set being evaluated (hence polynomial
in all parameters but c).

There will be many score computations and entries in the
list, exponential in the number of missing values involved.
So the benefit of this approach is that usually only a few
variables are involved in the score computation at the same
time. The drawback is that it cannot handle datasets with
many missing values for the same variable, since it is Rc

times slower than the corresponding parent set evaluation
without missing data. Next we address this issue by proposing
an approximate method (the exact method is nevertheless
useful in small domains and also important to check whether
the approximate version achieves reasonable results).

Approximate Algorithm
Albeit locally to the variables involved in the evaluation of a
parent set, the exact method considers all possible comple-
tions of the data. This is fine with a few missing values per
variable, but if there are many missing values, in particular
within the same variable, the exact method becomes compu-
tationally infeasible. We propose an approximate algorithm
based on a hill-climbing idea. We start with an initial guess
Z0 (or several different random guesses) for the completion
of all missing values in the dataset. Then we execute the
very same steps of the exact algorithm, but we restrict the



completions only to those which are at most t elements dif-
ferent from the current guess Zh. There are at most (R ·m)t

completions Z ′h such that HD(Zh,Z ′h) ≤ t. We proceed as
with the exact method, but applying such constraint during
the transformation that was explained in the previous section.
After the transformation is done, the structure optimization
is run and a new structure and new data completion Zh+1 is
obtained. We repeat the process until convergence, that is,
until Zh+1 = Zh.

Theorem 3. The approximate algorithm transforms the struc-
ture learning problem by augmentation into a standard struc-
ture learning without missing data in time O(R · m · C),
plus time O(n · k · (R ·m)t) per parent set evaluation (C
is the total number of missing values and t is the amount of
locality of the approximation, as previously defined), that is,
polynomial in all parameters but t.

The outcome of the approximate learning algorithm is
the network structure as well as the completion of all the
missing data values. The approximate algorithm might lead
to a locally optimal solution, but on the other hand it is much
more scalable than the exact algorithm.

Theorem 4. Provided that an optimal structure learning op-
timization algorithm is available, the approximate algorithm
always converges to a t-local optimal solution.

If we want to scale to very large domains, we could also
resort to an approximate structure learning optimization al-
gorithm (e.g. (Scanagatta et al. 2015)). In this case, our ap-
proximate algorithm could be used in domains with hundreds
or even thousands of variables (using very small t), but we
would lose the guarantee to converge to a t-local optimal
solution (it would still be a local optimum, but we would
have to define it locally also in terms of the graph structures).

Experiments
We perform experiments on simulated as well as real-world
data. The main evaluation metric used is accuracy of the
imputation of missing data values, either in the form of miss-
ing values spread throughout the data, or in the form of a
binary classification problem where only the class variable
can contain missing values. Most of our experiments are
with binary data for the sake of exposition, even though the
algorithms are general and can be used with any categori-
cal data (as shown in the last experimental setting). To test
significance, we perform a paired t-test with significance
level at 5%. Throughout all tables of results, a result in
bold refers to an accuracy value that is significantly better
than its competitors, whereas showing two results belong-
ing to the same experiment in bold means that each of them
being significantly better than the rest of the competitors.
For structure optimization, we use the exact solver referred
to as Gobnilp (Bartlett and Cussens 2013) with the code
available from https://www.cs.york.ac.uk/aig/
sw/gobnilp/. We perform comparisons among the two
proposed algorithms (exact and approximate) and the struc-
tural Expectation-Maximization (EM) algorithm (Friedman
1998). We compare accuracy of the three algorithms based
on the percentage of correct imputations over all missing

values. As for the structural EM, we have used the implemen-
tation available at https://github.com/cassiopc/
csda-dataimputation (Rancoita et al. 2016). After
convergence, we run the prediction of missing values us-
ing a most probable explanation query. We must emphasize
that the task of Bayesian network structure learning with
missing values is very challenging, since it is already chal-
lenging without missing values. Therefore, we have focused
on real but controlled experiments where we can effectively
run the algorithms and assert their quality. We use maximum
number of parents, k = 3, and use t = 1.

Well-known Bayesian Networks
We perform experiments using real but small data sets in
order to compare both exact and approximate algorithms.
First, we employ the original Bayesian network model for
Breast Cancer (Almeida et al. 2014), which contains 8 binary
variables, we simulate 100 data instances. That model has
been learned from cancer patients of the University of Wis-
consin Medical Hospital. Features (Bayesian network nodes)
include breast density, mass density, architectural distortion
and others, in addition to the diagnosis variable whose binary
value refers to benign or malignant (D’Orsi et al. 2003). We
include two missing values per variable, resulting in a total
of 16 missing values. These missing values are generated in a
MNAR manner by randomly removing values that are equal
to each other, that is, during the generation we enforce that
all missing values are zero, or that all missing values are one.
Imputation results of the proposed exact learning algorithm,
approximate algorithm and structural EM are displayed in the
first row of Table 1 over 100 repetitions of the experiment.

Second, we use the Bayesian network that has been learned
from the Prostate Cancer data by the Tree Augmented Naive
Bayes (TAN) (Friedman, Geiger, and Goldszmidt 1997), im-
plemented by WEKA (Hall et al. 2009). The Prostate Can-
cer data were acquired during three different moments in
time (Sarabando 2011; Almeida et al. 2014), i.e. during a
medical appointment, after performing auxiliary exams, and
five years after a radical prostatectomy. It contains 11 binary
variables, and 100 instances are generated. We randomly pro-
duce two MNAR missing values per variable, resulting in a
total of 22 missing values. Results are shown in the second
row of Table 1.

Third, the well-known ASIA network is used (Lauritzen
and Speigelhalter 1988). We generate 100 instances accord-
ing to this model, which contains 8 binary variables. Two
missing values per variable are randomly generated according
to MNAR. Imputation results are displayed in the third row
of Table 1. Results indicate that the algorithms proposed here
are significantly better than structural EM. More interestingly,
results of the proposed exact and approximate BN learning
algorithms are not significantly different, which supports the
use of the (more efficient) approximate method for larger
domains.

(LUng CAncer Simple set) LUCAS Dataset
The LUCAS dataset contains data of the LUCAS causal
Bayesian network (Fogelman-Soulie 2008) with 11 binary
variables, as well as the binary class variable, and contains



Table 1: Accuracy of imputation for data simulated from
different Bayesian networks with two MNAR missing values
per variable. Avg. imput. acc. stands for Average imputation
accuracy.

Bayesian net Algorithm Avg. imput. acc.

Breast Cancer
Exact learning 84.38%

Approx. learning 80%
Structural EM 50%

Prostate Cancer
Exact learning 91%

Approx. learning 86.36%
Structural EM 50%

ASIA
Exact learning 84.38%

Approx. learning 79%
Structural EM 43.75%

2000 instances. In this experiment we conduct an analysis of
both MAR and MNAR missing data, in order to understand
whether the benefits that we have seen before are only signifi-
cant in the MNAR case. Thus, we carry out two experiments:
(i) MNAR setting by randomly generating missing values all
having the same data value (we repeat that to both zero and
one values, one at a time); (ii) MAR setting by randomly gen-
erating missing values regardless of their respective original
values. These simulations are repeated 100 times.

First, we generate two missing values per variable (24
missing values). A comparison between the imputation accu-
racy values of the approximate algorithm and structural EM
is displayed in the first two rows of Table 2 (named ‘Spread
All Over’). Somewhat surprisingly, our new algorithm is sig-
nificantly better than structural EM even when missing data
are MAR.

Second, we generate 20 missing class values and repeat the
experiment to span all instances such that each run involves
missing values belonging to different instances (without re-
placement). For the MNAR experiment, each run consists
of 20 identical missing class values (that is, we only make
missing values of the same class, and we repeat that for both
classes). For the MAR case, there is no such restriction and
missing class values are randomly generated. Hence, there
are 100 runs in order to cover all 2000 instances. Results of
the approximate algorithm, structural EM and SVM using
different kernels (for the sake of comparison with a state-of-
the-art classifier) are displayed in the bottom rows of Table 2.
Results of the proposed algorithm are significantly better
when MNAR data are used, while the same cannot be stated
for the MAR case.

SPECT Dataset
The Single Proton Emission Computed Tomography
(SPECT) dataset consists of binary data denoting partial
diagnosis from SPECT images (Lichman 2013). Each pa-
tient (data instance) is classified into one of two categories,
normal and abnormal. The SPECT data consists of 267 in-
stances and 23 variables in total (22 binary variables and a
binary class variable). We generate MNAR missing data with
different proportions, always using only one specific value
(missing data proportions over all the data are 3%, 5% and

Table 2: Accuracy of imputation for experiments performed
on the Lung Cancer dataset (LUCAS). Spread All Over refers
to an imputation of 2 missing values per variable out of the
12 LUCAS variables. Classification refers to a classification
problem performed as a cross-validation (100-fold cross-
validation in the MNAR setting case) on LUCAS, using SVM,
vs. an imputation task on the 20 missing class variables of
the same folds, by both the proposed approximate learning
algorithm and Structural EM. SVM kernels displayed are
those that achieved the highest accuracy in each experiment.
MP stands for missingness process, and rbf for radial basis
function.

MP Algorithm Avg. imput. acc.
Exp.: Spread All Over

MNAR Approx. learning 70.83%
Structural EM 45%

MAR Approx. learning 70%
Structural EM 50%

Exp.: Classification

MNAR
Approx. learning 97.5%

Structural EM 42.5%
SVM (rbf) 45%

MAR
Approx. learning 69%

Structural EM 70%
SVM (rbf) 55%

10%). These randomly generated datasets are given as input
to the approximate algorithm as well as to structural EM. We
note that there is a large discrepancy in the number of data
values holding each of the two binary values: About 67%
of the SPECT data has a value 0, whereas merely 33% of
the data has a value 1. Due to that, we also investigate the
average MNAR imputation accuracy within each data value
separately, and note as well that there is some discrepancy
in such accuracy values. Imputation accuracy of the approxi-
mate learning algorithm and structural EM are displayed in
Table 3. The new algorithm is significantly better.

Smoking Cessation Study Dataset
The dataset used in this experiment is taken from a smoking
cessation study as described in Gruder et al. (1993). It has
been further utilized in other works, most notably Hedeker,
Mermelstein, and Demirtas (2007). The smoking cessation
dataset is a binary dataset consisting of 489 patient records
(instances) with the missing data being inherently therein,
i.e. there is no need to simulate missing data. The dataset
contains 4 variables including the class variable, which refers
to smoking or non-smoking. All the missing values are
located in the class variable. There is a total of 372 patient
records with observed classes, consisting of 294 smoking and
78 non-smoking records, as well as 117 records with missing
class labels.

The experiment we perform here is a semi-supervised
learning (SSL) experiment where we evaluate the perfor-
mance of the algorithms as follows: (i) We hide the class
labels of a portion of the observed labels; (ii) We apply the
approximate learning on the data consisting of the originally



Table 3: MNAR imputation accuracy for the BN Approximate
Learning algorithm and Structural EM on the SPECT dataset
with various proportions of missing values, and for both data
values. m.v. stands for missing value.

Missing values Algorithm Avg. imput. acc.

3% (overall) New approx. 81.75%
Structural EM 60%

5% (overall) New approx. 75.22%
Structural EM 49.27%

10% (overall) New approx. 81.94%
Structural EM 62.04%

3% (m.v. = 0) New approx. 95.65%
Structural EM 56.52%

5% (m.v. = 0) New approx. 80.43%
Structural EM 39.13%

10% (m.v. = 0) New approx. 92.75%
Structural EM 60.87%

3% (m.v. = 1) New approx. 67.83%
Structural EM 63.48%

5% (m.v. = 1) New approx. 70%
Structural EM 59.4%

10% (m.v. = 1) New approx. 71.13%
Structural EM 63.2%

missing and artificially hidden labels as missing values, and
the rest of the data as observed values. Clearly this is a SSL
experiment where the training data consists of the records
with observed labels as labeled instances, records with orig-
inally missing labels as unlabeled instances, and the test
instances are the records with artificially hidden labels.

The evaluation metric is the accuracy of the test instances
using a cross-validation approach, as usually done in clas-
sification experiments. We compare the performance of the
approximate algorithm against an equivalent procedure using
structural EM (labels are then chosen based on the posterior
distribution), and also against a semi-supervised learner in the
form of a Laplacian SVM (Melacci and Belkin 2011) whose
code is available online. Accuracies of the approximate al-
gorithm, structural EM, and the semi-supervised Laplacian
SVM are displayed in Table 4. Results suggest that the new
algorithm is a very promising approach for SSL.

Car Evaluation Dataset
The Car Evaluation dataset (Blake and Merz 1998; Lich-
man 2013) contains 1728 instances and 7 variables con-
sisting of 6 attributes and a class. The 6 attributes re-
fer to the following: buying, maintenance, doors, per-
sons, luggage boots and safety. The class variable refers
to the car acceptability and can have exactly one of
the following values: unacceptable, acceptable,
good, very good. All variables are categorical with 3
or 4 states. The data were derived from a hierarchical deci-
sion model originally developed by Bohanec and Rajkovic
(1988). Similar to the LUCAS experiment, a MNAR classi-
fication task is performed by involving missing values be-
longing all to one category of the class variable at a time
(this is repeated for each label). Due to the class label un-

Table 4: MNAR Semi-supervised learning (SSL) results of
the Smoking Cessation study data. All test records are Smok-
ing records. The first column refers to the number of missing
values in the test set. Accuracy expresses cross-validated
accuracy of the test set.

# missing values Algorithm Avg. Accuracy

25 Approx. Learning 90%
Structural EM 15%

Laplacian SVM 76%

50 Approx. Learning 88%
Structural EM 10%

Laplacian SVM 73.5%

75 Approx. Learning 88%
Structural EM 8%

Laplacian SVM 76%

balance (unacceptable: 1210 instances, acceptable:
384, good: 69, v-good: 65), we performed 10 experiments
testing only the unacceptable and acceptable labels
in five each, where there are 100 randomly chosen instances
with a missing label (test set) in each experiment. The pro-
posed algorithm is compared to structural EM and to an
SVM classifier. Classification results are displayed in Ta-
ble 5. Again, the new algorithm is significantly better than
the others.

Table 5: Accuracy of classification for experiments performed
on the Car Evaluation dataset. SVM with an rbf kernel is
reported since it leads to best accuracy compared to other 5
experimented kernels.

Algorithm Avg. Accuracy
Approximate Learning 87.5%

Structural EM 69.38%
SVM (rbf) 85.96%

Conclusions
In this paper we discuss the Bayesian network structure learn-
ing problem with missing data. We present an approach which
performs well even when data are not missing at random. We
define an optimization task to tackle the problem and propose
a new exact algorithm for it which translates the task into a
structure learning problem without missing data. Inspired by
the exact procedure, we develop an approximate algorithm
which employs structure optimization as a subcall. Experi-
ments show the advantages of such approach. The proposed
approximate method can scale to domains with hundreds or
even thousands of variables. When the amount of missing
data is exaggerated or, more interestingly, in cases where
the existence of latent variables is a possibility, it will be
intriguing to see how the proposed approximate method will
fare. We intend to investigate such avenues in future work.
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