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We have investigated the behavior of H2O and D2O adsorption on 

TiO2 surfaces in the dark and under UV irradiation using insitu 

ATR-FTIR spectroscopy. The influence of an electron scavenger 

(oxygen) and a hole scavenger (ethanol) on the hydroxyl group 

and/or hydration water behavior on the TiO2 surface were also 

investigated. Adsorption of H2O–D2O mixtures revealed an isotopic 

exchange reaction occurring in the dark onto the surface of the TiO2 

material. Under UV(A) irradiation, the quanitity of both OH and OD 

groups was found to be increased by the presence of molecular 

oxygen. On the other hand, the ATR-FTIR study of the ethanol 

adsorption in H2O and D2O revealed a stronger adsorption capacity 

for ethanol compared to both H2O and D2O resulting in molecular 

and dissociative adsorption of ethanol on the TiO2 surface. When 

the system was subsequently illuminated with UV(A) light, the 

surface becomes enriched with adsorbed water. Different possible 

mechanisms and hypotheses are discussed in terms of the effect of 

UV irradiation on the TiO2 particle network for the photocatalytic 

reaction and photoinduced hydrophilicity. 

 

 

Introduction 

 

Photocatalysis and Photoinduced Hydrophilicity have attracted significant attention due to 

their potential applications in environmental protection [1]. Surface OH groups on TiO2 

materials have been assumed to play important roles in both photocatalytic reactions and 

photoinduced hydrophilicity [2]. Adsorbed species such as water, substrate and molecular 

oxygen, however, are expected to affect the hydroxyl group behavior on the TiO2 surface, 

which play a major role in the charge transfer and trapping reactions occuring at the 

TiO2/water interface under UV (A) irradiation. In oxygenated systems the photogenerated 

electron reacts with molecular oxygen producing superoxide anion radicals, while the 

photogenerated holes are either trapped by the surface hydroxyl group or/and water 

molecules forming reactive hydroxyl radicals or they initiate the direct oxidation of an 

adsorbed organic donor [3]. It was reported, however, that during UV irradiation not only 

did the photocatalytic reactions take place on the surface but the photoinduced 



hydrophilicity also occurred due to the separation and diffusion of photogenerated 

electrons and holes occurring at the TiO2/water interface [4]. Additionally, a competitive 

reaction in aqueous solutions, would take place during UV irradiation between direct 

oxidation and indirect oxidation of organic molecules due to the different adsorption 

behaviors of substrates [5]. Alternatively, during UV irradiation the particle network of the 

TiO2 material could play a significant role in the absorption of light and adsorption of 

species [6]. Thus, special attention has been focused on the particle network during 

photocatalytic reactions and therefore, several mechanisms regarding the effect of UV(A) 

light on the particle network have been suggested such as the Antenna mechanism and 

deaggregation concept[1,6]. Although the interfacial substrate/TiO2 interactions have been 

extensively studied, the effect of water and oxygen adsorption, together with the associated 

hydroxyl groups during UV irradiation are, however, still not completely understood for 

both photocatalytic reactions and photoinduced hydrophilicity. 

In this study, Attenuated Total Reflectance-FTIR spectroscopy, was used for an in-situ 

mechanistic investigation at the water/TiO2 interface. The adsorption behavior of H2O and 

D2O on the TiO2 surface was investigated in the absence and in the presence of both an 

electron scavenger (oxygen) and a hole scavenger (ethanol). Several mechanisms 

considering the interaction of UV(A) light and the hydroxyl groups formation or/and 

hydration water on the TiO2 surface have been addressed. This work, therefore,provides 

new insight into the mechanistic aspects of photoinduced hydrophilicity and photocatalytic 

reactions on TiO2 surfaces. 

 

Experimental 

 

Materials 

 

TiO2 (Hombikat UV100, 100% anatase) was kindly supplied by Sachtleben Chemie. 

Ethanol (≥99.8%) was purchased from ROTH. The Deuterium oxide (D2O) (99.9 atom% 

D) were purchased from Sigma Aldrich. Deionized water (H2O) was supplied from a 

Millipore Mill-Q system with a resistivity equal to 18.2 Ω cm at 25 °C.  

 

ATR-FTIR measurement 

 

Attenuated total reflection Fourier transformed infrared (ATR-FTIR) in-situ spectra 

were recorded employing an IFS 66 BRUKER instrument equipped with an internal 

reflection element 45º ZnSe crystal and a deuterated triglycine sulfate (DTGS) detector. 

A thin anatase layer was deposited on the ZnSe ATR crystal (2.3 g m-2 and 1-3 µm thick) 

[7]. Prior to starting the irradiation experiments, spectra of adsorption of H2O and D2O on 

the TiO2 material were monitored in the dark. The spectrum of the TiO2-coated crystal 

were taken as background and used as the blank for the subsequent measurements. When 

the last spectrum of each experiment had been recorded, the UV(A) lamp was turned on 

and another sequence of spectra were recorded. 

For the ethanol experiments, 18 ml of circulating 30 vol% aqueous ethanol solution 

was employed at a flow rate of approximately 4 ml min-1. These experiments were started 

by pumping the background water/D2O (12.6 ml) through the flow cell at a flow rate of 4 

ml min-1, and allowing the TiO2 deposit to equilibrate with the background solution. One 

spectrum was used as blank to subtract the signals of the water/D2O, the pure solution of 

ethanol (5.4 ml) was subsequently added to the aqueous solution. A new set of spectra were 

then collected in the dark. Prior to illumination, the last spectrum of the ethanol solution 



was recorded in the dark with the TiO2 layer being subtracted, and another spectra was 

collected during UV irradiation. 

The interferometer and the infrared light path in the spectrometer were constantly 

purged with argon and nitrogen to avoid H2O and CO2 contamination. The spectra were 

recorded with 300 scans at 4 cm-1 resolution and analyzed using OPUS version 6.5 

software. Irradiation of samples with UV(A) light was carried out using an LED lamp 

(Model LED-Driver, THORLABS) emitting UV light (365 nm). The distance from the 

UV lamp to the surface of the test solution was kept 30 cm on which the intensity of UV(A) 

light was of 1.0 mWcm-2 as measured by UV radiometer (Dr. Honle GmbH, Martinsried, 

Germany). 

  

 

Results and Discussion 

 

Adsorption of H2O and D2O on TiO2 

 

Figure 1 shows the ATR-FTIR spectra of H2O–D2O mixtures adsorbed on the surface 

of TiO2 in the dark. The IR spectrum of the adsorbed water on TiO2 is represented by a 

strong IR absorbance of an O–H stretching band in the region between 3700 and 2850 cm-

1 and a bending mode of δ (H–O–H) at 1638 cm-1 which is assigned to undissociated water 

molecules. When D2O was used instead of water, all the bands that correspond to the 

adsorbed water on TiO2 surface were shifted to lower frequency with exchanging H for D, 

resulting an O–D stretching band in the region between 2750-2050 cm-1 and δ (D–O–D) 

bending band at 1205 cm-1. 

It can be clearly seen from these spectra that the intensity of the band in the OH-

stretching region decreased gradually with increasing the loading of D2O. The peak of the 

isotopologue HDO bending band centred at 1450 cm-1 was formed and increased by 

increasing the concentration of H2O in D2O until it approached equimolar proportions [8], 

and this then decreased again with further increases in the quantities of H2O in D2O (Fig. 

1 inset).  

 
Figure 1. ATR–FTIR spectra of D2O–H2O mixtures with different concentrations 

adsorbed on TiO2 in the dark. (Copyright 2015 Royal Society of Chemistry.) 
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Adsorbed D2O molecules on TiO2 surfaces are expected to affect the behavior of 

hydroxyl groups, thus a series of experiments for water adsorption with different ratios of 

D2O were performed before and after UV irradiation in the presence of oxygen. Figure 2 

shows the time evolution of the intensity of the integrated spectral areas of the OH and OD 

stretching groups before and after UV(A) irradiation with different ratios (H2O:D2O). As 

can be clearly seen, in the dark, at low concentrations of H2O (H2O% < D2O%), a strong 

decrease in the amount of OH stretching was observed. Simultaneously, the amount of OD 

stretching groups adsorbed on TiO2 increased during this period until the system reached 

equilibrium. In contrast, at higher concentrations of H2O (H2O% > D2O%), both OH and 

OD stretching bands increased. Interestingly, at an equimolar mixture of 50% H2O and 

D2O, a decrease in intensity of OH stretching with a simultaneous increase in the OD 

stretching could be observed in the dark. These results suggest that the deuteride ions show 

a stronger adsorption ability in the dark than hydroxyl ions at the surface of the TiO2 

material. Thus, the deuteride ions could lead to an isotopic exchange process by replacing 

the hydroxyl groups adsorbed on the TiO2 surface (reaction 1) [9]: 

 

Ti − OH +  OD−  ⟶   Ti − OD +   OH−              (1) 

 

 
Figure 2. Time evolution of the intensity of the integrated spectral areas of the OH and OD 

stretching groups before and after UV(A) irradiation with different ratios (H2O:D2O). 

(Copyright 2015 Royal Society of Chemistry.) 
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When the system was subsequently illuminated with UV(A) light in presence of oxygen, 

the amount of OH and OD group stretching increased almost immediately. These results 

indicate that UV irradiation leads to an increase in the number of surface OH groups which 

in turn increases the hydrophylicity of the TiO2 surface. These results, however, might be 

attributed to either an increase in the number of surface OH groups by the formation of 

new OH and OD groups on the surface or by increasing the amount of H2O and D2O 

molecules chemisorbed on the TiO2 surface. Several mechanisms have been discussed to 

explain photoinduced hydrophilicity on TiO2 surface. Hashimoto et al. reported that the 

increase in the amount of OH groups was believed to be caused by dissociative adsorption 

of water in vacancies resulting two kinds of hydroxyl groups on the surface i.e., bridging 

and terminal hydroxyl groups [4]. Another mechanism was proposed by Yates et al, who 

demonstrated that under UV light irradiation the decomposition of organic contaminants 

can take place leading to the creation of superhydrophilic surfaces [10]. A similar 

mechanism for UV-induced hydrophilicity proposed by Ohtani et al. supposed that all 

photogenerated holes are consumed to form oxygen vacancies, these can adsorb water, 

because of the photocatalytic removal of organic contaminants and so hydrophilic 

conversion is reached [11]. Another study by Nosaka et al. using 1H NMR spectroscopy 

confirmed that the UV light illumination increased the amount of adsorbed on the TiO2 

surface [12]. 
 

Figure 3 shows the time evolution of the intensity of the integrated spectral areas of 

the OH and OD stretching groups before and after UV irradiation at prolonged time periods. 

As can be clearly seen, an isotopic exchange between deuteride ions and hydroxyl groups 

have been achieved in the dark. Interestingly, after 6 h of UV irradiation, however, no 

isotopic exchange was detected between hydroxyl groups and deuteride ions during a 

prolonged time in the dark. From this result, we suggest that the increase of OH and OD 

stretching groups under irradiation is most likely caused by adsorption of H2O and D2O 

molecules, respectively, and not by the generation of hydroxyl groups.  

 
Figure 3. Time evolution of the intensity of the integrated spectral areas of OH and OD 

stretching groups before and after UV(A) irradiation with prolonged time (Alternately). 

(Copyright 2015 Royal Society of Chemistry.) 
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In order to elucidate the mechanism of the adsorption of H2O and D2O, the effect of 

oxygen on the OH and OD group behavior on the TiO2 surface have been investigated. 

The integrated intensity of the OH and OD stretching groups increased significantly upon 

illumination in the presence of molecular oxygen. By contrast, when the sample was 

purged with nitrogen or argon, no increase in the OH and/or OD stretching group was 

observed (Figure are not shown). These results clearly indicate that the presence of O2 is 

necessary to enhance the photoadsorption of H2O and D2O on TiO2 surfaces during UV(A) 

irradiation. Our results confirm the critical influence of oxygen on adsorption behavior, 

resulting in an increase the adsorption of H2O and D2O on TiO2 surfaces which is most 

likely caused by a photoinduced charge transfer process [9]. Takeuchi et al. proposed that 

when TiO2 surfaces were irradiated with UV light in the absence of O2, the electrons 

trapped on the Ti3+ sites were not scavenged by O2 and the holes trapped on the TiO2 

surface were immediately consumed to oxidize the lattice oxygen, resulting in the 

formation of oxygen vacancies. Such photoreduced TiO2 surfaces can behave as 

negatively charged surfaces. Thus, water molecules hardly adsorb on the photoreduced 

surfaces due to repulsive effects (Scheme 1) [13]. 

 

Scheme 1 Interaction model of adsorbed water during UV(A) light irradiation in the 

absence and presence of O2 molecules. (Copyright 2015 Royal Society of Chemistry.) 

  

 

 
 

 

Adsorption of ethanol in H2O and D2O on TiO2 

 

Figure 4 and 5 show the time evolution of the spectra of adsorbed ethanol on TiO2 in 

H2O a) and D2O b) respectively, in the dark and under UV(A) irradiation in the presence 

of O2. The adsorption of ethanol (30 vol%) and water on TiO2 were performed in the dark 

with molecular ratios of 12% and 88% respectively. As shown in figure 4, the adsorption 

of ethanol on TiO2 produces several positive absorption bands in the region 3000-2750 cm-

1 and 1470-1250 cm-1 which are assigned to different types of CH vibration of on both CH2 

and CH3 groups [14,15]. The two most prominent peaks of the adsorbed ethanol appeared 

at 1043 cm-1 and 1085 cm−1 which are assigned to the symmetric and asymmetric stretching 

frequencies of the CO stretching modes [16]. Since water and D2O were used as the 

background and over subtraction occurred, a broad negative band assigned to band bending 

δ (H–O–H)/δ (D–O–D) and hydroxyl group stretching OH/OD were observed. 

It can clearly be seen from figure 4a that in the dark the typical bands of adsorbed ethanol 

increased. Simultaneously, the negative band corresponding to the water adsorption 

decreased. Even though the molecular ratio of ethanol was very low (12%) compared to 



water and D2O (88%), a similar desorption behavior of D2O, was observed during the dark 

period. This phenomenon is clearly due to the stronger adsorption of ethanol on the TiO2 

surface compared to water resulting in desorption of water and D2O molecules. It has 

previously been reported that alcohol and water adsorb competitively on the oxide surface 

both molecularly and dissociatively, with the formation of surface hydroxyl and methoxy 

groups [17]. As shown in Fig. 4b unlike the case of water, the typical bands of adsorbed 

ethanol, as well as the band centered at 3395 cm-1 which is assigned to the OH group of 

ethanol have increased. These results indicate clearly the adsorption of molecular ethanol 

on the TiO2 surface. Simultaneously, a new band at 949 cm-1 was observed, which 

increased during the adsorption of ethanol in the dark. This band has previously been 

assigned in the literature to OD band bending of deuterated ethanol, Et(OD) [18]. 

Interestingly, no isotopic exchange was detected in the region 3000-3600 cm-1 although the 

adsorption of ethanol occurred in D2O. This result also confirmed that molecular ethanol 

was adsorbed on the TiO2 surface. It has also been reported that, ethanol dissociates on 

TiO2 resulting in sorbed ethoxide groups atop of Lewis acidic Ti4+ centers (monodentate) 

or between two Ti4+ centers (bidentate), while the H from the alcohol associates with a 

neighboring basic surface O to form an OH group [19]. The increasing band bending of 

OD at 949 cm-1 (Fig.4b), indicated the dissociation of deuterated ethanol on the TiO2 

surface resulting ethoxide at Ti4+ and the D at a neighboring basic surface. 

 According to ref. [20] and [17], the proposed dissociation and isotopic exchange 

reaction of ethanol in the heavy water (D2O) are as follows:  

 

CH3CH2OH +  D+  ⟶   CH3CH2OD +  H+              (2) 

CH3CH2OD ⟶   CH3CH2O − Ti +    O − D             (3) 
 

From this result, we suggest that in the dark, ethanol can adsorb on TiO2 surface in 

both, molecular and dissociation forms.   

 

 



 
Figure 4. Time evolution of the ATR–FTIR spectra of adsorbed ethanol on TiO2 in H2O 

a) and D2O b) in the dark. 

 

 

Figure 5 shows the time evolution of the ATR–FTIR spectra (1800-800 cm-1) of 

adsorbed ethanol on TiO2 in H2O a) and D2O b) under UV irradiation in the presence of 

O2. As can be seen clearly under UV irradiation, the typical bands of adsorbed ethanol 

solutions have decreased in H2O and D2O. A strong decrease in the intensities of the two 

prominent peaks of the adsorbed ethanol at 1047 cm-1 (CO) and 1085 cm-1 (C-C) decreased 

in H2O as well as in D2O where the intensities were much higher than in water. 

Additionally, the bands in the 1740-1710 cm-1 and 1600-1520 cm-1 regions, which were 

assigned respectively to carbonyl and carboxylate groups increased gradually. These 

results indicate that the ethanol was photocatalytically oxidized resulting in the formation 

of acetaldehyde and acetic acid as photoproducts [19,15]. 

Interestingly, the typical band of water and D2O increased when the system was performed 

under UV irradiation (Figure 5b). This result can tentatively be explained either by 

photoinduced charge transfer process or by the formation of water as an intermediate 

product. Lin et al. proposed mechanism pathways of the formation of CH3COad, CO2, and 

H2O as photoproducts in the presence of O2 during the oxidation of ethanol [21,22]. 

Although, it is well known that the ethanol can be easily adsorbed onto TiO2 surfaces, 

however the adsorption mechanism of water and D2O on TiO2 surfaces are still unclear. 

  



 

 
Figure 5. Time evolution of the ATR–FTIR spectra (1800-800 cm-1) of adsorbed ethanol 

on TiO2 in H2O a) and D2O b) under UV irradiation in the presence of O2. 

 

In order to clarify the main factors affecting the adsorption of water during UV 

illumination, the effect of O2 has been investigated. Figure 6 shows the evolution of the 

adsorbed ethanol spectra (1800-900 cm-1) under UV irradiation in the absence of O2 in 

water a) and D2O b). In the dark, the adsorption behavior of ethanol in water and D2O was 

observed in the IR spectrum (Figure not shown) which were similar to those reported in 

figure 4. 

Under UV irradiation, the typical bands of adsorbed ethanol decreased in water and D2O 

(figure 6). In the meantime, the increase of the intensities of carbonyl and carboxylate 

groups was observed, which is similar to the observation in the presence of oxygen. As 

expected, the shifting of the background during oxidation of ethanol was observed. The 

upward baseline shift during irradiation was interpreted as transient and persistent diffuse 

reflectance infrared signals due to the accumulation of free electrons at the conduction band 

of TiO2 particles upon irradiation, where the baseline IR absorption for TiO2 rises 



immediately upon UV irradiation [23]. Similar results were reported by Highfield et al., 

who clearly observed the direct hole oxidation of the adsorbed ethanol molecules by 

photoinduced holes (h+) at the valence band of TiO2 [19]. Interestingly, although the 

photocatalytic system occurred in the absence of O2, a similar behavior of the adsorption 

of water and D2O has been observed. Additionally, when D2O was used instead of water, 

no formation of H2O was detected in presence and absence of O2 respectively, in figure 5b 

and figure 6b. This result would exclude the possibility that the adsorption of water and 

D2O in presence of ethanol resulted either from photoinduced charge transfer process or 

from adsorption of water formed as product. 

  

 

 

 
Figure 6. Time evolution of the ATR–FTIR spectra of adsorbed ethanol on TiO2 in H2O 

a) and D2O b) in the absence of O2. 

 

Considering the effect of UV light on TiO2 particles, however it seems that the particle 

network resulting under UV light irradiation might be responsible for the enhancement of 



water adsorption on TiO2 particles due to a new distribution of the particles. 

Several interpretations of the mechanism of the UV-induced hydrophilicity have been 

reported in the literature which can explain the behavior of water adsorption. Yates et al., 

reported that only under UV light illumination could the decomposition of organic 

contaminants take place leading to the generation of hydrophilic surfaces [10]. On the other 

hand, Wang et al. found that the total TiO2 exposed surface increased under UV(A) 

illumination leading to an increase in the surface area due to de-aggregation of particle 

agglomerates which in turn enhanced the photonic efficiency [6]. The same mechanism 

was considered by Mendive et al. who demonstrated that due to de-aggregation of particle 

the water molecule could fill the space between the particles (Scheme 2), which was 

demonstrated by the increase in the IR band corresponding to the bending mode of water 

[24]. In other studies, Thermal chemistry showed that there were mainly two reaction 

channels for ethanol desorption which lead to the suggestion of a mechanism involving the 

creation of new adsorption sites for water adsorption by means of a photothermal-

desorption of adsorbed ethanol molecules [17]. The behavior of the preadsorption of water 

on the thermal desorption reaction of ethoxy has been reported by Gamble et al. [25]. From 

these results we suggest that the adsorption of water and D2O are most likely to occur via 

photothermic rather than photoelectronic processes.  

 

Scheme 2. Proposed Mechanism of TiO2 Nanoparticle Layer Expansion (Copyright 

2011 American Chemical Society.) 

 

 
 

Based on the hypotheses reported in the literature, i.e., the de-aggregation concept, 

super-hydrophilicity phenomena and photo-induced removal of impurities, we suggest that 

the adsorption of H2O and D2O molecules on TiO2 surfaces during UV light irradiation 

occurred not only by photoinduced charge transfer processes (photoinduced 

adsorption/desorption and photocatalytic reaction) but also by thermal processes (thermal 

desorption and de-aggregation of particle). 

  

 

Conclusion 

 

The behavior of adsorbed H2O and D2O in photocatalytic processes and in 

photoinduced hydrophilicity on TiO2 surfaces has been studied in the presence and absence 

electron (O2) and holes (ethanol) scavenger. Adsorption of H2O with different ratios of 

D2O on TiO2 revealed different isotopic exchange reactions, which take place in the dark. 

Upon illumination with UV light in the presence of O2, both OH and OD groups are formed 

leading to increase the hydrophilicity of the TiO2 surface. The increase in the amount of 

OH and OD groups is suggested to be caused by photoinduced charge transfer allowing the 

adsorption of H2O and D2O onto the TiO2 surface. The FTIR spectra of ethanol in the dark 

shows the coexistence of ethanol adsorption both, in molecular and in dissociation forms. 

Under UV(A) illumination the typical EtOH bands decreased on the surface while the 



adsorption of water and D2O increased. Several mechanisms reported in the literature can 

explain this behavior, such as replacement of surface impurities that are photocatalytically 

destroyed, exchange of adsorbed water molecules by thermal desorption of ethanol and 

increase of hydroxylation by augmentation of surface area due to the deaggregation of 

particles agglomerates. 
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