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Abstract	27	

 28	

While	the	impact	of	arsenic	in	irrigated	agriculture	has	become	a	major	environmental	29	

concern	in	Bangladesh,	to	date	there	is	still	a	limited	understanding	of	arsenic	in	30	

Bangladeshi	paddy	soils	at	a	landscape	scale.	A	soil	survey	was	conducted	across	ten	31	

different	physiographic	regions	of	Bangladesh,	which	encompassed	six	types	of	32	

geomorphology	(Bil,	Brahmaputra	floodplain,	Ganges	floodplain,	Meghna	floodplain,	33	

Karatoya-Bangali	floodplain	and	Pleistocene	terrace).	A	total	of	1209	paddy	soils	and	235	34	

matched	non-paddy	soils	were	collected.	The	source	of	irrigation	water	(groundwater	and	35	

surface	water)	was	also	recorded.	The	concentrations	of	arsenic	and	sixteen	other	elements	36	

were	determined	in	the	soil	samples.	The	concentration	of	arsenic	was	higher	in	paddy	soils	37	

compared	to	non-paddy	soils,	with	soils	irrigated	with	groundwater	being	higher	in	arsenic	38	

than	those	irrigated	with	surface	water.	There	was	a	clear	difference	between	the	Holocene	39	

floodplains	and	the	Pleistocene	terrace,	with	Holocene	floodplains	being	higher	in	arsenic	40	

and	other	elements.	The	results	suggest	that	arsenic	is	most	likely	associated	with	less	well	41	

weathered/leached	soils,	suggesting	it	is	either due to the geological newness of Holocene 42	

sediments or differences between the sources of sediments, which gives rise to the arsenic 43	

problems in Bangladeshi soils.	44	

	45	
Introduction	46	

	47	

Rice	is	elevated	in	inorganic	arsenic	compared	to	all	other	dietary	staples	(Meharg	et	al.,	48	

2009).	Flooding	of	soils,	as	in	paddy	cultivation,	leads	to	the	mobilization	of	natural	and	49	

anthropogenic	inorganic	arsenic	stores	in	iron	oxyhydroxide	phases,	caused	by	both	the	50	
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reduction	of	arsenic	and	iron	under	negative	soil	redox	potentials	(Meharg	and	Zhao,	2012).	51	

Paddy	soils	are	managed	through	tilling,	fertilization,	and	surface	water	and	groundwater	52	

irrigation,	with	the	latter	often	elevated	in	inorganic	arsenic	throughout	large	areas	of	53	

Bangladesh	(Huq	et	al.,	2003;	Meharg	and	Rahman,	2003;		Roberts	et	al.,	2007;	Lu	et	al.,	54	

2009).	Furthermore,	arsenic	can	undergo	a	number	of	processes	within	paddy	soils	that	55	

leads	to	its	subsequent	loss	such	as	partitioning	to	monsoonal	floodwaters	(Dittmar	et	al.,	56	

2007;	Saha	and	Ali,	2007;	Dittmar	et	al.,	2010;	Roberts	et	al.,	2010),	leaching	to	sub-surfaces	57	

(McLaren	et	al.,	2006;	Khan	et	al.,	2009;	Heikens	et	al.,	2007),	and	biovolatilization	to	arsines	58	

(Mestrot	et	al.,	2011).	Thus,	the	arsenic	loading	of	any	particular	paddy	soil	will	be	due	to	59	

geological	origin	and	the	subsequent	weathering	of	constituent	minerals,	and	the	60	

agronomic	management	of	that	sediment	(Lu	et	al.,	2009).	61	

	62	

Bangladesh	has	three	major	geomorphological	units	(Brammer,	1996;	Huq	and	Shoaib,	63	

2013).	These	are	hill,	terrace,	and	floodplain	areas.	The	hills	occupy	twelve	percent	of	the	64	

country’s	land	area.	The	uplifted	terrace	areas	are	of	Pleistocene	age	and	occupy	eight	65	

percent	of	the	country.	The	floodplains	are	of	Holocene	age	and	occupy	eighty	percent	of	66	

the	country.	The	Holocene	floodplains	include	the	piedmont	plains,	river	floodplains,	tidal	67	

floodplains,	and	estuarine	floodplains.	These	geomorphological	units	are	related	to	the	68	

parent	geological	formations,	however,	they	are	also	characterized	by	land	topography	and	69	

age	of	the	soil	formation	through	sediment	deposition	over	time	(Brammer,	1996).	70	

	71	

To	understand	and	characterise	the	physiography	of	the	geomorphological	areas,	72	

Bangladesh	is	divided	into	twenty	main	physiographic	regions	(FAO/UNDP,	1988).	This	73	

physiographic	classification	was	based	on	the	parent	material	in	which	individual	soil	types	74	
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were	formed	and	the	landscape	on	which	the	soils	were	developed	(FAO/UNDP,	1988).	75	

Therefore,	the	physiographic	regions	have	differences	in	geology,	relief,	drainage,	age	of	76	

land	formation	and	pattern	of	sedimentary	deposition.	These	differences	ultimately	77	

influence	the	nature	and	properties	of	the	soils	in	the	different	physiographic	regions.	78	

	79	

The	biogeochemical	cycling	of	arsenic	in	soils	is	strongly	affected	by	other	elements.	Iron	is	80	

central	due	to	the	strong	association	between	insoluble	arsenate	and	iron(III)	oxyhydroxides	81	

under	aerobic	conditions	and	with	the	mobilization	of	iron	(II)	and	arsenite	under	reducing	82	

(that	is,	paddy)	conditions	(BGS/DPHE,	2001;	Smedley	and	Kinniburgh,	2002;	McArthur	et	83	

al.,	2004;	Polizzotto	et	al.,	2005).	Manganese	oxides	also	have	a	similar	redox	chemistry	to	84	

iron	and	are	strongly	implicated	in	arsenic	immobilization/mobilization	during	oxic/anoxic	85	

cycling	of	paddy	sediments	(Smedley	and	Kinniburgh,	2002;	Hasan	et	al.,	2007).	Arsenate	is	86	

a	phosphate	analogue	and,	thus,	key	to	competition	for	binding	sites	within	the	soil	solid	87	

phase,	as	well	as	having	similar	biogeochemical	cycling	under	oxic	conditions	(Adriano,	88	

2001;	Meharg	and	Hartley-Whitaker,	2002;	Smith	et	al.,	2002;	Lambkin	and	Alloway,	2003;		89	

Stachowicz	et	al.,	2008).	Calcium	and	magnesium	immobilize	arsenate	under	oxic	90	

conditions,	and	could	also	have	a	role	in	the	biogeochemical	cycling	of	arsenic	at	a	91	

landscape	level	(Smith	et	al.,	2002;	Stachowicz	et	al.,	2008;	Fakhreddine	et	al.,	2015).		92	

	93	

Here,	we	wanted	to	understand	the	relationship	between	soil	arsenic	and	paddy	94	

management	practice	with	respect	to	arsenic	loadings	in	Bangladeshi	soils.	Cultivation	zones	95	

of	paddy	soils	(n	=	1209)	across	ten	physiographic	regions	of	Bangladesh,	from	latitude	96	

22°06'	to	24°53',	and	longitude	88°20'	to	90°59'	were	sampled	and	analysed	for	arsenic	and	97	

a	suite	of	sixteen	other	elements	(aluminium,	calcium,	cadmium,	cobalt,	chromium,	copper,	98	



	 5	

iron,	lead,	magnesium,	manganese,	molybdenum,	nickel,	phosphorus,	potassium,	sodium	99	

and	zinc).	For	a	subset	of	soils	(n	=	235),	paired	paddy	and	adjacent	non-paddy	soils	were	100	

also	collected	and	characterised.		The	data	were	used	to	address	four	specific	objectives:	to	101	

assess	the	impact	that	geomorphological	differences	have	on	soil	arsenic	at	a	landscape	102	

level;	to	understand	the	relationship	between	the	concentration	of	arsenic	in	the	paddy	103	

soils	with	the	concertation	of	arsenic	within	the	underlying	groundwater;	to	determine	if	104	

the	source	of	irrigation	water	impacts	on	soil	arsenic	concentrations;	and		by	examining	the	105	

concentrations	of	arsenic	and	other	elements	in	paddy		and	non-paddy	soils,	we	aimed	to	106	

understand	the	impacts	that	paddy	management	has	on	soil	elemental	concentrations.		 	107	
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Materials	and	Methods	108	

Collection	of	Soil	Samples	109	

A	total	of	1444	soil	samples	(topsoil,	0-15	cm	from	the	surface)	from	paddy	fields	(n	=	1209)	110	

and	neighboring	non-paddy	areas	(n	=	235)	were	collected	from	10	different	physiographic	111	

regions	within	57	sub-districts	(upazilas)	from	17	districts	of	Bangladesh	(Table	S1).	Non-112	

paddy	soils	were	defined	as	the	soils	where	paddy	cultivation	and	groundwater	irrigation	113	

had	not	been	practiced	within	known	memory	of	the	farmers.	The	physiographic	regions	114	

from	where	the	soil	samples	were	collected	included	Arial	Bil	(n	=	42	paddy	and	10	non-115	

paddy	soils),	Brahmaputra	Floodplain	(n	=	207	paddy	and	64	non-paddy	soils),	Ganges	River	116	

Floodplain	(n	=	261	paddy	and	58	non-paddy	soils),	Ganges	Tidal	Floodplain	(n	=	47	paddy	117	

and	11	non-paddy	soils),	Gopalganj-Khulna	Bils	(n	=	63	paddy	and	8	non-paddy	soils),	118	

Karatoya-Bangali	floodplain	(n	=	15	paddy	soils	only),	Meghna	Estuarine	Floodplain		(n	=	204	119	

paddy	and	28	non-paddy	soils),	and	Meghna	River	Floodplain		(n	=	184	paddy	and	26	non-120	

paddy	soils)	from	Holocene	floodplains,	and	Barind	Tract		(n	=	68	paddy	and	15	non-paddy	121	

soils)	and	Madhupur	Tract		(n	=	118	paddy	and	15	non-paddy	soils)	from	Pleistocene	122	

terraces.	The	source	of	irrigation	water	for	the	paddy	soils	was	recorded	(groundwater,	n	=	123	

904;	surface	water,	n	=	281;	both,	n	=	24).	Only	the	soils	that	had	a	non-mixed	irrigation	124	

source	were	used	for	analyzing	the	impact	of	irrigation	type	on	soil	arsenic.		125	

	126	

Sample	Processing	and	Preparation	for	Analysis	127	

The	soil	samples	were	air-dried	and,	prior	to	analysis,	the	samples	were	oven	dried	(80°C	±	128	

5°C	for	48	h),	and	finely	ground	using	a	ball-mill.	The	soil	digestion	procedure	followed	was	129	

described	by	Adomako	et	al.	(2009).	Briefly,	0.1	g	of	soil	was	placed	in	a	glass	digest	tube	130	

and	2.5	ml	of	concentrated	nitric	acid	was	added	to	the	tube	and	left	overnight	for	pre-131	
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digestion.	Then,	2.5	ml	of	hydrogen	peroxide	was	added	to	the	sample	just	before	digesting	132	

and	the	sample	was	heated	on	the	block	digester	for	1	h	at	80°C,	for	1	h	at	100°C,	for	1	h	at	133	

120°C	and,	finally,	at	140°C	for	3	h	until	the	solution	was	clear.	Once	cooled,	the	digested	134	

soil	samples	were	transferred	into	15	ml	polypropylene	tubes	and	each	glass	tube	was	135	

thoroughly	rinsed	3	times	with	ultrapure	deionized	water	(Milli-Q	18.2	MΩ).	The	volumes	136	

were	made	up	to	15	ml	mark	using	the	same	water.	To	obtain	the	appropriate	dilution	for	137	

analysis	by	inductively	coupled	plasma-mass	spectrometer	(ICP-MS)	and	microwave	plasma-138	

atomic	emission	spectrometer	(MP-AES),	the	samples	were	further	diluted	to	1	in	10.	139	

Calibration	standards	were	prepared	from	1000	mg/l	multi-element	stock	solutions	(SPEX	140	

CertiPrep	Reference	Material).		141	

	142	

Chemical	Analysis	143	

The	pH	of	the	soil	samples	were	measured	at	a	soil:water	(deionized	water)	ratio	of	1:2.5	144	

(Huq	and	Alam,	2005).	The	ICP-MS	(Agilent	Technologies	7500c,	Japan)	was	used	to	145	

determine	the	total	concentrations	of	arsenic,	cadmium,	cobalt,	copper,	chromium,	lead,	146	

manganese,	molybdenum,	nickel,	phosphorus,	and	zinc	in	the	soil	digests	and	the	MP-AES	147	

(Agilent	Technologies	4100	Series,	USA)	was	used	to	determine	the	total	concentrations	of	148	

aluminum,	calcium,	iron,	magnesium,	potassium,	and	sodium	in	the	soil	digests.	In	each	149	

batch	of	digestion,	ten	percent	of	the	total	number	of	samples	were	selected	randomly	for	150	

duplicate	analysis	(n	=172).	Every	batch	of	samples	consisted	of	33	randomly	selected	soil	151	

samples,	4	duplicates,	1	blank,	and	1	soil	CRM	(certified	reference	material)	(NCS	ZC	73007,	152	

China	National	Analysis	Center	for	Iron	and	Steel),	which	were	randomized	prior	to	153	

analytical	analysis.	154	

	155	
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Soil	Mapping	156	

The	data	used	to	perform	the	mapping	of	arsenic	in	paddy	soils	across	Bangladesh	included	157	

the	1209	paddy	soils	analyzed	in	this	study	as	well	as	395	soil	arsenic	concentrations	from	158	

previous	studies	(Williams	et	al.,	2011;	Lu	et	al.,	2009;	Islam	et	al.,	2012).	ArcGIS	v.10.2	(Esri)	159	

was	used	to	create	and	analyze	groundwater	and	soil	arsenic	map.	The	groundwater	arsenic	160	

data	were	obtained	from	BGS/DPHE	(2001).	161	

	162	

Statistical	Analysis	163	

All	statistical	analyses	were	performed	using	the	statistical	software	Minitab	v.16	(State	164	

College	PA)	and	SigmaPlot	v.13	(Systat	Software	Inc.,	CA).	The	data	were	checked	for	165	

normality	and	were	transformed	prior	to	statistical	analysis	where	appropriate.		166	

	 	167	
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Results	and	Discussion	168	

In	order	to	verify	the	accuracy	of	the	analytical	methods	as	well	as	the	quality	of	the	data,	169	

percent	recoveries	of	the	elements	in	CRM	and	relationships	between	the	element	170	

concentrations	in	the	samples	and	in	the	duplicates	(ten	percent	of	the	total	number	of	171	

samples)	were	calculated	and	the	average	recoveries	(in	percentages)	of	the	elements	in	the	172	

CRMs	and	the	results	of	the	duplicate	analysis	are	presented	in	Table	S2	and	Fig.	S1,	173	

respectively.		174	

	175	

To	develop	a	soil	arsenic	map	of	the	sampled	soils,	all	paddy	soil	sampling	locations	within	a	176	

10	km2	grid	were	averaged	(Fig.	1).	Individual	locations	and	sampling	densities	are	shown	in	177	

Fig.	S2.	There	is	a	clear	north/south	divide	in	paddy	arsenic	concentrations	with	much	higher	178	

concentrations,	in	general,	in	the	south.	The	paddy	soil	arsenic	levels	reported	here	(1-88	179	

mg/kg,	average	=	8	mg/kg)	are	within	the	ranges	reported	for	previous	Bangladesh	paddy	180	

soil	surveys	(Huq	et	al.,	2003;	Meharg	and	Rahman,	2003;	Lu	et	al.,	2009;	Williams	et	al.,	181	

2011;	Huq	and	Shoaib,	2013).	The	pattern	of	paddy	soil	concentrations	relate	well	to	182	

groundwater	measurements	(BGS-DPHE,	2001),	again	with	groundwater	elevated	in	the	183	

south,	excluding	the	coastal	zone.	The	exception	is	the	cluster	of	sampling	points	in	the	184	

extreme	south-east	that	have	a	low	soil	arsenic	concentration	and	the	highest	groundwater	185	

arsenic	concentration.	This	is	probably	due	to	the	source	of	irrigation	water	used	in	this	186	

south-east	region,	where	the	main	irrigation	method	is	from	surface	water	rather	than	187	

groundwater	(Fig.	S3).	When	comparing	the	arsenic	concentrations	in	the	paddies	that	have	188	

been	irrigated	with	groundwater	and	surface	water	across	Bangladesh,	there	was	a	189	

significant	difference	(ANOVAF	=	26.23,	p	<	0.001)	in	the	soil	arsenic	concentration	(Fig.	2).	190	

Soils	irrigated	with	groundwater	had	on	average	an	arsenic	concentration	of	8.5	mg/kg	191	



	 10	

which	was	significantly	higher	than	the	soils	irrigated	with	surface	water,	which	had	an	192	

average	arsenic	concentration	of	5.7	mg/kg.	For	the	individual	physiographic	regions,	seven	193	

of	the	regions	had	enough	groundwater	and	surface	water	irrigated	soils	(>10)	to	do	194	

comparisons	between	irrigation	method	and	soil	arsenic.	There	was	no	significant	difference	195	

in	soil	arsenic	between	the	groundwater	irrigation	and	surface	water	irrigation	for	four	of	196	

the	seven	physiographic	regions.	For	the	three	other	physiographic	regions,	significant	197	

differences	in	arsenic	concentrations	were		observed	between	the	soils	irrigated	with	198	

groundwater	(GWI)	and	surface	water	(SWI),	with	higher	arsenic	concentrations	in	the	199	

groundwater	irrigated	soils	than	in	the	surface	water	irrigated	soils	(for	Ganges	Tidal	200	

Floodplain,	ANOVAF	=	5.97,	p	<	0.05,	n	=	28	(GWI)	and	20	(SWI),	mean	=	14.6	mg/kg	(GWI)	and	201	

8.6	mg/kg	(SWI);	for	Meghna	Estuarine	Floodplain,	ANOVAF	=	14.84,	p	<	0.001,	n	=	69	(GWI)	202	

and	111	(SWI),	mean	=	8	mg/kg	(GWI)	and	3.9	mg/kg	(SWI);	for	Meghna	River	Floodplain,	203	

ANOVAF	=	62.06,	p	<	0.001,	n	=	130	(GWI)	and	54	(SWI),	mean	=	9.4	mg/kg	(GWI)	and	4.7	204	

mg/kg	(SWI)).	As	the	samples	were	collected	from	different	geomorphic	regions,	these	205	

results	could	be	confounded	by	the	underlying	geomorphology.	However,	difference	in	soil	206	

arsenic	due	to	different	irrigation	techniques	appears	to	be	a	trend	across	the	country.	207	

	208	

Soil	arsenic	concentrations	across	ten	different	physiographic	regions	of	Bangladesh	were	209	

compared	to	see	how	the	concentrations	varied	between	the	different	regions.	Highly	210	

significant	variations	(ANOVAF	=	75.28,	p	<	0.001	and	ANOVAF	=	6.33,	p	<	0.001,	respectively	for	211	

paddy	and	non-paddy	soils)	were	observed	in	soil	arsenic	concentrations	among	the	ten	212	

physiographic	regions	(Fig.	3	for	paddy	soils,	fig.	S4	for	non-paddy	soils).	The	Madhupur	213	

Tract	and	the	Barind	Tract	were	found	to	have	the	lowest	arsenic	concentrations	(0.6-10.3,	214	

mean	=	3.4	mg/kg,	and	0.8-23.4,	mean	=	2.8	mg/kg,	respectively)	in	the	paddy	soils,	whereas	215	
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the	Ganges	River	Floodplain	(1.6-68,	mean	=	11	mg/kg)	and	the	Ganges	Tidal	Floodplain	(3-216	

42.5,	mean	=	13.1	mg/kg)	had	the	highest	soil	arsenic	concentrations.	Martin	et	al.	(2014,	217	

2015)	reported	higher	concentrations	and	mobilization	of	arsenic	in	the	Ganges	floodplain	218	

soils,	due	to	enhanced	influence	of	the	pedoenvironmental	properties	in	the	region,	219	

compared	to	that	in	the	Meghna	floodplain	soils	suggesting	a	complex	interaction	between	220	

soil	properties,	climate	and	agricultural	management	practices	in	the	paddy	soil	221	

environment	in	Bangladesh.	In	the	present	study	the	Ganges	floodplain	soils	were	classified	222	

as	Ganges	River	Floodplain	and	Ganges	Tidal	Floodplain,	and	the	Meghna	floodplain	soils	223	

were	classified	as	Meghna	River	Floodplain	and	Meghna	Estuarine	Floodplain,	while	no	224	

significant	difference	in	arsenic	concentrations	was	observed	between	Ganges	River	225	

Floodplain	and	Meghna	River	Floodplain	soils	(Fig.	3).	Similar	observations	were	also	226	

reported	for	groundwater	arsenic	concentrations	across	the	different	geomorphological	227	

units	of	the	country	(BGS/DPHE,	2001;	Ravenscroft,	2001).	228	

	229	

At	a	gross	level,	high	and	low	groundwater	arsenic	concentration	regions	are	known	to	be	230	

based	on	physiographic	units,	with	low	concentrations	of	arsenic	in	groundwaters	in	the	231	

higher	altitude	Pleistocene	terraces,	and	at	high	concentrations	in	Holocene	floodplains	232	

(BGS/DPHE,	2001;	Smedley	and	Kinniburgh,	2002;	Ahmed	et	al.,	2004;	Ravenscroft	et	al.,	233	

2005).	The	explanation	for	this	is	that	Pleistocene	sediments	are	more	highly	weathered	and	234	

leached	of	arsenic	(Ravenscroft,	2001;	Ravenscroft	et	al.,	2005).	A	recent	study	on	the	235	

source	of	arsenic	in	the	Holocene/	Pleistocene	sediments	from	the	Terai	plain	of	Nepal	(that	236	

stratigraphically	resemble	Bangladeshi	sediments)	proposed	a	number	of	complex	processes	237	

which	can	explain	the	differences	in	arsenic	concentration	between	Holocene	and	238	

Pleistocene	sediments	(Guillot	et	al.,	2015).	However,	the	river	systems	of	Bangladesh	239	
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actively	rework	the	landscape,	giving	lenses	of	soil	remobilized	and	re-deposited,	240	

interlayering	Holocene	and	Pleistocene	soils	(BGS/DPHE,	2001;	Polizzotto	et	al.,	2005;	241	

Meharg	et	al.,	2006;	Guillot	et	al.,	2015).	It	is	also	known	that	differential	loss	of	arsenic	242	

occurs	from	groundwater	irrigated	paddy	soils	during	the	subsequent	monsoonal	floods	243	

through	partitioning	of	soil	arsenic	into	overlaying	floodwaters	(Dittmar	et	al.,	2007;	Saha	244	

and	Ali,	2007;	Dittmar	et	al.,	2010;	Roberts	et	al.,	2010).	245	

	246	

To	determine	the	contribution	of	both	natural	soil	arsenic	concentrations	and	how	paddy	247	

management	practices	have	contributed	towards	the	current	soil	arsenic	concentration,	248	

paired	non-paddy	and	paddy	soils	from	major	physiographic	units	of	Bangladesh	were	249	

analysed	(Fig.	4).	There	was	a	significant	relationship	for	soil	arsenic	between	the	paddy	and	250	

non-paddy	soils	(linear	regressionR2	=	0.26,	p	<	0.001,	n	=	235)	(Table	S3).	The	slope	of	the	overall	251	

regression	(that	is,	for	all	soils)	is	1.6:1	for	paddy:non-paddy,	that	is,	a	general	increase	in	252	

arsenic	of	60%	in	paddy	cultivated	soils.	The	soils	form	the	floodplains	and	bils	(low-lying	253	

floodplain)	followed	the	same	pattern	as	the	overall	regression	regardless	if	they	are	from	254	

the	Brahmaputra,	Ganges	or	Meghna	floodplains.	Pleistocene	terrace	soils	stand	apart	and	255	

do	not	follow	the	overall	regression,	being	both	on	average	lower	in	arsenic,	and	having	less	256	

arsenic	accumulation	in	paddy	soils	compared	to	Holocene	floodplain	soils.	A	paired	t-test	of	257	

the	matching	paddy	and	non-paddy	soils	for	arsenic	concentrations	within	the	Pleistocene	258	

terrace	soils	indicated	that	these	soils	were	significantly	different	(p	<	0.05),	with	the	non-259	

paddy	soils	having	elevated	arsenic	concentrations	in	comparison	to	the	paddy	soils,	on	an	260	

average	the	non-paddy	soils	had	19	percent	higher	arsenic.	This	indicates	that	paddy	261	

management	is	not	increasing	arsenic	concentrations	in	these	terrace	soils.	Pleistocene	262	

terrace	groundwaters	are	low	in	arsenic	(Nickson	et	al.,	2000;	BGS/DPHE,	2001;	Ahmed	et	263	
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al.,	2004;	Ravenscroft	et	al.,	2005),	and	thus,	irrigation	of	Pleistocene	terrace	soils	with	264	

groundwaters	should	not	lead	to	elevation	in	arsenic.	As	Holocene	floodplain	groundwaters	265	

used	in	paddy	irrigation	are	elevated	in	arsenic	(Ali	et	al.,	2003;	Huq	et	al.,	2003;	Meharg	266	

and	Rahman,	2003;	Saha	and	Ali,	2007;	Lu	et	al.,	2009;	Huq	and	Shoaib,	2013),	irrigation	of	267	

paddies	with	arsenic	elevated	groundwaters	has	the	potential	to	lead	to	build-up	in	soil	268	

arsenic.	Arsenic	in	the	non-paddy	floodplain	soils	ranged	from	1.8-24.3	mg/kg	(mean	±	sd	=	269	

5.6	±	2.9,	coefficient	of	variation	=	0.52,	n	=	205),	showing	that	arsenic	is	naturally	variable	270	

in	Bangladeshi	floodplain	soils,	with	this	range	being	2-11	mg/kg	(mean	±	sd	=	3.9	±	1.8,	271	

coefficient	of	variation	=	0.46,	n	=	30)	for	the	Pleistocene	terrace	soils.	This	emphasises	the	272	

inherent	variability	in	natural	soil	arsenic,	but	that	variability	is	less	on	Pleistocene	terrace	273	

soils.	It	is	the	Holocene	soils/sediments	that	are	exposed	to	the	active	reworking	that	274	

typifies	a	dynamic	estuarine	depositional	environment	(Sullivan	and	Aller,	1996;	BGS/DPHE,	275	

2001;	Polizzotto	et	al.,	2005;	Meharg	et	al.,	2006;	Lu	et	al.,	2009;	Guillot	et	al.,	2015),	and	276	

this	may	explain	the	variability.		The	inherent	differences	in	the	sediments	of	the	floodplain	277	

basins	deposited	from	different	sources	over	time,	differences	in	arsenic	accumulation/	278	

release	equilibria	related	to	the	indigenous	soil	chemistry,	residence	time,	depth	and	279	

duration	of	monsoon	flood	water,	rate	of	particle	dispersion,	rate	of	leaching	to	subsurface,	280	

and	biovolatilization	to	the	atmosphere	can	also	contribute	to	explain	the	variability	of	281	

arsenic	in	the	floodplain	soils	of	Bangladesh	(McLaren	et	al.,	2006;	Huq	et	al.	2008;	Khan	et	282	

al.,	2009;	Roberts	et	al.,	2010;	Mestrot	et	al.,	2011;	Brammer,	2012;	Martin	et	al.,	2015).	In	283	

addition,	the	diversity	and	complexity	of	soils	in	the	floodplains	of	Bangladesh	are	284	

influenced	by	variations	in	flooding	depth	within	the	inundation	land	types	(Brammer	1997;	285	

Huq	et	al.,	2008),	and	hence,	the	accumulation	and	release	of	arsenic	in	soils	vary	within	the	286	
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toposequence	of	a	landscape	due	to	variations	in	relief	and	soil	properties,	particularly	iron,	287	

clay	and	organic	matter	contents	(Huq	et	al.,	2008;	Brammer	2012b;	Ahmed	et	al.	2011).	288	

	289	

Given	that	different	geomorphic	regions	within	the	Holocene	floodplain	and	Pleistocene	290	

terrace	regions	follow	the	same	general	trends,	with	the	main	differences	being	between	291	

floodplain	and	terrace,	further	analysis	concentrated	on	floodplain	versus	terrace	292	

comparisons.	For	the	Pleistocene	soils,	comparing	paddy	and	non-paddy	relationships	were	293	

seen	for	all	elements	tested	(Fig.	5	and	Fig.	S?).	However,	it	was	only	for	arsenic	that	paddy	294	

soils	moved	away	from	a	1:1	relationship,	and	groundwater	is	specifically	only	elevated	in	295	

arsenic	to	any	significant	extent	(BGS/DPHE,	2001)	with	respect	to	levels	already	found	in	296	

soil,	this	is	further	evidence	that	it	is	groundwater	irrigation	per	se,	rather	than	other	297	

aspects	of	field	management,	such	as	fertilizer	and	manuring	practices,	that	perturb	paddy	298	

soil	arsenic	levels	compared	to	non-paddy	soils.	The	depletion	in	macro-nutrients	in	299	

Pleistocene	sediments,	particularly	the	alkaline	earths	calcium	and	magnesium,	is	most	300	

apparent.	Arsenic	is	also	positively	correlated	(r	=	0.3,	p	<	0.001)	with	soil	pH	(Fig.	S3?),	with	301	

low	pH	caused	by	low	calcium	and	magnesium	concentrations,	cross	confirming	the	302	

interplay	of	soils	factors	correlated	with	arsenic.	Iron	and	phosphorus,	two	elements	303	

intimately	associated	with	arsenic’s	biogeochemical	cycles	(Fitz	and	Wenzel,	2002;	Smith	et	304	

al.,	2002;	Heikens	et	al.,	2007)	are	also	highly	depleted	in	Pleistocene	soils.	Non-essential	305	

aluminium,	cadmium,	and	lead	also	follow	the	same	trend.	It	has	been	demonstrated	that	306	

pedogenic	processes	are	responsible	for	the	depletion	of	nutrients	within	soils	over	time	307	

(Peltzer	et	al.,	2010).	Additionally,	nutrients	can	be	depleted	in	soils	over	shorter	periods	of	308	

time	(Chen	et	al.,	2011).	Soils	that	have	been	under	continuous	paddy	cropping	have	been	309	

shown	to	be	depleted	in	key	macronutrients	in	a	very	short	period	of	time,	for	example,	310	
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calcium,	magnesium,	and	sodium	have	been	demonstrated	to	be	rapidly	lost	in	paddy	soils	311	

within	50	years	of	rice	cultivation	(Chen	et	al.,	2011).	312	

	313	

The	wider	characterization	of	Bangladeshi	paddy	soils,	where	elemental	concentration	is	314	

plotted	against	corresponding	arsenic	concentration	(Fig.	6),	shows	the	same	trend	as	the	315	

paired	paddy	–	non-paddy	samples	with	Pleistocene	depleted	in	all	elements	tested	as	316	

compared	to	Holocene,	with	those	being	high	in	arsenic	also,	in	general,	being	high	in	the	317	

corresponding	elements	(Table	S4	and	Fig.	S?).	This	indicates	again	that	Pleistocene	soils	are	318	

less	sustainable	than	Holocene	with	respect	to	their	elemental	nutritional	qualities.	It	is	off	319	

concern	that	rice	grains	low	in	arsenic	may	be	lower	in	nutrients	as	well.	This	subject	area	is	320	

not	well	investigated	except	where	it	was	shown	that	in	a	Bangladeshi	context	that	on	321	

arsenic	enriched	groundwater	irrigated	paddies	that	enhanced	grain	arsenic	had,	in	general,	322	

suppression	of	micro-nutrient	levels	in	rice	grain	(Williams	et	al.,	2009;	Norton	et	al.,	2010).	323	

Unfortunately,	there	appears	to	be	two	global	processes	that	regulate	arsenic	in	grain,	low	324	

nutrient	soils	have	low	arsenic,	and	high	arsenic	inhibits	grain	nutrient	levels.	This	warrants	325	

further	study	in	Bangladesh,	namely	by	wide	survey	of	grain	versus	soil	associations	for	the	326	

primary	mineral	nutrients	of	human	health	importance.		327	

	328	

What	is	also	apparent	from	the	plots	of	elemental	concentration	against	arsenic	is	that	329	

Holocene	soils	have	a	much	wider	range	of	arsenic	concentrations	at	higher	concentrations	330	

of	the	other	elements	compared	to	Pleistocene	soils,	that	is,	there	is	much	greater	inherent	331	

variability	in	arsenic	compared	to	other	elements,	specifically	when	other	elemental	332	

concentrations	are	high	(Fig.	6).	This	is	indicative	again	that	agricultural	management	333	

practices	specifically	alter	soil	arsenic	concentrations	in	Bangladesh.	Groundwater	for	334	
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irrigation	is	the	primary	source	of	arsenic	to	floodplain	paddies	that	are	cropped	during	the	335	

dry	season	and	is	well	known	to	elevate	arsenic	in	paddy	soils	(Ali	et	al.,	2003;	Huq	et	al.,	336	

2003;	Meharg	et	al.,	2003;	Dittmar	et	al.,	2007;	Saha	and	Ali,	2007;	Huq,	2008;	Lu	et	al.,	337	

2009;	Ahmed	et	al.,	2011;	Huq	and	Shoaib,	2013).	Paddy	soils	also	have	differential	338	

interaction	with	monsoonal	floods	following	dry	season	application	of	arsenic,	with	arsenic	339	

capable	of	partitioning	from	soils	into	floodwaters	(Dittmar	et	al.,	2007;	Saha	and	Ali,	2007;	340	

Dittmar	et	al.,	2010;	Roberts	et	al.,	2010).	As	this	interaction	between	floodwater	and	soil	341	

arsenic	will	be	dependent	on	soil	properties	and	on	the	dynamics	of	floodwater	patterns	for	342	

any	specific	paddy	soil,	heterogeneity	in	arsenic	removal	is	expected.	As	the	paddy	soils	343	

have	a	higher	arsenic	concentration	compared	to	the	matched	non-paddy	soils,	it	would	344	

indicate	that	this	process	of	loss	of	arsenic	form	the	soils	by	monsoonal	floods	is	not	345	

sufficient	to	reduce	that	arsenic	concentration	in	the	paddy	soils	back	to	the	non-paddy	soil	346	

background	concentration.	347	

	348	

When	Principle	Components	Analysis	(PCA)	is	used	to	look	at	the	interrelationships	between	349	

arsenic	and	other	elements,	the	soils	cluster	into	Pleistocene	and	Holocene	using	the	first	350	

and	second	components	(Fig.	7,	Table	S5).	There	is	some	overlap	in	the	middle	but	this	is	351	

expected	perhaps	as	the	large	scales	at	which	physiographic	regions	are	drawn	will	miss	the	352	

fine	detail	on	the	ground.	This	is	further	confounded	by	the	lensing	of	old	soils	over	new	and	353	

with	the	sediment	depositional	environment	also	being	highly	active	(Polizzotto	et	al.,	2005;	354	

Meharg	et	al.,	2006;	Lu	et	al.,	2009;	Guillot	et	al.,	2015).	The	direction	of	the	loadings	for	the	355	

components	shows	that	arsenic	trends	with	most	elements,	and	it	is	only	cadmium	and	356	

molybdenum	that	generally	differ.	The	PCA	analysis	gives	further	strength	to	the	hypothesis	357	

that	arsenic	is	simply	associated	with	less	well	weathered/	leached	sediments,	again	358	
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suggesting	it	is	either due to the geological newness of Holocene sediments or differences 359	

between the sources of sediments that	gives	rise	to	the	arsenic	problems	in	Bangladesh,	and	360	

elsewhere	(Smedley	and	Kinniburgh,	2002;	McArthur	et	al.,	2004;	Nickson		et	al.,	2005;	361	

Polya	et	al.,	2005;	Berg	et	al.,	2007;	Mukherjee	et	al.,	2008;	Rowland	et	al.,	2008;	Winkel	et	362	

al.,	2008;	Guillot	et	al.,	2015).	363	

	364	

Conclusion	365	

….	366	
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	544	

Fig.	1.	Sampling	locations	grouped	per	10	km2	and	sample	location	marker	scaled	to	size	545	
for	average	arsenic	content	of	that	location	for	surface	soils.	The	underlying	contour	map	546	
is	for	groundwater	arsenic	with	data	inputted	from	the	BGS/DPHE	(2001)	arsenic	survey.	547	
	548	

	549	

	550	
	551	
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	552	

Fig.	2.	Box	and	whisker	plot	showing	concentrations	of	arsenic	in	paddy	soils	irrigated	with	553	
groundwater	and	surface	water.	The	boxplots	indicate	the	lower	and	upper	quartile	(box),	554	
the	median	(solid	line),	the	mean	(dashed	line),	the	10th	and	90th	percentiles	(whiskers)	555	
and	the	5th	and	95th	percentiles	(circles).	556	
	557	
	558	
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	559	

Fig.	3:	Arsenic	concentrations	in	the	paddy	soils	from	different	physiographic	regions.	The	560	
numbers	of	samples	(n)	at	each	of	the	physiographic	regions	are	given	within	the	561	
parentheses.	Tukey’s	post	hoc	analysis	was	performed	with	one-way	analysis	of	variance	to	562	
compare	pair-wise	the	means	of	arsenic	concentrations	at	each	of	the	physiographic	regions	563	
to	show	which	regions	had	significant	differences	in	soil	arsenic.	Regions	that	share	the	564	
same	letter	(A–E)	are	not	significantly	different.	The	letters	indicate	Tukey	groupings	for	the	565	
physiographic	regions	with	respect	to	their	mean	soil	arsenic	concentrations.	566	
	567	
	568	
	569	
	570	
	571	
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581	
Fig.	4.	Relationships	between	arsenic	in	paddy	and	non-paddy	soils	from	different	582	
physiographic	regions	of	Bangladesh.	The	regression	line	in	each	graph	is	the	regression	583	
line	for	all	the	data.	The	fit	and	line	equations	are	given	in	table	S2.	584	
	585	
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	586	

Fig.	5.	Paddy	versus	non-paddy	elemental	relationships	with	soils	classified	as	Holocene	587	
and	Pleistocene.	The	line	on	each	of	the	graphs	is	the	regression	line	for	each	of	the	588	
elements.	The	fit	and	line	equations	are	given	in	table	S2.	589	
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	590	
Fig.	6.	Relationships	for	arsenic	versus	elements	for	paddy	soils	grouped	into	Holocene	591	
and	Pleistocene.	The	line	on	each	of	the	graphs	is	the	regression	line	for	the	corresponding	592	
elements.	The	fit	and	line	equations	are	given	in	table	S3.	 	593	
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	594	

	595	
Fig.	7.	PCA	of	paddy	soils	classified	into	Holocene	floodplain	and	Pleistocene	terrace	along	596	
with	loading	plot.	The	first	and	second	component	contributed	54.7	and	10.3	percent,	597	
respectively,	to	the	variations.	598	


