
Forward Selection Component Analysis: Algorithms and Applications

Puggini, L., & McLoone, S. (2017). Forward Selection Component Analysis: Algorithms and Applications. IEEE
Transactions on Pattern Analysis and Machine Intelligence. DOI: 10.1109/TPAMI.2017.2648792

Published in:
IEEE Transactions on Pattern Analysis and Machine Intelligence

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2017 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74407464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/forward-selection-component-analysis-algorithms-and-applications(7672ef13-bdfa-4eb4-90cc-dccc08df604e).html

1

Forward Selection Component Analysis:
Algorithms and Applications

Luca Puggini, Seán McLoone, Senior Member, IEEE

Abstract—Principal Component Analysis (PCA) is a powerful and widely used tool for dimensionality reduction. However, the principal
components generated are linear combinations of all the original variables and this often makes interpreting results and root-cause
analysis difficult. Forward Selection Component Analysis (FSCA) is a recent technique that overcomes this difficulty by performing
variable selection and dimensionality reduction at the same time. This paper provides, for the first time, a detailed presentation of the
FSCA algorithm, and introduces a number of new variants of FSCA that incorporate a refinement step to improve performance. We
then show different applications of FSCA and compare the performance of the different variants with PCA and Sparse PCA. The results
demonstrate the efficacy of FSCA as a low information loss dimensionality reduction and variable selection technique and the improved
performance achievable through the inclusion of a refinement step.

Index Terms—Unsupervised dimensionality reduction, subset selection, feature selection

F

1 INTRODUCTION

The need to analyse large volumes of multivariate data
is an increasingly common occurrence in many areas of
science, engineering and business. In order to build more
interpretable models or to reduce the cost of data collection
it is important to discover good compact representations of
high-dimensional datasets. This leads to the fundamental
problem of dimensionality reduction. Many methods have
been developed to perform supervised dimensionality re-
duction [1], [2], [3], [4] . Given an input matrix X ∈ Rm×v

(containing m measurements of v variables) and an output
value y ∈ Rm these methods try to understand what
subset of variables, or derived features of X optimally
explain y. Dimensionality reduction can also be defined
as an unsupervised problem. In this case we look for the
subset of variables/derived features that retain the maxi-
mum information content with respect to the original set
of variables, in the sense of being able to reconstruct the
full data matrix X. Different unsupervised dimensionality
reduction techniques have been proposed. Some of them,
such as [5], [6], [7], [8], have been developed with the goal
of maximising performance when used as a pre-processing
step in clustering or classification algorithms, while others,
such as [9], [10], [11], [12], have been developed in order to
obtain the optimal reconstruction of the full dataset. Among
this latter group Principal Component Analysis (PCA) is
the best known and most widely used technique [11]. PCA
provides the most efficient linear transformation of data to
a lower dimensional space and is relatively straight forward
to compute. It has found many applications in chemometrics

• L. Puggini is with the Department of Electronic Engineering, Na-
tional University of Ireland, Maynooth. E-mail: luca.puggini@gmail.com,
luca.puggini.2014@mumail.ie

• S. McLoone is with the School of Electronics, Electrical Engi-
neering and Computer Science, Queen’s University Belfast. E-mail:
s.mcloone@qub.ac.uk

Manuscript received June 15, 2015; revised May 23, 2016; accepted December
30, 2016.

and other fields where datasets are encountered involving
large numbers of variables with significant levels of inter-
variable correlation and hence redundancy (see for example
[13] and [14]). However, while PCA provides a compact rep-
resentation of a multivariate dataset, it does not lend itself to
identification of the most representative subset of variables
within the data. This is a consequence of the fact that the
latent variables (principal components) generated by PCA
are a linear combination of all original variables, making the
most significant variables difficult to determine [15]. This
is especially true in the case of highly correlated datasets
due to the grouping effect, whereby the contribution of a
group of highly correlated variables to a given principal
component is distributed evenly across all variables in the
group. While this characteristic is beneficial in terms of noise
suppression, it means that the contribution of individual
variables can be small making important variables appear
insignificant. Hence, tasks such as identification of key
variables, root-cause analysis and model interpretation can
be challenging using PCA.

Consequently, various approaches have been developed
to obtain sparse approximations of PCA. The simplest strat-
egy is to manually set to 0 the values of the principal com-
ponents (PCs) that are smaller than a given threshold but
this can lead to significant variables being missed if they are
part of a group of highly correlated variables [16], [15]. More
sophisticated approaches such as SCoTLASS [17], DSPCA
[18], sparse PCA [19], sPCA-rSVD [20], SOCA [21] and [22]
use a lasso like L1 or L0 penalty or are formulated as
constrained maximization problems in order to encourage
sparsity in the PCA loadings. However, these methods are
generally computationally intensive and difficult to use and
interpret due to the need to establish the appropriate level
of sparsity for each PC computed.

These challenges motivated the second author to de-
velop a technique called Forward Selection Component
Analysis (FSCA) which seeks to identify a small number

2

of key variables that are representative of the observed
variance across all variables. FSCA was initially introduced
in the context of Optical Emission Spectroscopy (OES) data
analysis of plasma etch processes [23] where isolating a
small number of wavelengths is important for understand-
ing the underlying plasma chemistry. More recently, FSCA
has been found to be a particularly effective tool for optimis-
ing measurement site selection for spatial wafer metrology
in semiconductor manufacturing [24]. The method works by
iteratively deriving a set of orthogonal components which
are a function of only a subset of the original variables, and
which sequentially maximize the explained variance. At one
level FSCA can be regarded as the unsupervised counterpart
of Forward Selection Regression in that it returns a set of
Forward Selected Variables (FSVs), but equally it retains
some of the characteristics and utility of PCA in that it
also returns a set of Forward Selection Components (FSCs)
which form an orthogonal basis. This allows, for example,
the contributions of individual components to be easily
isolated.

In this paper, we present for the first time, a complete
description of the FSCA procedure and algorithms, drawing
parallels with PCA as appropriate. In addition, motivated
by the success of a two stage algorithm proposed in [25],
[26] for stepwise regression based methods, we propose a
number of new variants of FSCA that incorporate a similar
backward refinement step. Specifically, we introduce four
backward refinement variants, which we call Single, and
Multi-pass Backward Refinement FSCA (denoted as SPBR-
FSCA and MPBR-FSCA); and Recursive Single, and Recur-
sive Multi-pass Backward Refinement FSCA (denoted as R-
SPBR-FSCA and R-MPBR-FSCA). Then, with the aid of a
number of case studies, we demonstrate the utility of FSCA,
the enhanced performance obtained with the new variants,
and provide comparisons with PCA and Sparse PCA.

The remainder of the paper is organised as follows.
Related work on variable selection techniques is identified
in Section 2, followed by the algorithmic descriptions of
PCA and FSCA in Section 3. Section 4 introduces the new
backward refinement FSCA algorithms. Then comparative
results and analysis are provided in Section 5 and 6 for
simulated and real world case studies, respectively. Finally,
conclusions are presented in Section 7.

2 RELATED WORK

A variety of variable selection methods have been devel-
oped based on making comparisons with or extracting
information from a PCA decomposition of the data matrix
(e.g. [27], [28], [29], [30] and [31]). Other approaches employ
clustering of features using a suitable feature similarity
metric as the basis for variable selection (e.g. [5], [7] and
[12]). Recently [32] proposed a novel L1 regularised for-
mulation for the unsupervised variable selection problem
which has a similar philosophy to sparse PCA and can be
thought of as the unsupervised counterpart of LASSO [1].
In addition to FSCA, two other techniques which can be
considered as performing direct variable selection are the
algorithms by Whitley et al. [33] and Wei and Billings [34],
both of which employ orthogonalisation procedures. In the
former, variables are selected based on sequentially finding

the variables in the dataset that are most uncorrelated with
linear combinations of the variables already selected, while
in the latter the criterion used for variable selection is
the maximum average squared correlation with all other
variables in the dataset. Wei and Billings’s algorithm, which
they refer to as Forward Orthogonal Search (FOS), is similar
in character to FSCA and, as will be discussed in Section 3.2,
yields identical results to FSCA if the data is appropriately
pre-scaled. Recently [35] introduced a kernel extension of
variable selection that enables non-linear relationships be-
tween variables to be taken in account, while [36] devel-
oped an efficient parallel implementation for data parallel
distributed computing that scales well for large problems.
Both these algorithms are equivalent to FSCA in terms of
the sequence of variables selected, but operate directly in
the variable space rather than producing FSCs.

While FSCA and the proposed backward refinement
variants are specifically designed for unsupervised variable
selection, we note that they have a number of characteristics
in common with more general machine learning and signal
processing dictionary selection, sparse representation and
supervised variable selection problems with regard to the
use of greedy forward selection and backward refinement
steps. In [37], for example, a supervised dictionary selection
framework is developed for spare representation of a set
of signals where the dictionary elements are recursively
selected from a candidate set D using a greedy forward
selection algorithm. FSCA can be regarded as special case
of this framework, where the signals to be represented are
also the set of candidate dictionary elements D.

In the supervised context, in particular, various back-
ward refinement algorithms have been proposed to ad-
dress the non-optimality of greedy selection. Two notable
examples are the FoBa algorithm by Zhang [38] for learn-
ing sparse representations and the Orthogonal Matching
Pursuit with Replacement (OMPR) algorithm by Jain et
al. [39] for compressed sensing. In FoBa following each
greedy selection step a backward variable elimination step
is performed to remove variables that are not contributing to
the model. The backward step is aggressive in that it allows
a small increase in error when a variable is removed. This is
limited to be half the error reduction in the corresponding
forward selection step such that algorithm convergence is
guaranteed. In OMPR an initial set of variables k is ran-
domly selected and then a refinement step is repeatedly per-
formed in which variables are replaced with new ones from
the candidate set using a gradient based update procedure.

The backward refinement FSCA algorithms presented
in this paper share some similarities with both FoBa and
OMPR. FoBa is essentially a recursive multi-pass backward
refinement procedure, but differs from R-MPBR-FSCA in
that variables are removed rather than replaced in the re-
finement step. In addition, while our refinement algorithms
are strictly hill climbing, i.e. variables are only replaced if
they lead to an improvement in performance, they can easily
be adapted to employ the more aggressive backward refine-
ment step of FoBa. Both OMPR and backward refinement
FSCA employ a variable replacement strategy, and while
OMPR differs substantially from FSCA algorithmically, it
can be regarded as a multi-pass backward refinement ap-
proach, but with the k components initialized randomly,

L. PUGGINI AND S. MCLOONE: FORWARD SELECTION COMPONENT ANALYSIS: ALGORITHMS AND APPLICATIONS 3

rather than being obtained as the output of a forward
selection procedure.

More generally, convex relaxations of the variable se-
lection problem are a particular case of optimization over
convex hulls of an atomic set [40], which can be effectively
solved using greedy Frank-Wolfe (aka conditional gradient)
type algorithms [41]. In this context [42] have developed an
optimization procedure called CoGEnT for general atomic-
norm regularization problems which incorporates both a
greedy forward selection step and an aggressive backward
refinement step and is effectively a generalization of FoBa
to atomic norms.

3 DATA DECOMPOSITION AND RECONSTRUCTION

Given a matrix X ∈ Rm×v representing a dataset with m
measurements of v variables, where each variable can be
considered without loss of generality to be normalised to
have zero mean, different techniques can be used to obtain
a more compact representation of X. Our aim is to estimate
a matrix S ∈ Rm×k, where k < rank(X) ≤ min(m, v),
such that it is possible to obtain a good reconstruction of X
by linear regression on S:

X̂ = SΘ. (1)

In general, given a regressor matrix S, the optimal least
square error linear reconstruction of the original signal X
is given by

Θ = argmin
Θ̃

‖ SΘ̃−X ‖2F , (2)

where (‖ · ‖F) is the Frobenius norm. The solution to (2) is
the well known least-squares solution:

Θ = (STS)−1STX. (3)

Hence, defining the projection matrix

Φ(S) = S(STS)−1ST, (4)

for a given matrix S, the optimal linear reconstruction of X
can be expressed as

X̂ = Φ(S)X. (5)

Different metrics can be used to quantify the approxima-
tion error between the matrix X and its reconstruction X̂
(such as element-wise or induced L1, L2 and L∞ norms of
X̂ −X). The metric that is often considered when working
with Principal Component Analysis, and the one adopted
here, is the percentage of explained variance, that is, the
percentage of the variance observed in X explained by X̂.
Noting that the columns of X have been defined as having
zero mean, this can be expressed in terms of the Frobenius
norm as

VX(X̂) = 100×
(

1− ‖ X̂−X ‖2F
‖ X ‖2F

)
. (6)

While VX(X̂) is unbounded in the negative direction for
arbitrary X̂, when X̂ is computed as a projection of X onto
the subspace spanned by S, as given by eqt. (5), VX(X̂) ≥ 0
for arbitrary S. (A proof is provided in Appendix A.)

3.1 Principal Component Analysis
Principal Component Analysis (PCA) is one of the most
common and widely used dimensionality reduction tech-
niques. The PCA decomposition of X is defined as

X̂k
PCA = TkPT

k =
k∑

i=1

tip
T
i , (7)

where Pk ∈ Rv×k is an orthonormal matrix, computed as
the first k ordered eigenvectors of the data covariance matrix
XTX (in descending eigenvalue order), and Tk ∈ Rm×k is
the geometric projection of X on the columns of Pk, that is:

Tk = XPk. (8)

Here, pi and ti are the i-th column’s of Pk and Tk, respec-
tively. If k = r = rank(X) then the PCA decomposition is
exact and

X = X̂r
PCA = TrP

T
r . (9)

Otherwise, if k < rank(X) PCA provides the best rank k
approximation to X [11], that is, Pk is the solution to the
optimisation problem

argmax
Pk

VX(XPkPT
k). (10)

Consequently, it follows that when S is restricted to k
columns, the optimal choice is S = Tk, in which case
Θ = PT

k .
Various algorithms exist for computing the PCA decom-

position. Among these the most popular are the singular
value decomposition (SVD) and the Nonlinear Iterative
Partial Least Squares (NIPALS) [43] algorithms. While SVD
is more numerically robust and efficient when a full PCA
decomposition is required, the advantage of NIPALS is
that it computes the PCA decomposition iteratively, one
principal component (PC) at a time, in descending order.
This makes it highly efficient in high dimensional problems
where typically only a small number of PCs need to be
computed. For completeness, and to facilitate comparison
with FSCA presented in the next section, a description of
the NIPALS algorithm is provided in Algorithm 1.

3.2 Foward Selection Component Analysis
In contrast to PCA which produces a reduced set of new
variables (PCs) that are linear combinations of all existing
variables, Forward Selection Component Analysis (FSCA)
derives a set of new variables (FSCs) that are a function
of only a subset of the original variables that maximise
the explained variance. This is achieved using the iterative
procedure detailed in Algorithm 2. The FSCA algorithm
returns:

• A matrix Zk composed of a subset of the columns
of X (FSVs) ranked according to how well they
contribute to the reconstruction of X.

• A matrix of FSCA components (FSCs) Mk. The first
column of Mk is equivalent to the first column of Zk.
The second column of Mk is a function of the first
and the second column of Zk and so on. In general
the k-th FSC will be defined as a function of itself
and of the previous k − 1 components and so is a
function of the first k selected variables.

4

Algorithm 1: [Pk,Tk]=NIPALS(X, k)

Require: Data matrix X, number of PCs k
1: Set R = X
2: Initialise P0 = T0 = ∅
3: Set ε = 10−6 (convergence threshold)
4: Initialise t to a non-zero column of X
5: for j = 1 to k do
6: Set tnew = t and told = 10t
7: while ‖ told − tnew ‖2 ≥ ε do
8: told = tnew
9: p = RTt/tTt

10: p = p/
√

pTp
11: t = Rp
12: tnew = t
13: end while
14: Pj = [Pj−1 p]
15: Tj = [Tj−1 t]
16: R = R− tpT

17: end for
18: return Pk, Tk

Fig. 1. PCA NIPALS Algorithm

• A matrix of FSCA loadings Uk.

FSCA leads to a decomposition of X of the form

X̂k
FSC = MkUT

k =
k∑

i=1

miu
T
i . (11)

where Mk is an orthogonal matrix of Forward Selection
Components (FSCs). Equivalently we can express the de-
composition directly in terms of the Forward Selection Vari-
ables (FSVs), Zk as

X̂k
FSV = ZkBT

k =
k∑

i=1

zib
T
i . (12)

Here Zk = [z1, ..., zk] = [xi1 , ...,xik] ⊂ X and BT
k are the

corresponding least squares regression coefficients, that is

Bk = XTZk(ZT
kZk)−1. (13)

In a similar fashion to NIPALS, the FSCs generated by
FSCA are ordered in descending order in terms of the
variance of X explained. Furthermore, by virtue of their
orthogonality the variance contribution of the i-th FSC is
simply obtained as (mT

i mi)(u
T
i ui). A similar expression

holds for PCA, but since Pk is an orthonormal matrix this
reduces to tTi ti.

The FSV decomposition could be computed directly,
rather than as a by-product of the FSC computation by
solving

ik = argmax
xi∈X

VX(Φ([Zk−1xi])X) (14)

and setting Zk = [Zk−1 xik], with Z0 = ∅. However, the
results are equivalent for a given number of components,
that is X̂k

FSC = X̂k
FSV . In particular, once Zk has been com-

puted, the corresponding FSC matrix Mk can be obtained
as the Gram-Schmidt orthogonalization of Zk. Thus an

Algorithm 2: [Zk,Mk,Uk]=FSCA(X, k)

Require: Data matrix X, number of FSCs k
1: Set R = X # Notation: R = [r1, . . . , rp]
2: Initialise Z0 = M0 = U0 = ∅
3: for j = 1 to k do
4: i = argmax

ri∈R
VR(Φ(ri)R)

5: m = ri
6: z = xi

7: u = RTri/(r
T
i ri)

8: Mj = [Mj−1 m]
9: Zj = [Zj−1 z]

10: Uj = [Uj−1 u]
11: R = R−Φ(m)R
12: end for
13: return Zk, Mk, Uk

Fig. 2. FSCA Algorithm

Algorithm 3: [Zk,Mk,Uk]=FSVA(X,k)

Require: Data matrix X, number of FSVs k
1: Z0 = ∅
2: for j = 1 to k do
3: ij = argmax

xi∈X
VX(Φ([Zj−1 xi])X)

4: Zj = [Zj−1 xij]
5: Optional refinement step (recursive)
6: end for
7: Optional refinement step
8: Mk = GramSchmidt(Zk)
9: Uk = XTMk(MT

kMk)−1

10: return Zk, Mk, Uk

Fig. 3. Direct FSV implementation of FSCA

alternative FSV based implementation of FSCA is as given in
Algorithm 3. Note that steps 5 and 7 are place holders for the
refinement step which will be introduced in Section 4 and
are not part of the basic algorithm, which we will refer to as
the FSV algorithm (FSVA). If we are only interested in FSVs
steps 8 and 9 can be omitted, in which case the algorithm
corresponds to the feature selection methods presented in
[35] and [36].

Since PCA provides the optimal representation in terms
maximising the variance explained (eq. 10) it follows that
VX(X̂k

FSC) ≤ VX(X̂k
PCA). Hence PCA can be regarded as

providing an upper bound on the performance achievable
with FSCA with a given number of variables k, or equiva-
lently a lower bound on the number of variables needed to
achieve a desired reconstruction accuracy.

3.3 Computational Complexity of FSCA

The computation time of the FSCA algorithm (Algorithm 2)
is dominated by the combinatorial optimisation problem in
step 4. It is relatively straight forward to show that maximis-

L. PUGGINI AND S. MCLOONE: FORWARD SELECTION COMPONENT ANALYSIS: ALGORITHMS AND APPLICATIONS 5

ing the explained variance is equivalent to maximising the
Rayleigh Quotient of XXT (see Appendix A), that is

argmax
xi∈X

VX(Φ(xi)X) ≡ argmax
xi∈X

xT
i XXTxi

xT
i xi

, (15)

which can be computed efficiently as

argmax
xi∈X

v∑
j=1

(xT
i xj)

2

xT
i xi

. (16)

It is interesting to note that the corresponding expression
for maximising the average squared correlation metric em-
ployed in the FOS algorithm proposed by Wei and Billing
[34] is

argmax
xi∈X

v∑
j=1

(xT
i xj)

2

(xT
i xi)(xT

j xj)
. (17)

Hence, while the FOS optimization objective has an addi-
tional scaling factor in the denominator, both algorithms
will in fact yield identical results provided the columns of
the data matrix X are normalised so that they are all the
same length (xT

j xj will then be invariant with respect to j).
It is also worth noting that if xi is not constrained to be

a column of X the solution to (15) is the largest eigenvector
of XXT, but this is simply the direction of the score vector
t1 corresponding to the first PC of the data. This suggests
an alternative variable selection approach, as proposed by
Cui and Dy [31], whereby the first variable selected is
the one that is most closely correlated with the first PC.
In subsequent steps the selected variables are the closest
to the first PC of the corresponding residual matrix. The
approach, referred to as Orthogonal Principal Feature Selec-
tion (OPFS), is in general only an approximation to FSCA.
This can be deduced as follows. Recalling the definition
of the PCA decomposition in equations (7)-(9), the FSCA
optimization objective (eqt. 15) can be expressed as

argmax
xi∈X

r∑
j=1

(xT
i tj)

2

xT
i xi

(18)

or equivalently as

argmax
xi∈X

r∑
j=1

λjcorr(xi, tj)
2, (19)

where λj(= tTj tj) is the variance contribution of the j-th PC.
In contrast the OPFS optimization objective corresponds to

argmax
xi∈X

corr(xi, t1)2. (20)

Thus, while OPFS selects variables based on their squared
correlation with the first PC, FSCA selects them based on
the variance-weighted average squared correlation with all
PCs. Hence, the sequence of variables selected by OPFS will
in general differ from, and explain less variance than, the
variables selected by FSCA.

If FSCA is computed using the FSVA implementation
(Algorithm 3) an efficient solution can be obtained by noting
that the combinatorial optimisation problem in equation (14)
is equivalent to

argmax
xi∈X

v∑
j=1

xT
j Φ([Zk−1 xi])xj . (21)

Recalling the definition of Φ (eqt. 4) this can be recast as

argmax
xi∈X

v∑
j=1

qT
j(i)(Z

T
(i)Z(i))

−1qj(i), (22)

where qj(i) = ZT
(i)xj , and Z(i) = [Zk−1 xi]. Hence, deter-

mining the optimum xi requires v2 evaluations of the vector
terms qj(i) and v evaluations of the matrix inverse term
(ZT

(i)Z(i))
−1. We can take two steps to substantially reduce

the computation time for these terms. Firstly, as proposed in
[35], [36], an O(k2) complexity recursive computation of the
matrix inverse can be obtained by taking advantage of the
fact that

ZT
(i)Z(i) =

[
ZT

k−1Zk−1 r(i)

rT(i) a(i)

]
, (23)

where r(i) = Zk−1xi, and a(i) = xT
i xi, and applying

block matrix inversion algebra to obtain an expression for
(ZT

(i)Z(i))
−1 in terms of (ZT

k−1Zk−1)−1 which has already
been computed in the previous iteration, that is:

(ZT
(i)Z(i))

−1 =

[
(ZT

k−1Zk−1)−1 + wbbT −wb

−wbT w

]
, (24)

b = (ZT
k−1Zk−1)−1r(i), w = (a(i) − rT(i)b)−1.

In contrast direct calculation of the matrix inverse has O(k3)
computational complexity.

Secondly, evaluating the terms qj(i), r(i) and a(i) all
involve computing vector products xT

i xj many times, with
substantial repetition both within each variable selection
iteration and between iterations. This repetition can be elim-
inated by precomputing the covariance matrix C = XTX,
where cij = xT

i xj , at the cost of O(v2m) floating point
operations (flops) and O(v2) additional memory.

Table 1 shows the estimated complexity in terms of float-
ing point operations for computing k FSCs with the FSCA
and FSVA algorithms, with and without the covariance
matrix precomputed, while Fig. 4 shows how complexity
varies as a function of v and m for specific combinations
of the other dimensions. As can be seen, the reduction in
complexity is of the order O(k2) for FSVA. Precomputing C
is also beneficial for FSCA, but the impact is less significant
since it has to be re-computed at each iteration due to the
deflation step. That said, a factor of two reduction in com-
putational complexity is achieved for FSCA. All algorithms
scale quadratically with v and linearly with m, but differ in
how they behave with respect to k, with FSCA implementa-
tions growing linearly and FSVA implementations growing
cubically. If precomputing the covariance matrix is not an
issue, the preferred algorithm is FSVA when k <

√
1.5m

(approx.) and FSCA otherwise. FSCA is substantially supe-
rior to FSVA when the covariance matrix is not precomputed
and also outperforms precomputed FSVA when k >

√
3m.

When the computational burden of FSCA becomes pro-
hibitive OPFS may offer an attractive compromise due to
its significantly lower computational complexity. In OPFS
the PC needed at each step can be computed efficiently
using NIPALS yielding and algorithm with O((4α + 8)mv)
complexity per selected variable, compared to order O(mv2)
with FSCA. Here, α denotes the average number of iter-
ations per selected variable for the NIPALS algorithm to

6

TABLE 1
Flop count and asymptotic complexity for computing k FSCs of
X ∈ Rm×v with different FSCA algorithm implementations

Method Floating point operation count Complexity
k << v

FSCA O(2v2mk + 6vmk + v2k + 2mk −
vk − k)

O(2v2mk)

FSCA
(PC) O(v2mk + 2vmk + 2v2k) O(v2mk)

FSVA O(2v2mk̄+2v2k̄2 +4vmk̄+4vk̄2 +
4vmk − 2vk + 2mk2 + 4mk)

O(v2mk2+
2

3
v2k3)

FSVA
(PC)

O(v2m + v2(2k̄2 + k̄) + 2mk2 +
2vmk+4mk−vk+v(4k̄2−6k̄+3k))

O(v2m+
2

3
v2k3)

Notation: k̄ = k(k − 1)/2; k̄2 = k(k + 1)(2k + 1)/6; and PC denotes
implementation with precomputed covariance matrix.

10
2

10
3

10
4

10
510

6

10
8

10
10

10
12

10
14

10
16

log(v)

lo
g(

flo
ps

)

k=10,m=200

10
1

10
2

10
3

10
410

6

10
7

10
8

10
9

10
10

10
11

log(m)

lo
g(

flo
ps

)

k=10,v=200

10
2

10
3

10
4

10
510

6

10
8

10
10

10
12

10
14

10
16

log(v)

lo
g(

flo
ps

)

k=30,m=200

10
1

10
2

10
3

10
410

7

10
8

10
9

10
10

10
11

10
12

log(m)

lo
g(

flo
ps

)

k=30,v=200

Fig. 4. Complexity of FSCA algorithms as a function of v and m: Plots
show FSCA (blue) and FSVA (green) implementations with precom-
puted covariance matrices (dashed lines) and without (solid lines).

converge. It is a function of the spread of the eigenvalues
of the covariance matrix C, and hence problem dependent.

4 FSCA WITH BACKWARD REFINEMENT

Ideally we would like to find the subset of k columns of X
(variables) that can optimally reconstruct X, that is

argmax
Zk∈X

VX(Φ(Zk)X). (25)

However, this is an NP hard combinatorial optimisation
problem (requires the evaluation of

(v
k

)
= v!/((v − k)!k!)

possible combinations of the variables). In general FSCA
and other greedy local search approaches are sub optimal
(i.e. they are not guaranteed to find the optimal subset of
variables according to the defined optimization criteria),
but they represent a pragmatic solution as searching over

all possible subsets quickly becomes computationally in-
tractable with increasing problem dimension.

As a consequence of the greedy strategy adopted by
FSCA variables that are selected in early iterations of the
algorithm can become redundant as other variables are
included in later iterations. This can result in sub-optimal
solutions and can also be detrimental to the performance of
some applications, for example, the clustering application
which will be presented in Section 6.3. To overcome this
weakness, we propose introducing a backward refinement
step similar to that presented in [25], [26] for forward
selection regression applications, where, following comple-
tion of the forward selection process, selected variables are
reviewed to see if they are still relevant and replaced if they
are not.

Denoting Z
(j)
k (xi) as matrix Zk with its j-th column

replaced by xi, that is:

Z
(j)
k (xi) = Zk + (xi − zj)e

T
j , (26)

where ej is a vector with its j-th element equal to 1 and all
others elements equal to zero, we define zj ∈ Zk as relevant
if

VX(Φ(Zk)X) ≥ max
xi∈X/Zk

VX(Φ(Z
(j)
k (xi))X). (27)

This backward refinement step can be performed either at
step 5 or step 7 of the FSV implementation of the FSCA
algorithm, as highlighted Algorithm 3. When placed at step
7 the refinement step is only undertaken once after the FSV
algorithm has completed. In contrast, the refinement step
is executed following the addition of each new variable if
placed at step 5. We will refer to this latter implementation
as recursive backward refinement.

There are also two flavours of the refinement step itself.
In the first, referred to as Single-Pass Backward Refinement
(SPBR) (summarised in Algorithm 4), the relevance of each
variable is evaluated in turn moving sequentially through
the variables from the oldest to the newest. In the second,
to take account of the fact that variables that are initially
relevant may become irrelevant following refinements to
variables later in the sequence, the process is repeated until a
complete pass occurs without any refinements taking place.
This version of the algorithm (summarised in Algorithm 5)
is referred to as Multi-Pass Backward Refinement (MPBR).

Note that by virtue of the sequencing of operations in
each algorithm it follows that

VX(X̂k
FSCA) ≤ VX(X̂k

SPBR) ≤ VX(X̂k
MPBR). (28)

However, no such statement can be made with regard to R-
SPBR or R-MPBR as they may follow different ’hill climbing’
solution paths and hence it is possible for the solutions to be
inferior to the non-recursive implementations when k > 2.

One of the side-effects of employing the backward refine-
ment step is that it breaks the ordering of selected variables
in terms of variance explained. If recovering this ordering is
desirable, an additional modified FSV step can be performed
on Zk with respect to X after the refinement process has
been completed (i.e. between Step 7 and 8 in Algorithm 3).
As summarised in Algorithm 6, this involves recursively
selecting the variables in Zk based on how much of the
variance of X that they explain.

L. PUGGINI AND S. MCLOONE: FORWARD SELECTION COMPONENT ANALYSIS: ALGORITHMS AND APPLICATIONS 7

Algorithm 4: [Zk, rc]=SPBR(X,Zk)

Require: Forward selected variables Zk, data matrix X
1: rc = 0 (refinement count)
2: for j = 1 to k − 1 do
3: ij = argmax

xi∈X
VX(Φ(Z

(j)
k (xi))X)

4: if zj 6= xij then
5: rc = rc + 1 (increment refinement count)
6: Zk = Z

(j)
k (xij) (i.e. replace zj with xij)

7: end if
8: end for
9: if rc > 0 then

10: Repeat steps 3-7 for j = k
11: end if
12: return Zk, rc

Fig. 5. Single-Pass Backward Refinement Algorithm

Algorithm 5: [Zk]=MPBR(X,Zk)

Require: Forward selected variables Zk, data matrix X
1: rc = 1 (refinement flag)
2: while rc > 0 do
3: [Zk, rc]=SPBR(X,Zk)
4: end while
5: return Zk

Fig. 6. Multi-Pass Backward Refinement Algorithm

4.1 Computational complexity of backward refinement

The inclusion of backward refinement has major implica-
tions for the complexity of FSCA. The lowest complexity
implementation is SPBR, which involves a combinatorial
search of similar complexity to the basic FSV algorithm (eqt.
22), the only difference being that Z is now a fixed size
matrix, that is Z(i) → Z

(j)
k (xi), where Z

(j)
k (xi) is as defined

in eqt. (26). Since the covariance matrix, and hence the qj(i)

terms, will have already been precomputed for the forward
selection step, the only concern is the development of an
efficient recursive update procedure for the inverse matrix

Algorithm 6: [Zo
k]=ReOrder(X,Zk)

Require: Forward selected variables Zk, data matrix X
1: Zo

0 = ∅
2: for j = 1 to k do
3: ij = argmax

zi∈Zk/Zo
j−1

VX(Φ([Zo
j−1 zi])X)

4: Zo
j = [Zo

j−1 zij]
5: end for
6: return Zo

k

Fig. 7. Modified FSV procedure for reordering variables following back-
ward refinement

(Z
(j)
k (xi)

TZ
(j)
k (xi))

−1. This can be achieved by noting that

Z
(j)
k (xi)

TZ
(j)
k (xi) = ZT

kZk + gj(i)e
T
j + ejh

T
j(i), (29)

where

gj(i) = ZT
k (xi − zj), (30)

hj(i) = gj(i) + (xi − zj)
T(xi − zj)ej . (31)

It then follows, by application of the matrix inversion lemma
[44], specifically the Sherman-Morrison formula [45], that

(Z
(j)
k (xi)

TZ
(j)
k (xi))

−1 = Aj(i) −
Aj(i)ejh

T
j(i)Aj(i)

1 + hT
j(i)Aj(i)ej

, (32)

where

Aj(i) = (ZT
kZk)−1 −

(ZT
kZk)−1gj(i)e

T
j (ZT

kZk)−1

1 + eT
j (ZT

kZk)−1gj(i)

. (33)

This recursive inverse update can be computed in O(8k2 +
4k+ 6) flops and hence has O(8k2) complexity, which com-
pares favourably to the O(4k2) complexity of the forward
step inverse (eqt. 24). The overall additional complexity of
executing SPBR is then O(2v2k3 + 8vk3). In contrast, the re-
cursive SPBR implementation contributes O(0.5v2k4+2vk4)
additional complexity.

Since repetition of the MPBR loop is dependent on
refinements taking place in the previous pass, the number
of repetitions and hence overall algorithm complexity of the
multi-pass implementations cannot be determined a priori.
If we denote the average number of repetitions as λ then
their complexity can be expressed as λ times the complexity
of the corresponding SPBR and recursive SPBR implementa-
tions. The optional reordering step has O(2vk3) complexity.
Hence, the overall algorithm complexity of FSVA with Back-
ward refinement is

O(v2mk2 + (2λ+
2

3
)v2k3) (34)

for non-recursive implementations and

O(v2mk2 +
λ

2
v2k4 +

2

3
v2k3 + 2λvk4) (35)

for recursive implementations, where λ = 1 corresponds to
SPBR and λ > 1 MPBR.

5 SIMULATED DATASETS

In this section various simulated datasets are used to high-
light the differences between FSCA and FSCA with back-
ward refinement. The algorithms considered are:

• FSCA: Forward Selection Component Analysis (Al-
gorithm 2 or 3)

• SPBR: Single-Pass Backward Refinement (Algorithm
3 with Algorithm 4 employed at step 7)

• MPBR: Multi-Pass Backward Refinement (Algorithm
3 with Algorithm 5 employed at step 7)

• R-SPBR: Recursive Single-Pass Backward Refine-
ment (Algorithm 3 with Algorithm 4 employed at
step 5)

• R-MPBR: Recursive Multi-Pass Backward Refine-
ment (Algorithm 3 with Algorithm 5 employed at
step 5)

8

Comparisons are also made with PCA, the Orthogonal
Principal Feature Selection approximation to FSCA (OPFS),
and Sparse PCA where appropriate.

5.1 Example 1: Four Distinct Variables
As a first example we define four base variables
w0,x0,y0, z0 ∼ N(0, 1), 20 noise variables ε1, . . . , ε20 ∼
N(0, 0.1) and two larger noise variables ε21, ε22 ∼ N(0, 0.4).
These variables are used to generate a subset of variables
similar to w0: {wi = w0 + εi}i=1,...,5, a subset of variables
similar to x0: {xi = x0 + εi+5}i=1,...,5, a subset of variables
similar to y0: {yi = y0 + εi+10}i=1,...,5, a subset of variables
similar to z0: {zi = z0 + εi+15}i=1,...,5 and two additional
redundant variables defined as h1 = w0 + x0 + ε21 and
h2 = y0 + z0 + ε22. The complete dataset is then defined as
X = [w0, . . . ,w5,x0, . . . ,x5,y0, . . . ,y5, z0, . . . , z5,h1,h2],
with X ∈ Rm×26. Hence, by design the dataset is highly
redundant, with only 4 of the 26 variables independent. As
such, the information it contains can be optimally summa-
rized by the 4 base variables (w0,x0,y0, z0).

Table 2 shows the variance explained by PCA, OPFS,
FSCA and the 4 backward refinement FSCA enhancements
as a function of the number of selected variables k for an
instance of the dataset with m = 1000, while Table 3 shows
the sets of variables selected by FSCA, SPBR and OPFS for
each value of k. Results for MPBR, R-SPBR and R-MPBR are
omitted from Table 3 as they are identical to SPBR.

When FSCA is applied to this dataset in general the first
FSV will be h1 and the second will be h2, or viva versa,
as dictated by the noise realization. Subsequent selections
are then from among the base variables until at k = 6 all
4 based variables are selected. Hence, the initial selections
become redundant as additional variables are added. As ex-
pected the backward refinement algorithms explain greater
variance than FSCA when k = 3, 4 and 5. Note, that at k = 4
the refinement of the FSCA solution by SPBR identifies the
optimum set of variables (i.e. the 4 base variables), hence
there is no scope for further improvement by the more
advanced refinement algorithms.

For comparison purposes OPFS results are also pre-
sented in the tables. As can be seen, the variable selections
for k = 1 and 2 are the same as FSCA, but thereafter
OPFS takes a different path, and ends with a suboptimal
solution at k = 6 (explained variance of 96% versus 99%).
The performance of OPFS varies considerably for different
instances of the dataset. This is illustrated in Figure 8, which
shows the variation in performance of each method over 200
different dataset realizations with m = 100 when selecting
k = 4 and 6 components. FSCA also shows considerable
variation in performance but is in general superior to OPFS.
A pairwise comparison of the variance explained by OPFS
and FSCA over 1000 repetitions of the dataset shows that
OPFS only outperforms FSCA 2% of the time. In contrast,
SPBR and the other refinement algorithms are consistently
superior to FSCA and OPFS and show little variation in
performance over the different dataset realizations.

5.2 Example 2: Block Redundancy
In this example the dataset consists of a block of indepen-
dent variables X0 augmented by a second block of noise

TABLE 2
Example 1: The percentage of explained variance achieved with PCA,

OPFS, FSCA, and its backward refinement variants, for different
numbers of selected components

k PCA OPFS FSCA SPBR MPBR R-SPBR R-MPBR

1 30.41 25.88 25.88 25.88 25.88 25.88 25.88
2 56.68 54.34 54.34 54.34 54.34 54.34 54.34
3 80.47 75.72 75.82 78.11 78.11 78.11 78.11
4 98.60 93.62 93.80 98.22 98.22 98.22 98.22
5 99.03 96.36 96.56 98.78 98.78 98.78 98.78
6 99.43 96.40 99.31 99.31 99.31 99.31 99.31

TABLE 3
Example 1: Variables selected at each step by FSCA, SPBR and OPFS

k FSCA SPBR OPFS

1 {h1} {h1} {h1}
2 {h1,h2} {h1,h2} {h1,h2}
3 {h1,h2,x0} {w0,h2,x0} {h1,h2,w0}
4 {h1,h2,x0, z0} {w0,y0,x0, z0} {h1,h2,w0, z0}
5 {h1,h2,x0, z0, {y0,h1,x0, z0, {h1,h2,w0, z0,

w0} w0} y0}
6 {h1,h2,x0, z0, {x0,y0,w0, z0, {h1,h2,w0, z0,

w0,y0} h1,h2} y0,w2}

perturbed redundant variables X1 generated as a linear
combination of the variables in X0. In particular we define:

• X0 ∈ Rn×u : X0
i,j ∼ N(0, 1)

• φ ∈ Ru×(v−u) : φi,j ∼ N(0, 1)
• ε ∈ Rn×(v−u) : εi,j ∼ N(0, 0.1)
• X1 = X0 · φ+ ε
• X = [X0,X1]

We generated 1000 instances of this dataset for different
values of u and v for n = 200 and in each case computed
a k = u components FSCA, SPBR, R-SPBR, MPBR and R-
MPBR. The variance explained by the k components se-
lected by each algorithm averaged over the 1000 repetitions
is reported in Table 4. The table also reports Sc, the per-
centage of true variables selected by each method, defined
as

Sc = | {z1, . . . zu} ∩ {x1, . . . , xu} |/u× 100. (36)

PCA OPFS FSCA SPBR MPBR R-SPBR R-MPBR
91

92

93

94

95

96

97

98

99

100

V

Num. components=4

PCA OPFS FSCA SPBR MPBR R-SPBR R-MPBR
98.6

98.8

99.0

99.2

99.4

99.6

V

Num. components=6

Fig. 8. Example 1: Boxplots showing variation in performance of each
method for k = 4 and 6 components, over 200 Monte Carlo repetitions

L. PUGGINI AND S. MCLOONE: FORWARD SELECTION COMPONENT ANALYSIS: ALGORITHMS AND APPLICATIONS 9

TABLE 4
Example 2: Percentage variance explained (VX) and percentage of
true variables selected (Sc) with FSCA and its backward refinement

variants (averaged over 1000 repetitions)

Percentage of variance explained (VX)
u v FSCA SPBR MPBR R-SPBR R-MPBR

10 30 99.75 99.87 99.89 99.88 99.89
15 50 99.77 99.89 99.92 99.90 99.92
20 75 99.78 99.90 99.94 99.90 99.94
25 100 99.78 99.91 99.94 99.91 99.94

Percentage of true variables selected (Sc)

u v FSCA SPBR MPBR R-SPBR R-MPBR

10 30 22.38 48.80 70.11 47.73 66.30
15 50 16.03 43.73 74.20 41.98 72.06
20 75 14.70 41.60 81.66 45.11 79.82
25 100 12.85 34.74 71.46 38.21 71.95

As expected, the introduction of a refinement step consis-
tently increases the explained variance relative to FSCA
with SPBR reducing unexplained variance by 50%-64% and
MPBR reducing it by 58%-73%. There is no appreciable
difference between the performance of the recursive and
non-recursive implementations of each algorithm. A similar
pattern is observed with respect to the number of true vari-
ables selected by each method, FSCA: 12%-22%, SPBR/R-
SPBR: 35%-49% and MPBR/R-MPBR: 66%-82%.

Noting that PCA provides an upper bound on achievable
explained variance for a given number of components,
Figure 9 shows the variance explained by FSCA and the var-
ious backward refinement algorithms with k = 1, 2, ..., 12
selected components for the case where u = 10, v = 30
and n = 1000, expressed as a percentage of the variance
explained by the equivalent number of PCs obtained using
PCA. As can be seen, SPBR consistently provides improved
performance over FSCA for k > 1. For values of k in the
vicinity of the true dimensionality of the data, MPBR is
marginally superior to SPBR (57.5% versus 49.2% reduction
in unexplained variance at k = 10, 11.8% versus 9.7% at
k = 8 and 27.0% versus 23.9% at k = 12). In general the
improvement due to backward refinement decreases rapidly
as k increases beyond the true dimensionality of the data.

5.3 Example 3: Sparse PCA Dataset

This example is a simulated dataset used in [19] to assess
the performance of the sparse PCA algorithm introduced
therein. The dataset is generated by 3 hidden variables
v1,v2,v3

• v1 ∼ N(0, 290) v2 ∼ N(0, 300).
• v3 = −0.3v1 + 0.952v2 + ε where ε ∼ N(0, 1).

and 10 observed variables

• xi = v1 + ε1i where ε1i ∼ N(0, 1) for i = 1, . . . , 4
• xi = v2 + ε2i where ε2i ∼ N(0, 1) for i = 5, . . . , 8
• xi = v3 + ε3i where ε3i ∼ N(0, 1) for i = 9, 10

The final data matrix X ∈ Rn×10 is then defined as X =
[x1, . . . ,x10], where n = 1000 is the number of samples.

1 2 3 4 5 6 7 8 9 10 11 12

Number of Components

84

86

88

90

92

94

96

98

100

10
0
×V

∗/
V
P
C
A

FSCA
SPBR
MPBR
R-SPBR
R-MPBR

Fig. 9. Example 2: The percentage of variance explained as a function
of the number of selected components for u = 10, v = 30

TABLE 5
Example 3: The 1st and 2nd loading generated by PCA and SPCA (λ =

20) and the 1st and 2nd FSC obtained with FSCA and SPBR

i PC1 PC2 SPC1 SPC2 FSC1 FSC2 SPBR1 SPBR2

1 -0.13 0.48 -80.00
2 -0.13 0.48 -80.00
3 -0.13 0.48 -80.00 1 1
4 -0.13 0.48 -80.00
5 0.39 0.16 79.61 1 1
6 0.39 0.16 79.61
7 0.39 0.16 79.61
8 0.39 0.16 79.61
9 0.41 0.01 77.43 3.09 1 1

10 0.41 0.01 77.43 3.09

VX 60.80 99.99 59.43 99.99 60.75 99.99 58.22 99.99

The results reported in Table 5, which are for a single
realization of the dataset, show that both FSCA and SPBR
with 2 components explain more than 99% of the total
variance. In general, for other realizations FSCA will always
select either x9 or x10 as one of the two variables. SPBR
and MPBR will instead select one variable from the group
generated by v1 and one of from the group generated by
v2. PCA and SPCA assign similar values to similar variables
due to the grouping effect. However, as a result they do not
omit redundant variables. Thus, while SPCA yields sparse
solutions it is not the optimal choice if the objective is to
select a compact set of variables to represent the data.

6 APPLICATION EXAMPLES

6.1 Pitprops Dataset
The pitprops dataset, originally introduced by [46] as a
PCA case study, is a widely used benchmark problem for
evaluating the performance of PCA and SPCA like meth-
ods. The dataset consists of 180 samples of 13 variables
describing properties of timber and was used by the British
Forestry Commission in a study to establish if home-grown
timber had sufficient strength to be used to provide roof
support struts ’Pitprops’ for mines. Using the correlation
matrix for the dataset provided in [46] we generated 180
samples of a multivariate normal distribution to synthesise
an approximation of the original dataset.

10

TABLE 6
Pitprops dataset: Percentage of explained variance as a function of the

number of variables selected for each algorithm

k PCA SPCA FSCA SPBR MPBR R-SPBR R-MPBR

3 67.41 36.16 55.98 60.04 60.04 60.04 60.04
4 75.52 60.86 67.13 67.13 67.13 68.33 68.33
5 82.13 65.40 74.07 75.76 75.76 75.76 75.76
6 88.00 71.65 80.18 82.38 82.38 82.38 82.38
7 92.33 72.59 85.73 86.67 87.89 87.89 87.89
7 92.33 77.43 85.73 86.67 87.89 87.89 87.89
9 97.63 85.31 94.52 95.87 95.87 95.87 95.87

11 99.38 93.05 98.79 98.79 98.79 98.79 98.79
11 99.38 95.11 98.79 98.79 98.79 98.79 98.79
12 99.72 96.89 99.41 99.41 99.41 99.41 99.41
13 100.0 100.0 100.0 100.0 100.0 100.0 100.0

TABLE 7
Pitprops dataset: The 6 variables selected by each algorithm and the

optimum set of 6 variables (BEST) in terms of maximizing the
percentage of explained variance in the dataset

FSCA SPBR MPBR R-SPBR R-MPBR BEST

whorls ringbut ringbut ringbut ringbut ringbut
moist moist moist moist moist moist
length length length length length length
ringtop clear clear clear clear clear
clear bowmax bowmax bowmax bowmax bowmax
ovensg ovensg ovensg ovensg ovensg ovensg

VX

80.18 82.38 82.38 82.38 82.38 82.38

For the synthesised dataset six SPCA components were
computed for a range of different values of the penalty
λ. For each value of λ the number of uniquely selected
variables was identified and then the corresponding number
of FSVs computed with FSCA, SPBR, R-SPBR, MPBR and R-
MPBR. The number of variables selected and the percentage
of explained variance are reported in Table 6. In order to
provide an upper bound for the percentage of explained
variance that can be achieved we have also reported the
corresponding values obtained with PCA. From the results
it can be observed that SPCA is the method that explains the
least variance for a given number of selected variables.

In SPCA the number of selected variables is indirectly
chosen through a penalty parameter λ. In some situations
it can be difficult to choose λ to select a specific number of
variables. In our case, for example, it has not been possible
to select 1, 2, 8 or 13 variables using SPCA. In particular,
observe that for 7 and 11 selected variables SPCA returns
2 different results. This is due to the fact that two different
subsets of 7/11 variables were returned for two different
values of λ. Table 7 lists the variables selected by a 6 com-
ponents FSCA, SPBR, MPBR, R-SPBR and R-MPBR together
with the set of 6 variables that maximize the percentage of
explained variance (BEST). This set has been determined by
evaluating all possible subsets of 6 variables. Observe that
MPBR, R-SPBR and R-MPBR select the same variables as
BEST while SPBR replaces the variable ’moist’ with ’testsg’.
In contrast, FSCA selects only 3 variables in common with
BEST.

6.2 Plasma Etch OES Analysis
In semiconductor manufacturing Optimal Emission Spec-
troscopy (OES) is increasingly used to monitor plasma etch
processes. Due to the high dimensionality and correlated
nature of OES data dimensionality reduction techniques
such as PCA are usually employed as a pre-processing step
(see for example [12], [23], [47] and [48]). Here we employ
a sample OES dataset collected during the processing of a
single wafer as a case study for comparing the orthogonal
decompositions generated by FSCA and PCA. The OES
spectrum in question, plotted in Fig. 10, consists of optical
emission intensity time series data for each of the 2000
active spectrometer channels (each channel corresponds to a
different optical wavelength in the range 192-875 nm). Each
time series has 55 samples, hence the resulting dataset is a
matrix X ∈ R55×2000 of intensity values.

Fig. 10. Plasma Etch Process OES Spectrum

TABLE 8
Plasma Etch: Accumulative variance explained by PCA, FSCA and the

four backward refinement variants of FSCA for different values of k

k PCA FSVA SPBR MPBR R-SPBR R-MPBR

1 77.04 76.63 76.63 76.63 76.63 76.63
2 96.53 96.00 96.37 96.37 96.37 96.37
3 98.20 98.00 98.14 98.14 98.14 98.14
4 99.47 99.27 99.42 99.42 99.42 99.42
5 99.69 99.50 99.65 99.65 99.65 99.65
6 99.81 99.66 99.75 99.79 99.79 99.79
7 99.88 99.79 99.85 99.86 99.87 99.86
8 99.93 99.89 99.91 99.92 99.92 99.92
9 99.95 99.93 99.94 99.95 99.95 99.95

The highly correlated nature of the data is evident from
Table 8, which shows that the first 4 PCs and the first 4
variables selected by FSCA and its backward refinement
variants explain more than 99% of the variation in data.
In Fig. 11 the PCA loadings and scores are compared with
the FSVs and FSCs obtained with FSCA. This reveals that
the etch process can be analysed using either PCA scores
or FSCA components. In particular, observe that the FSCA

L. PUGGINI AND S. MCLOONE: FORWARD SELECTION COMPONENT ANALYSIS: ALGORITHMS AND APPLICATIONS 11

components and PCA scores tend to have similar trends. As
noted previously, the PCA scores are obtained as a linear
combination of all 2000 original variables (as defined by the
PCA loadings), while the four FSCs can be expressed as a
linear combination of just 4 original variables (the FSVs).
The benefit of being able to trace process variably back
to a small number of OES wavelengths is that individual
wavelengths map to specific chemical species present in the
plasma, enabling process engineers to gain insight into the
underlying drivers of process variability.

The computation time in seconds for each algorithm
in reported in Table 9 for different numbers of computed
components/variables selected. As expected, computational
time grows rapidly with increasing k for the more complex
refinement algorithms. For example, while SPBR is only
twice as computationally intensive as FSVA at k = 9 R-
MPBR is more than 20 times more computationally inten-
sive.

TABLE 9
Plasma Etch: Computation time (in seconds) for PCA, FSVA and the
four backward refinement variants of FSCA for different values of k

k PCA FSVA SPBR MPBR R-SPBR R-MPBR

1 0.03 0.05 0.10 0.10 0.10 0.10
2 0.04 0.10 0.20 0.31 0.25 0.36
3 0.05 0.16 0.32 0.50 0.47 0.75
4 0.07 0.22 0.46 0.96 0.80 1.32
5 0.09 0.28 0.60 1.25 1.16 2.32
6 0.10 0.36 0.76 2.40 1.67 3.25
7 0.13 0.42 0.93 3.54 2.22 5.85
8 0.14 0.49 1.09 2.91 2.90 8.35
9 0.15 0.56 1.29 3.47 3.63 11.86

6.3 Wafer Site Optimisation

As a final application example, we evaluate the performance
of SPBR, MPBR, R-SPBR and R-MPBR as alternatives to
FSCA for the semiconductor wafer metrology site optimi-
sation methodology developed in [24]. The pertinent details
are as follows. The objective of the methodology is to use
historical metrology data for a set of candidate measurement
sites to determine the minimum set of sites that need to be
measured in order to accurately reconstruct wafer profiles.
The case study dataset consists of production metrology
data for a deposition process used in the manufacture of
read-write heads, a key component of hard disk drives. The
dataset, which was collected over several weeks from a sin-
gle production tool for the process, contains measurements
of 50 candidate sites for 316 wafers. Hence, X ∈ R316×50 and
the site selection problem equates to selecting the subset of
columns of X that best describe X. For a detailed descrip-
tion of the problem statement, solution methodology and
case study dataset the reader is referred to [24].

Here, FSCA and the newly proposed backward refine-
ment variants are employed to determine the optimum
subset of wafer sites. The percentage of variance explained
by each method for different numbers of selected sites (k)
is reported in Table 10. Defining 99% variance explained as
the minimum reconstruction accuracy threshold, it follows
that 7 sites are needed when using FSC, while 6 sites are
sufficient when using SPBR, MPBR, R-SPBR and R-MPBR.

TABLE 10
Wafer sites: The percentage of variance explained by the various

methods for different values of k, the number of selected wafer sites

k PCA FSCA SPBR MPBR R-SPBR R-MPBR

1 42.69 38.84 38.84 38.84 38.84 38.84
2 68.69 64.44 67.01 67.01 67.01 67.01
3 85.72 82.59 84.57 85.08 84.79 85.08
4 98.48 96.37 97.40 97.58 97.58 97.58
5 99.12 97.59 98.63 98.74 98.72 98.73
6 99.47 98.76 99.19 99.20 99.17 99.16
7 99.67 99.22 99.45 99.46 99.42 99.39
8 99.75 99.47 99.60 99.60 99.59 99.58
9 99.81 99.64 99.71 99.71 99.71 99.69
10 99.86 99.72 99.77 99.80 99.78 99.79

The PCA results, which are also recorded in Table 10, show
that the lower bound on the number of sites required is 5.

A plot of the variance explained by each of the FSCA
based methods as a percentage of the variance explained
by PCA is given in Fig. 12. Again in this example we
observe that, as expected, SPBR outperforms FSCA and
MPRB outperforms SBBR (to a lesser extent), but that unlike
the previous examples, R-SPBR and R-MPBR are sometimes
marginally inferior to their non-recursive counterparts (i.e.
for k ≥ 5).

1 2 3 4 5 6 7 8 9 10

Number of wafer sites selected

90

92

94

96

98

100

10
0
×V

∗/
V
P
C
A

FSCA
SPBR
MPBR
R-SPBR
R-MPBR

Fig. 12. Wafer sites: The variance explained by the metrology sites
selected by FSCA and the 4 backward refinement algorithms for different
values of k expressed as a percentage of the variance explained by the
equivalent number of PCs

It is also interesting to observe how representative the
FSCA selected sites are of the full wafer surface. This
can be visualised by clustering the unmeasured sites in k
clusters Cz1 , . . . , Czk according to their similarity to the k
FSCA selected sites. Here, the similarly between an FSCA
site, zi, and an unmeasured site, xj , is defined in terms
of the impact on reconstruction accuracy of replacing zi
with xj . Specifically, denoting the k selected variables as
Zk = {z1, . . . , zk}, and noting the definition of Z

(i)
k (xj)

given in eqt. (26), sites are assigned to clusters according to
the rule

xj ∈ Czi if i = argmax
p=1...k

VX(Φ(Z
(p)
k (xj))X). (37)

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

334.4

125.2

584.9
FSCA variables

1669

318

2305

1404

583

2570

0 13 27 41 55
592

243

1077

0.13

0.05

0.23
FSCA components

0.13

0.04

0.22

0.16

0.22

0.60

0 13 27 41 55
0.22

0.09

0.39

282

5955

12193
FSCA loadings

4242

4101

12444

1290

1313

3916

0 500 1000 1500 2000
3439

213

3013

32643

10047

52738
PCA scores

22906

2551

28008

7780

6201

20182

0 13 27 41 55
5344

2866

11076

0.00

0.03

0.05
PCA loadings

0.04

0.03

0.10

0.06

0.01

0.08

0 500 1000 1500 2000
0.09

0.01

0.12

Fig. 11. Plasma Etch Process OES dataset: The first 4 PCA and FSCA components and scores

Fig. 13 shows the clusters obtained with each of the
FSCA algorithms for k = 4 and k = 8. The clusters are
represented by markers of different colour and/or shape.
Of particular note is the variation in spatial consistency of
clusters. It is apparent that the refinement steps yield much
better spatial consistency of clusters than FSCA, with the
biggest improvements occurring with SPBR. Using FSCA
50% of the clusters are fragmented for both k = 4 and k = 8,
while using SPBR only 1 cluster (25%) is fragmented when
k = 4 and none are fragmented when k = 8. MPBR, R-
SPBR and R-MPBR yield similar results to SPBR with some
minor variation at the boundaries between clusters. It is
also noteworthy that in the FSCA plot for k = 8 the ’black
star’ site is clustered with only one other site which is in a
spatially unrelated area of the wafer. These anomalies are a
consequence of the sites initially selected by FSCA becoming
redundant as additional sites are selected, as discussed in
Section 4. This issue, which detracts from the interpretability
of clusters, is addressed through the introduction of the
backward refinement step.

7 DISCUSSION AND CONCLUSIONS

This paper has sought to provide a comprehensive pre-
sentation of Forward Selection Component Analysis, as the
unsupervised counterpart of Forward Selection Regression
and an alternative to PCA for dimensionality reduction
and variable selection in large highly correlated datasets.
A number of alternative FSCA algorithm implementations
have been described, namely FSCA and FSVA, with and
without pre-computation of the covariance matrix, and their
computational complexity analysed. In particular, this anal-
ysis reveals that: (1) all algorithms scale linearly with the
number of measurements m and quadratically with the
number of variables v; (2) FSCA implementations grow
linearly with the number of selected variables k, while
FSVA implementations grow cubically with k; and (3) the
optimum choice of implementation is dependent on the
ratio k/

√
m. In general, it is computationally advantageous

to pre-compute and store the covariance matrix when using
either FSCA or FSVA, with FSVA computationally the most
efficient implementation provided k/

√
m <

√
1.5. FSCA

without pre-computation of the covariance matrix is the
superior implementation when k/

√
m >

√
3.

A number of novel backward refinement variants of
FSCA have also been proposed and efficient algorithm
implementations developed. Results from simulated and
application case studies confirm that the refinements yield
improvements in performance relative to FSCA in terms
of variance explained for a given number of compo-
nents/variables selected, better variable selection and, in the
case of the wafer site optimisation problem, more coherent
FSCA clusters. Overall the key observations are that MPBR
is superior to SPBR, which is in turn superior to FSCA, and
that there is little, if any, benefit to be gained from employ-
ing the recursive formulations (R-SPBR and R-MPBR) over
their non-recursive counterparts. Indeed, in some instances
the recursive implementations can yield poorer results.

In terms of computational complexity the ordering is
FSCA < SPBR < MPBR < R-SPBR < R-MPBR, with SPBR
having the same asymptotic complexity as FSCA. It is also
noteworthy that the largest relative improvement in per-
formance in terms of variance explained occurs with the
change from FSCA to SPBR. As such, for most practical
applications SPBR is recommended as it provides a good
balance between complexity and quality of results.

In all the case studies presented in the paper algorithm
performance is considered in an unsupervised context, as
this is the natural framework for comparing unsupervised
variable selection techniques. The interested reader is re-
ferred to Appendix B for a supplementary linear regres-
sion case study where performance is also assessed in a
supervised context. Specifically, FSCA and its variants are
employed to select the model inputs from a large candidate
set, and performance is evaluated in terms of the prediction
capability of the resulting models.

ACKNOWLEDGMENTS

The authors would like to thank Adrian Johnston, Seagate
Technology and Niall MacGearailt, Intel Ireland for the
provision of use cases and Maynooth University for the
financial support provided. The authors would also like to
acknowledge the anonymous reviewers for their valuable
suggestions which have greatly enhanced the paper.

L. PUGGINI AND S. MCLOONE: FORWARD SELECTION COMPONENT ANALYSIS: ALGORITHMS AND APPLICATIONS 13

0.0 0.5 1.0

V=96.37

0.0

0.5

1.0

FS
CA

k=4

0.0 0.5 1.0

V=97.40

0.0

0.5

1.0

SP
BR

0.0 0.5 1.0

V=97.58

0.0

0.5

1.0

M
PB

R

0.0 0.5 1.0

V=97.58

0.0

0.5

1.0

R-
SP

BR

0.0 0.5 1.0

V=97.58

0.0

0.5

1.0

R-
M

PB
R

0.0 0.5 1.0

V=99.47

0.0

0.5

1.0

k=8

0.0 0.5 1.0

V=99.60

0.0

0.5

1.0

0.0 0.5 1.0

V=99.60

0.0

0.5

1.0

0.0 0.5 1.0

V=99.59

0.0

0.5

1.0

0.0 0.5 1.0

V=99.58

0.0

0.5

1.0

Fig. 13. The FSCA clusters obtained with FSCA, SPBR, MPBR, R-
SPBR and R-MPBR for k = 4 and k = 8. In each case the FSCA
selected sites are indicated by circles and the associated clusters by
markers of different colour and/or shape. The percentage variance
explained by the different algorithms is reported under each plot.

APPENDIX A: PROPERTIES OF VX(.)

Theorem 1. Given projection matrix Φ(S) as defined in eqt.
(4) and VX(.) as defined in eqt. (6), if X̂ = Φ(S)X then
VX(X̂) ≥ 0 ∀S ∈ Rn×k.

Proof: Choosing X̂ = Φ(S)X is equivalent to choos-
ing X̂ = SΘ, where Θ is the solution to the convex
minimization problem in eqt. (2). By definition, the Θ
that minimizes eqt. (2) maximizes VX(X̂), that is:

Θ = argmax
Θ̃

VX(SΘ̃)

It then follows that VX(SΘ) ≥ VX(SΘ̃) ∀Θ̃. Choosing
Θ̃ as the zero matrix 0 gives X̂ = 0 and hence VX(0) =
0. Therefore VX(SΘ) ≥ VX(0) = 0.

Theorem 2. If VX(.) is defined as in eqt. (6) and Φ(.) defined
as in eqt. (4) then

argmax
xi∈X

VX(Φ(xi)X) = argmax
xi∈X

xiXXTxi

xT
i xi

.

Proof: It immediately follows from eqt.(6) that

argmax
xi∈X

VX(X̂) = argmin
xi∈X

‖ X− X̂ ‖2F ,

where X̂ = Φ(xi)X. Expressing the F-norm in terms of
the trace operator gives

‖ X− X̂ ‖2F = tr((X− X̂)(X− X̂)T)

= tr(XXT) + tr(X̂X̂T)− 2tr(XX̂)

= tr(XXT) + tr(Φ(xi)XXT Φ(xi))− 2tr(Φ(xi)XXT),

where the last equivalence is obtained by replacing
X̂ with Φ(xi)X and noting that Φ(xi) = Φ(xi)

T .
By application of the cyclic property of the trace op-
erator and observing that Φ(xi)

2 = Φ(xi) we can
write tr(Φ(xi)XXT Φ(xi)) = tr(Φ(xi)Φ(xi)XXT) =
tr(XXT), and therefore

‖ X− X̂ ‖2F = 2tr(XXT)− 2tr(Φ(xi)XXT).

It immediately follows that

argmin
xi∈X

‖ X− X̂ ‖F = argmax
xi∈X

tr(Φ(xi)XXT).

Finally, by application of the definition of Φ(.) in eqt. (4)
and the properties of trace, the r.h.s. can be rewritten as

argmax
xi∈X

tr(
xix

T
i

xT
i xi

XXT) = argmax
xi∈X

tr(
xT
i

xixT
i

XXTxi)

= argmax
xi∈X

xT
i XXTxi

xT
i xi

.

14

TABLE 11
Mean and (standard deviation) of the CV-NMSE (%) achieved with the

regression models generated using PCA, FSCA, SPBR, MPBR,
R-SPBR and R-MPBR for input selection

k 5 10 15

PCA 1.40 (0.05) 1.26 (0.04) 1.13 (0.04)
FSCA 1.45 (0.08) 1.25 (0.04) 1.10 (0.05)
SPBR 1.36 (0.05) 1.26 (0.06) 1.11 (0.03)
MPBR 1.35 (0.05) 1.22 (0.09) 1.12 (0.04)
R-SPBR 1.36 (0.05) 1.20 (0.07) 1.13 (0.04)
R-MPBR 1.36 (0.05) 1.19 (0.06) 1.13 (0.04)

APPENDIX B: A REGRESSION EXAMPLE

As a supplementary example we consider the application
of the various FSCA techniques to input selection in a re-
gression problem and benchmark their performance against
PCA. Since, in general, unsupervised variable or feature
selection techniques are not guaranteed to identify good
predictors of a target output, and it is straightforward to
design pathological examples where each method will per-
form poorly, to provide a fair comparison we select a dataset
for a practical application where PCA yields good results.
The application in question is the prediction of etch rate of
a plasma etch process from optical emission spectroscopy
(OES) measurements recorded from the etching chamber
during wafer processing. The associated dataset, described
fully in [49], is defined by an input matrix X ∈ R2194×200 of
OES summary statistics and an output vector y ∈ R2194 of
the recorded etch rate for 2194 production wafers.

A Monte Carlo study was undertaken in which the data
was randomly split into training and test data, correspond-
ing respectively to 70% and 30% of the data. Using the
training data, k inputs were generated in turn with PCA,
FSCA, SPBR, MPBR, R-SPBR, and R-MPBR, and in each
case a linear regression model estimated. The performance
of the models was evaluated by cross-validation on the test
data. This process was repeated 20 times for k = 5, 10 and
15, and the mean and standard deviation of the normalized
mean squared prediction error (denoted as the CV-NMSE)
computed in each case. These values are reported in Table
11.

For completeness, the percentage of the variance in
the input data explained by the selected input fea-
tures/variables (as computed on the training data set) are
reported in Table 12. The pattern is the same as observed
in previous examples. PCA yields the highest variance
explained and FSCA the lowest among the methods consid-
ered for each value of k. The backward refinement methods
fall between these two extremes in terms of their perfor-
mance, with SPBR yielding most improvement relative to
FSCA.

Reviewing Table 11 it is evident that the inputs selected
by all methods yield good prediction models with the CV-
NSME ranging from 1.35% to 1.45% when k = 5, 1.19%
to 1.26% when k = 10, and 1.10% to 1.13% when k = 15.
It is interesting to note that while PCA explains the most
variance in terms of the input data, MPBR yields the best
regression model when k = 5, R-MPBR when k = 10 and
FSCA when k = 15. While the differences in CV-NMSE are
statistically significant at a 95% confidence level, there is

TABLE 12
Percentage of variance in X explained by the variables/features
selected by PCA, FSCA, and its backward refinement variants

k 5 10 15

PCA 97.44 99.31 99.81
FSCA 96.16 98.80 99.57
SPBR 96.74 99.04 99.68
MPBR 96.74 99.07 99.70
R-SPBR 96.74 99.06 99.70
R-MPBR 96.74 99.07 99.70

no clear winner among the methods. This can be attributed
to the absence of causality between unsupervised input
variable/feature selection and selecting inputs that yield the
best regression results. Overall, we can conclude that FSCA
and its backward refinement variants are as effective as PCA
for this application, with the added advantage of providing
an easy to interpret model.

REFERENCES

[1] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267–288, 1996.

[2] A. Miller, Subset selection in regression. CRC Press, 2012.
[3] R. Dı́az-Uriarte and S. A. De Andres, “Gene selection and classifi-

cation of microarray data using random forest,” BMC Bioinformat-
ics, vol. 7, no. 1, p. 3, 2006.

[4] X. Geng, D.-C. Zhan, and Z.-H. Zhou, “Supervised nonlinear
dimensionality reduction for visualization and classification,” Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
vol. 35, no. 6, pp. 1098–1107, 2005.

[5] P. Mitra, C. Murthy, and S. K. Pal, “Unsupervised feature selection
using feature similarity,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 3, pp. 301–312, 2002.

[6] J. G. Dy and C. E. Brodley, “Feature selection for unsupervised
learning,” The Journal of Machine Learning Research, vol. 5, pp. 845–
889, 2004.

[7] Z. Zhao and H. Liu, “Spectral feature selection for supervised
and unsupervised learning,” in Proceedings of the 24th international
conference on Machine Learning. ACM, 2007, pp. 1151–1157.

[8] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection
techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp.
2507–2517, 2007.

[9] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–
2326, 2000.

[10] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Computation, vol. 15,
no. 6, pp. 1373–1396, 2003.

[11] I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.
[12] B. Flynn and S. McLoone, “Max separation clustering for feature

extraction from optical emission spectroscopy data,” Semiconductor
Manufacturing, IEEE Transactions on, vol. 24, no. 4, pp. 480–488,
2011.

[13] L. Mariey, J. Signolle, C. Amiel, and J. Travert, “Discrimination,
classification, identification of microorganisms using ftir spec-
troscopy and chemometrics,” Vibrational Spectroscopy, vol. 26, no. 2,
pp. 151–159, 2001.

[14] J. Trygg, E. Holmes, and T. Lundstedt, “Chemometrics in metabo-
nomics,” Journal of Proteome Research, vol. 6, no. 2, pp. 469–479,
2007.

[15] G. P. McCabe, “Principal variables,” Technometrics, vol. 26, no. 2,
pp. 137–144, 1984.

[16] J. Cadima and I. T. Jolliffe, “Loading and correlations in the in-
terpretation of principle compenents,” Journal of Applied Statistics,
vol. 22, no. 2, pp. 203–214, 1995.

[17] I. T. Jolliffe, N. T. Trendafilov, and M. Uddin, “A modified principal
component technique based on the lasso,” Journal of Computational
and Graphical Statistics, vol. 12, no. 3, pp. 531–547, 2003.

L. PUGGINI AND S. MCLOONE: FORWARD SELECTION COMPONENT ANALYSIS: ALGORITHMS AND APPLICATIONS 15

[18] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet,
“A direct formulation for sparse pca using semidefinite program-
ming,” SIAM review, vol. 49, no. 3, pp. 434–448, 2007.

[19] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component
analysis,” Journal of Computational and Graphical Statistics, vol. 15,
no. 2, pp. 265–286, 2006.

[20] H. Shen and J. Z. Huang, “Sparse principal component analysis
via regularized low rank matrix approximation,” Journal of Multi-
variate Analysis, vol. 99, no. 6, pp. 1015–1034, 2008.

[21] D. M. Witten, R. Tibshirani, and T. Hastie, “A penalized matrix
decomposition, with applications to sparse principal components
and canonical correlation analysis,” Biostatistics, p. kxp008, 2009.

[22] R. Jenatton, G. Obozinski, and F. Bach, “Structured sparse princi-
pal component analysis,” arXiv preprint arXiv:0909.1440, 2009.

[23] E. Ragnoli, S. McLoone, S. Lynn, J. Ringwood, and N. Macgearailt,
“Identifying key process characteristics and predicting etch rate
from high-dimension datasets,” in Advanced Semiconductor Manu-
facturing Conference, 2009. ASMC ’09. IEEE/SEMI, May 2009, pp.
106–111.

[24] P. Prakash, A. Johnston, B. Honari, and S. McLoone, “Optimal
wafer site selection using forward selection component analysis,”
in Advanced Semiconductor Manufacturing Conference (ASMC), 2012
23rd Annual SEMI. IEEE, 2012, pp. 91–96.

[25] K. Li, J.-X. Peng, and E.-W. Bai, “A two-stage algorithm for
identification of nonlinear dynamic systems,” Automatica, vol. 42,
no. 7, pp. 1189–1197, 2006.

[26] K. Li, J.-X. Peng, and Bai, “Two-stage mixed discrete–continuous
identification of radial basis function (rbf) neural models for
nonlinear systems,” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 56, no. 3, pp. 630–643, 2009.

[27] I. T. Jolliffe, “Discarding variables in a principal component anal-
ysis. i: Artificial data,” Applied statistics, pp. 160–173, 1972.

[28] W. Krzanowski, “Selection of variables to preserve multivariate
data structure, using principal components,” Applied Statistics, pp.
22–33, 1987.

[29] K. Mao, “Identifying critical variables of principal components
for unsupervised feature selection,” Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, vol. 35, no. 2, pp. 339–344,
2005.

[30] Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian, “Feature selection using
principal feature analysis,” in Proceedings of the 15th international
conference on Multimedia. ACM, 2007, pp. 301–304.

[31] Y. Cui and J. G. Dy, “Orthogonal principal feature selection,” in
Sparse Optimization and Variable Selection Workshop at the Interna-
tional Conference on Machine Learning. Helsinki, Finland, July 2008.

[32] M. Masaeli, Y. Yan, Y. Cui, G. Fung, and J. G. Dy, “Convex principal
feature selection.” in SDM. SIAM, 2010, pp. 619–628.

[33] D. C. Whitley, M. G. Ford, and D. J. Livingstone, “Unsupervised
forward selection: a method for eliminating redundant variables,”
Journal of Chemical Information and Computer Sciences, vol. 40, no. 5,
pp. 1160–1168, 2000.

[34] H.-L. Wei and S. A. Billings, “Feature subset selection and ranking
for data dimensionality reduction,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 29, no. 1, pp. 162–166, 2007.

[35] R. Liu, R. Rallo, and Y. Cohen, “Unsupervised feature selection
using incremental least squares,” International Journal of Information
Technology and Decision Making, vol. 10, no. 06, pp. 967–987, 2011.

[36] Z. Zhao, R. Zhang, J. Cox, D. Duling, and W. Sarle, “Massively
parallel feature selection: an approach based on variance preser-
vation,” Machine Learning, vol. 92, no. 1, pp. 195–220, 2013.

[37] V. Cevher and A. Krause, “Greedy dictionary selection for sparse
representation,” Selected Topics in Signal Processing, IEEE Journal of,
vol. 5, no. 5, pp. 979–988, 2011.

[38] T. Zhang, “Adaptive forward-backward greedy algorithm for
learning sparse representations,” Information Theory, IEEE Trans-
actions on, vol. 57, no. 7, pp. 4689–4708, 2011.

[39] P. Jain, A. Tewari, and I. S. Dhillon, “Orthogonal matching pursuit
with replacement,” in Advances in Neural Information Processing
Systems, 2011, pp. 1215–1223.

[40] M. Jaggi, “Revisiting frank-wolfe: Projection-free sparse convex
optimization,” in Proceedings of the 30th International Conference on
Machine Learning (ICML-13), 2013, pp. 427–435.

[41] M. Frank and P. Wolfe, “An algorithm for quadratic program-
ming,” Naval Research Logistics Quarterly, vol. 3, no. 1-2, pp. 95–110,
1956.

[42] N. Rao, P. Shah, and S. Wright, “Forwardbackward greedy algo-
rithms for signal demixing,” in Signals, Systems and Computers,
2014 48th Asilomar Conference on. IEEE, 2014, pp. 437–441.

[43] H. Wold, “Nonlinear estimation by iterative least square proce-
dures,” in Research Papers in Statistics, F. David, Ed. Wiley, New
York, 1966, pp. 411–444.

[44] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press,
2012, vol. 3.

[45] M. S. Bartlett, “An inverse matrix adjustment arising in discrim-
inant analysis,” Ann. Math. Statist, vol. 22, no. 1, pp. 107–111, 03
1951.

[46] J. Jeffers, “Two case studies in the application of principal compo-
nent analysis,” Applied Statistics, pp. 225–236, 1967.

[47] H. Yue, S. Qin, R. Markle, C. Nauert, and M. Gatto, “Fault
detection of plasma etchers using optical emission spectra,” Semi-
conductor Manufacturing, IEEE Transactions on, vol. 13, no. 3, pp.
374–385, Aug 2000.

[48] D. Zeng and C. Spanos, “Virtual metrology modeling for plasma
etch operations,” Semiconductor Manufacturing, IEEE Transactions
on, vol. 22, no. 4, pp. 419–431, Nov 2009.

[49] L. Puggini and S. McLoone, “Extreme learning machines for
virtual metrology and etch rate prediction,” in Signals and Systems
Conference (ISSC), 2015 26th Irish. IEEE, 2015, pp. 1–6.

Seán McLoone received an M.E. degree in
Electrical and Electronic Engineering and a PhD
in Control Engineering from Queens University
Belfast (QUB), Belfast, U.K. in 1992 and 1996,
respectively. Following appointments as a Post-
doctoral Research Fellow (1996-1997) and Lec-
turer at QUB (1998-2002) he joined the Depart-
ment of Electronic Engineering at the National
University of Ireland Maynooth in 2002, where
he served as Senior Lecturer (2005-2012) and
Head of Department (2009-2012). He is cur-

rently a Professor and Director of the Energy Power and Intelligent
Control (EPIC) Research Cluster at Queens University Belfast. His
research interests include computational intelligence techniques, data
analytics, system identification and control, with a particular focus on
smart grid and advanced manufacturing informatics applications.

Luca Puggini was born in Rome (Italy) in
1989. He obtained the Laurea Magistrale in Pure
and Applied Mathematics from the University of
Tor Vergata in 2013. He worked on his thesis
at Statistics for Innovation in Oslo, Norway. In
September 2013 he joined the Department of
Electronic Engineering at Maynooth University
as a PhD student on a collaborative research
project with Intel Ireland. His research interests
include statistics, big data, machine learning,
and computational intelligence techniques.

