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Abstract
We introduce a simple empirical rule wherein the pairing interaction in superconductors is
cancelled when normal and umklapp phonon scattering coexist. Superconductivity then arises
solely from the residual umklapp contribution. As a result the deduced electron–phonon
interactions in niobium, tantalum, lead and aluminum become virtually identical in the normal
and superconducting states. Transition temperatures calculated under the rule are accurate within
a few per cent when compared with experimental data. Features of the Matthias relations are also
explained. The high Tc so far predicted for metallic hydrogen is probably overly optimistic.

Keywords: superconductivity, BCS theory, Tc prediction, Matthias relations

1. Introduction

In 1957 Bardeen, Cooper and Schrieffer (BCS) published the
first successful and remarkably comprehensive microscopic
theory of superconductivity [1]. It raised the hope that some
day we might be able to understand and predict accurate
numerical values for the superconducting transition tempera-
ture, Tc [2]. More than 50 years on the goal still eludes us [4, 3].
Now is perhaps the time to seek some pragmatic progress.

We recall that in the 1970s and 1980s a number of
attempts were made to calculate the superconducting electro-
n–phonon spectral density, α νF ( )2 , which leads to Tc via
numerical calculation within the Eliashberg–Nambu formal-
ism, a refined version of the BCS theory, see [5, 6] and the
references therein. Meanwhile, apparently as a check, attempts
were made to calculate electrical resistivity against tempera-
ture, ρ T( ), which derives from the same electron–phonon
interaction in the normal state. Scrutiny shows that the out-
come was a consistent mismatch: either α νF ( )2 was too strong
when ρ T( ) was reasonable [7–9], or α νF ( )2 was reasonable
but ρ T( ) was too weak [10–13]. A similar observation was
reported in the 1990s, with ρ T( ) largely reasonable but α νF ( )2

exceeding experimental values by a factor 2 or 3 in places [14].
In the current literature the McMillan formula, or a var-

iation of it, is often used in making a rough estimate of Tc
[15–22]. Sometimes a novel density functional theory of the

superconducting state has been attempted [23–26]. In general
the outcome is roughly right but, to our knowledge, control
measures are not taken to verify consistency with ρ T( ) cal-
culated for the normal state. Rather surprisingly and
remarkably the theoretical α νF ( )2 determined in [14] also
leads through the density functional theory to tolerably
acceptable Tc (error ∼25%) [24].

Recently we developed a technique to extract realistic
effective atomic potentials (pseudopotentials) for super-
conductive metals [27]. In a further development we also
extracted atomic potentials in the same metals in the normal
state and determined that the potentials have to be consistently
much stronger in the normal than in the superconducting state
if they are to account for ρ T( ), at least for the elements tan-
talum, niobium, lead and aluminum [28]. The relative weak-
ness of the effective atomic potential in the superconductive
state is so significant that little room is left for an explanation in
terms of observational or numerical inaccuracies.

It seems implausible that the actual strength of the atomic
potential can be weakened significantly in the transition to the
superconducting state. As a pragmatic measure, we propose an
empirical rule to resolve the problem, a treatment which is
plausible but without generally accepted underlying theoretical
justification as yet. Our proposal is that the electron–phonon
interaction ceases to contribute to superconductivity when
normal and umklapp scattering coexist. We describe the
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situation as normal and umklapp scattering events cancelling
each other. Under our empirical rule superconductivity arises
solely from residual uncancelled umklapp scattering.

As before, we test our treatment with niobium, tantalum,
lead and aluminum. Starting with experimental values of
ρ T( ) we find the atomic potential that leads to these values
using the method of inversion of Hooke and Jeeves [29]. This
achieves a highly accurate relation between the potential and
the values of ρ T( ) over a wide range of T. The inversion is
formulated on the established theory of electrical resistivity,
with no further assumption or approximation. The resultant
atomic potential is therefore hardly more than reformulated
experimental ρ T( ) data. Next we invert the experimental
superconducting tunnelling conductance data, σ ω( ), with a
similar technique but include the empirical rule of normal-
umklapp cancellation. The resultant atomic potential is again
hardly more than reformulated experimental data.

The value of an empirical rule lies chiefly in its ability to
reconcile theory and experiment and hence validate the theory
for prediction. To this end we compare the atomic potentials
we have found in the normal and superconducting states. The
outcome supports the validity of the empirical rule. For
additional support of our empirical rule we provide a short
clear proof of an algebraic contradiction of the pairing scheme
when normal and umklapp scattering coexist. It manifests a
proven theoretical result valid in the original BCS theory
[30–32]. We also compare calculated Tc values with
experiment.

This article is arranged as follows: in sections 2 and 3 we
detail a dilemma due to umklapp scattering and the empirical
rule to deal with it. In section 4 we invert electric resistivity
data for niobium. In section 5 we invert tunnelling con-
ductance data for niobium. In section 6 we study tantalum,
lead and aluminum. In section 7 we calculate Tc theoretically
for the four metals. We discuss the Matthias relations and
metallic hydrogen in section 8. A brief summary and con-
clusions are given in section 9.

2. Umklapp dilemma

Throughout our discussion we assume a spherical electron
Fermi surface of radius kF, shown schematically in figure 1 as
an open circle. Let k and −k be the initial momenta of a pair
of electrons on the Fermi surface and ′k and − ′k their end
momenta after being scattered by phonons. In figure 1 we
mark the range of scattering with the grey wedges. In the
Debye model the first phonon Brillouin zone is simplified to a
sphere of radius qD. We have =q k Z/2 (1/4 )D F

1/3, kF and qD
are Fermi and Debye wavenumbers, respectively, Z is
valency, giving θ = − q k2 sin ( /2 )D F

1 as the angle of the
wedges against their symmetric axis, θ = °78.1 , °60.0 , °51.8 ,

°46.8 , ... when Z = 1, 2, 3, 4, .... With realistic phonons the
phonon zone becomes polyhedral and θ will depend on

= ′ −q k k though not significantly.
Consider umklapp scattering. For definitiveness we will

consider phonons in the first Brillouin zone but place the
electrons in periodical zones. In figure 1 we use a partial circle

to represent a replica of the Fermi surface in one of the
neighbouring electron zones. Apparently a state on this
replicated Fermi surface, for example − ′ +k G, is accessible
via normal electron–phonon scattering, if it is not too far away
from the initial state, k, where G is a crystal momentum
vector. This means that we have an alternative path to access
− ′k , namely umklapp scattering, since − ′ +k G is just a
replica of − ′k .

Now we have a dilemma: let ′h k( ) and − ′h k( ) be pair
occupancy probabilities at ′k and− ′k [1]. By symmetry of the
pairing scheme ′h k( ) and − ′h k( ) must be equal. On the other
hand ′h k( ) and − ′h k( ) arise from normal and umklapp
scattering, respectively, so that they need not and in general
will not be equal. This is a manifestation of the algebraic
contradiction within the original BCS theory [30–32] that the
ground state electronic wavefunction cannot be normalized
when normal and umklapp scattering coexist, see appendix.

Study of umklapp scattering in the BCS theory has a long
history. In 1958 Pines calculated normal and umklapp con-
tributions to the original BCS theory [33]. In 1968 Carbotte
and Dynes calculated umklapp contributions to the Eliash-
berg–Nambu formalism by enlarging the radius of the sphere
enveloping available phonons to k2 F, so that the entire Fermi
surface is within the reach of an initial electron scattered by
phonons [34]. We carried out a numerical test and checked
that electrons from umklapp scattering do arrive everywhere
over the Fermi surface if the phonon zone is not spherical but
a realistic polyhedron. We also find the end states of normal
and umklapp scattering never overlap. Both fcc and bcc lat-
tices have been tested with valencies, Z, between 1 and 4.

3. Empirical rule

To avoid the umklapp dilemma we propose an empirical
rule. In figure 2 we show the range of normal and umklapp
scattering when q is in a specific direction, = ′ −q k k
being the phonon momentum vector. For Debye phonons
ω = v qD , ⩽ ⩽q q0 D, where ω is the phonon frequency, vD

Figure 1. Schematic of a spherical Fermi surface and a pair of
electrons with initial momenta k and −k. Normal scattering drives
the electrons into ′k and − ′k within the grey wedges. It can also
drive an electron from k to − ′ +k G in the neighbouring Brillouin
zone, that is − ′ = − ′ + −k k G G( ) is also accessible via umklapp
scattering.
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sound velocity and = | |q q . We use the grey triangle to mark
the ranges of both ω and q in the Debye model, corre-
sponding to the right grey wedge of figure 1. If the value of
q exceeds

−k q4 (1)F D
2 2

then an electron, initially with momentum k, enters the grey
wedge on the left side of figure 1 via umklapp scattering.
Over the range of this wedge each and every electron state
can also be accessed via normal scattering of the electron
initially with momentum −k. In figure 2 we use the dashed
vertical line on the left to mark the actual boundary of the
first Brillouin zone, which is slightly different from qD. We
use the dashed line on the right to mark the value of
expression (1), when q is in the direction concerned, with
qD being replaced by the actual value of the Brillouin zone
boundary in that direction.

According to the proposed empirical rule normal and
umklapp electron–phonon scattering, with end states of the
electrons in the grey wedges in figure 1, cancel each other
with respect to their contributions to superconductivity. A
metal becomes a superconductor solely on account of residual
umklapp scattering that drives electrons into the range
between the two grey areas. Correspondingly in figure 2 only
phonons between the two dashed lines make contributions to
superconductivity. We disregard other phonons when we
evaluate α νF ( )2 .

4. Resistivity: niobium

According to Mott and Jones, contributions of normal and
umklapp scattering to electrical resistivity in the normal state
are simply added together [35]. Previously we have found the
atomic potential in the normal state by inversion of the tem-
perature-dependent electrical resistivity, ρ T( ) [28]. Here we
describe the work briefly, with some insights, for the

convenience of the reader. Drude theory has a number of
refined versions, often with the formula [13]

∫τ
π

α ν
=

− −

∞

− ( )( )
k T F x x

e e

1
4

( ) d

1 1
(2)

0

tr
2

B

x x

to estimate the collision time (relaxation time), which mea-
sures the average time between electron collisions with the
atoms, where ν=x k T/ B , ν being the phonon frequency in
electron volts, kB Boltzmann constant and T temperature.
When the Fermi surface is spherical, the so-called transport
spectral density can be written into the following program-
mable form [28]:

∫ ∑

α ν

π
ϕ ω

ω
ω
ω ϵ

=

× ·π

ω ν=

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥


F
Z

m

M

T

T

k q
e

q

q

V qk q

( )
3

4

2

1

2
d

d

d

( )
(3)

tr
2

0

2

ℓ
2

2

F

D

F D D F

2 3 2

ℓ ℓ ℓ
ℓ

with m and M being electronic and atomic mass, TF and TD
Fermi and Debye temperatures, k initial vector momentum of
the electron, q phonon momentum vector, kF and qD Fermi
and Debye momentum, =ℓ 1, 2, 3 identifies phonon polar-
ization, + + =e e e 11

2
2
2

3
2 , ω ω= q( )ℓ ℓ angular phonon fre-

quency, V(q) atomic potential in reciprocal space and ϵF

Fermi energy.
In equation (3) the variable ν determines the phonon

frequency via the relation ω ν= q( )ℓ which in turn deter-
mines q via the phonon dispersion relation. We notice that in
equation (3) each and every value of ϕ defines a great circle
across the Fermi sphere, which is a trace of the end state, ′k ,
of the electron being scattered. In order to evaluate
equation (3) we trace this great circle until = ′ −q k k takes
the value determined by ν. Consequently, when ϕ runs
between 0 and π2 , we find a range of q to evaluate the
integrand in equation (3). An average of the evaluated inte-
grand over ϕ leads to α νF ( )tr

2 .
In practice we let q in equation (3) run over all possible

values of phonon momentum or, equivalently, within the 1/48
irreducible section of the phonon sphere. Following Mott and
Jones the radius of the phonon sphere is k2 F to include
umklapp scattering [35]. In our calculation q has 250 values
in each of 1275 directions, so that we have to solve 318750
eigen-equations for 956 250 phonon frequencies. In doing so
we find a spectrum of ν via the relation ν ω=  q( )ℓ . This
relation is not linear so values of ν may cluster together.
Meanwhile we evaluate the integrand in equation (3) with the
values of q and ω q( )ℓ . An average of the evaluated integrand,
with respect to ϕ, leads to α νF ( )tr

2 . We encounter a peak of
α νF ( )tr

2 whenever values of ν cluster together. This common
practice deviates slightly from the physics, because appar-
ently we have to exclude a lot of phonons in order to land the
electron nowhere else but just on the Fermi surface. We did a
numerical test to simulate electron–phonon scattering on the
Fermi surface to the letter. We found little improvement at the
cost of a much higher amount of computation.

Figure 2. Nb phonon dispersion in the (0.884, 0.451, 0.123)
direction, grey triangle envelops Debye frequencies and momenta,
dashed vertical lines mark the ranges of normal electron–phonon
scattering for the two electrons in a pair, respectively. Under the
empirical rule superconductivity arises solely with q between the two
dashed lines.
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In equation (3) V(q) is found from Fourier transformation
of its counterpart in real space, V(r). We start inversion of the
electrical resistivity data with the following muffin tin pilot
potential:

δ π=
⎛
⎝⎜

⎞
⎠⎟V r V

r

r
( ) cos

2
(4)

1

when ⩽ ⩽r r0 1, otherwise =V r( ) 0, r being the distance
from the atomic site. With a simple procedure of optimization
we adjust δV and r1 until the electric resistivity from
equations (2–4) best matches experimental data. This takes
place when δ ϵ= −V 4.10 F and =r a1.061 , a being the crystal
constant. We then further adjust V(r) on 24 values of r with
intermediate values found via interpolation using second
order polynomials. In the pattern search phase of the Hoo-
ke–Jeeves procedure [29] the 24 values of V(r) are perturbed
in turn. Perturbations are registered as favorable when theo-
retical and experimental resistivity data, ρ T( ), fit better. In the
pattern move phase of the procedure favorable perturbations
are implemented, unfavorable perturbations implemented in
the opposite directions, all simultaneously by an amount
appropriate to optimize the fitting. This process is iterated
until a satisfactory fit has been reached. The resultant V(r),
shown as the continuous curve in figure 3, differs little from
the pilot potential.

In the upper part of figure 4 we present, as a continuous
curve, the analytical expression of ρ T( ) for Nb, given by
Webb [37] to fit his experimental data. We present the cal-
culated ρ T( ) from equations (2–4) as open circles. On aver-
age the difference between experiment and theory is just
0.12% relative to ρ at 295 K. In the lower part of figure 4 we
present the related transport spectral density, α νF ( )tr

2 , as a
histogram. In the Bloch–Grüneisen formula α νF ( )tr

2 is
reduced to x8.95 4 when ⩽x 1 (= 0 when >x 1), with

ν Θ=x k/ B , Θ = 270 K [36]. It is presented in the lower part
of figure 4 as the grey silhouette.

5. Superconductivity: niobium

The superconducting electron–phonon spectral density can be
written into the following programmable form [28]:

∫ ∑

α ν

π
ϕ ω

ω
ω
ω ϵ

=

×
π

ω ν=

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥


F
Z

m

M

T

T

e
q

q

V q

( )
3

4

2

1

2
d

d

d

( )
(5)

0

2

ℓ
2

2

F

D

D F

2
1 3 2

ℓ ℓ ℓ
ℓ

which is very similar to equation (3) and leads through the
Eliashberg–Nambu equations [6] to the superconducting
energy gap function, Δ ω( ), which in turn leads to the theo-
retical quasiparticle density of states, σ ω( ), the real part of the
expression ω ω Δ ω−/[ ( )]2 2 1/2. This will be reduced to
σ ω( )BCS if Δ ω( ) is replaced with the gap edge, Δ0 [38]. The
quantity σ σ/ BCS reveals phonon structure and serves as the
major theoretical output to be compared with its experimental
counterpart, similar to ρ T( ) in section 4. In this paragraph and
figure 5 we use ω to represent the electronic wave frequency
(in eV), which should not be confused with the phonon fre-
quency (in rad −s 1) in equations (3) and (5).

Previously we inverted the experimental data of Khim,
Burnell and Wolf [40] without normal-umklapp cancellation
[28]. We describe some details of the work for easy com-
parison with the new result. We started with the pilot potential
in equation (4), =r a0.461 and δ ϵ= −V 1.62 F. We adjusted

Figure 3. Atomic potentials extracted from Nb in the normal state
(continuous curve) and superconducting state with (open circles) and
without (filled squares) normal-umklapp cancellation; vertical lines
mark neighboring atomic shells.

Figure 4. Upper: measured (continuous curve) and computed (open
circles) normal state resistivity of Nb. Lower: normal state
electron–phonon spectral density, α νF ( )tr

2 , in Nb (histogram) and its
counterpart in the Grüneisen–Bloch formulation (grey silhouette).
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24 values of V(r) when < ⩽r a0 2.96 in both the pattern
search phase and pattern move phase of inversion. The pro-
cedure was iterated a number of times and eventually we
found V(r) represented by the filled squares in figure 3, which
is much weaker than V(r) for the normal state (con-
tinuous line).

Now, under the proposed empirical rule, we again extract
V(r) with normal-umklapp cancellation included. We evaluate
α νF ( )2 in equation (5) only with phonons between the two
dashed lines in figure 2. In practice, we assign 1275 directions
within the irreducible section of the phonon sphere. We let q
run along each of these directions. We evaluate the integrand
in equation (5) when < < −q q k qq q( ) [4 ( )]B F B

2 2 1/2, q q( )B

being the realistic radius of the first phonon Brillouin zone in
the direction of q, in accord with equation (1). Values of the
integrand are arranged as a function of ν and stored. An
average of these functions, with respect to the number of
directions of q, leads to α νF ( )2 with normal-umklapp can-
cellation. It is then straightforward to find V(r) from α νF ( )2

via the inversion procedure.
We pilot the inversion with the Muffin-tin potential in

equation (4), with δ ϵ= −V 4.10 F and =r a1.061 , the same
potential we used to pilot normal state inversion. Further
refinement of this pilot potential, by varying V(r) at 24 values
of r, leads to the open circles in figure 3. On average the
difference between these circles and the continuous line

arising from ρ T( ) inversion in figure 3 is 0.65% relative to
the depth of the potential. In the upper part of figure 5 we
show the calculated and experimental normalized quasi-
particle densities of states. In the lower part of figure 5 we
show as the histogram α νF ( )2 calculated enroute inversion
with normal-umklapp cancellation. We also show as the grey
silhouette the experimental α νF ( )2 found from the data in
[40] by the original method of McMillan and Rowell [38].

The atomic potential in figure 3 is often known as a
pseudopotential. Received opinion is that such a
pseudopotential is ‘not unique nor exact, but it may be very
good’ [39]. Choices other than equation (4) are available to
pilot inversion of experimental ρ T( ) or σ ν( ): square well,
empty core or Gaussian. Trying them we find somewhat
different V(r) with albeit similar depth at r = 0. However in
our experience, for the case of niobium, the Muffin-tin
potential in equation (4), with the abovementioned values of
δV and r1, best achieves the almost exact compatibility in
figure 3 between values of V(r) in the normal and super-
conducting states. It seems now that, crosschecking between
normal and superconducting states, we are able to pin down a
unique V(r) for the electron–phonon interaction in niobium
perhaps for the first time.

6. Tantalum, lead and aluminum

In the case of tantalum in the normal state, for which there is no
experimental data readily available, we invert ρ T( ) from the
Bloch–Grüneisen formula, Θ = 228 K [36]. We let
δ ϵ= −V 4.49 F and =r a1.071 in equation (4) to pilot normal
state inversion. Further optimization, via the procedure of
Hooke and Jeves [29], entails little change to the pilot poten-
tial, giving V(r) shown in the upper part of figure 6 as the
continuous curve. In the superconducting state we invert the
experimental tunneling data of Wolf et al [41]. Without nor-
mal-umklapp cancellation we let δ ϵ= −V 1.81 F and

=r a0.471 in equation (4) to pilot superconducting state
inversion. Further optimization leads to a weak potential
represented by the filled squares in figure 6. With normal-
umklapp cancellation we let δ ϵ= −V 4.50 F and =r a1.081 in
equation (4) to pilot inversion and eventually find the potential
represented by open circles in the upper part of figure 6. On
average we have a difference of 1.29%, relative to the depth of
the potential well, between the values of V(r) found for the
normal state (continuous curve) and superconducting state
with formal normal-umklapp cancellation (open circles).

Again, in the case of lead in the normal state we invert
ρ T( ) from the Bloch–Grüneisen formula, Θ = 86 K [36]. We
let δ ϵ= −V 3.62 F and =r a0.851 in equation (4) to pilot
inversion. Further optimization leads to V(r) shown in the
middle part of figure 6 as the continuous curve. In the
superconducting state we invert the tunneling data of
McMillan and Rowell [42]. Without normal-umklapp can-
cellation we let δ ϵ= −V 1.60 F and =r a0.371 in equation (4)
to pilot superconducting state inversion. Further optimization
leads to the potential marked by the filled squares in figure 6.
With normal-umklapp cancellation we let δ ϵ= −V 3.73 F and

Figure 5.Upper: normalized superconducting tunneling quasiparticle
density of states in Nb. The continuous curve is experimental,
open circles are from inversion with normal-umklapp cancellation, ω
stands for electron frequency. Lower: superconducting
electron–phonon spectral density, α νF ( )2 , the grey silhouette and
histogram are associated with the continuous curve and circles in the
upper part respectively.
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=r a0.881 in equation (4) to pilot inversion and find the
potential marked by open circles in the middle part of
figure 6. On average, when formal normal-umklapp cancel-
lation is introduced, we have 2.53% as the relative difference
between the values of V(r), against its depth, in the normal
(continuous curve) and superconducting states (open circles).

In the case of aluminum in the normal state we also invert
ρ T( ) from the Bloch–Grüneisen formula, Θ = 395 K [36].
Here we find the Muffin-tin potential cannot pilot sufficiently

accurate inversion. We replace equation (4) with

δ= −⎡⎣ ⎤⎦V r V r r( ) exp ( ) (6)1
2

which is a Gaussian. We let δ ϵ= −V 2.60 F and =r a0.391

in equation (6) and find V(r) shown as the continuous curve
in the lower part of figure 6. In the superconducting state we
invert the tunneling data derived from the experimental
α νF ( )2 of Khim [43]. Without normal-umklapp cancellation
we let δ ϵ= −V 1.08 F and =r a0.351 in equation (6) to pilot
inversion, giving V(r) shown as the filled squares in the
lower part of figure 6. With normal-umklapp cancellation we
let δ ϵ= −V 2.67 F and =r a0.391 to pilot inversion, giving
V(r) shown as the open circles in the lower part of figure 6.
On average, when normal-umklapp cancellation is intro-
duced, we have 1.02% as the relative difference between the
values of V(r), against its depth, in the normal (continuous
curve) and superconducting states (open circles).

7. Transition temperature

In each case we have calculated α νF ( )2 enroute inversion
with normal-umklapp cancellation. For the case of niobium it
is shown in the lower part of figure 5 as the histogram. Now
we calculate Tc by substituting calculated values of α νF ( )2

into the temperature-dependent Eliashberg–Nambu equations.
We start from T = 0 and increase T in small steps. We stop
calculation when the gap edge drops to less than 1% of its
value at absolute zero, Δ0. We find Tc by extrapolation with a
second-order-polynomial. We see from table 1 that calculated
values of Tc fit experimental observation to within 3% for
three elements. Al with less detailed superconducting tun-
nelling data as input is off by 7%.

In table 1 we list also values of the Coulomb pseudo-
potential, *μ , found enroute inversion with normal-umklapp
cancellation and used in our Tc calculation [38]. According to
theoretical estimation by Morel and Anderson, based on the
Fermi–Thomas approximation, *μ = 0.12, 0.11, 0.10 and
0.10 for Nb, Ta, Pb and Al, respectively [44] which in some
cases differ quite significantly from the values in table 1. On
the other hand, according to later and more realistic calcula-
tions, *μ = 0.2735, 0.1169, 0.1446 and 0.1472 for Nb, Ta, Pb
and Al [45] which in general are closer to the values in
table 1. These are not first principles calculations but come
from fitting with tunnelling data, essentially the same method
we have been using.

8. Matthias relations

Matthias observed relations between Tc and the number of
valence electrons per atom for superconductive metals and
alloys but provided no theoretical explanation [46]. In general
superconductivity is favored in multivalent systems: Tc peaks
at ≃Z 4.5 and 7 but vanishes when ⩽Z 2, Z = 6 and ⩾Z 8.
The Matthias relations have been widely cited but were
considered to be beyond the scope of the BCS theory [3].

Figure 6. Atomic potentials extracted from Ta, Pb and Al in the
normal state (continuous curves) and superconducting state with
(open circles) and without (filled squares) normal-umklapp cancel-
lation; conventions identical to figure 3.

Table 1. Superconductor properties with normal-umklapp
cancellation

2Δ0
a μ* Tc

b Δ k T2 / B c0
b

Nb 30.5 0.275 9.23 (9.50) 3.87 (3.80)
Ta 14.0 0.081 4.54 (4.48) 3.58 (3.61)
Pb 27.3 0.150 7.11 (7.19) 4.45 (4.38)
Al 3.40 0.155 1.07 (1.14) 3.67 (3.30)

a
Experimental value [39], in 10-4eV.

b Experimental value [39] bracketed, in K.
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With our empirical rule in place the BCS theory can
explain at least one aspect of the Matthias relations. In
figure 1 the areas between the two grey wedges become larger
the larger the valency, allowing more residual umklapp
scattering to survive cancellation to contribute to super-
conductivity and consequently higher Tc. Indeed no Z = 1
metal other than lithium (Tc = 0.4mK) [47] has been observed
to become a superconductor in the ambient.

Metallic hydrogen, Z = 1, is widely believed to be an
exception. In 1968, based on the perceived high Debye
temperature, Ashcroft predicted Tc = 54.5 K with the standard
weak-coupling BCS expression [48]. In 1989 Barbee III,
Garcia and Cohen predicted ≃T 230c K with the Eliash-
berg–Nambu equations and α νF ( )2 was found without nor-
mal-umklapp cancellation [49]. In 2008 Cudazzo et al
predicted Tc up to 242 K with their novel density functional
theory; again α νF ( )2 was found without cancellation [50].
This escalating Tc in the 40 years from 1968 to 2008 is
probably overly optimistic bearing in mind the present
insight.

9. Summary and conclusions

We have reconciled the strength of the electron–phonon
interaction in metals in the normal and superconducting
states. For the superconducting state we start with a simple
empirical rule and adhere to it throughout. In it we propose
that normal and umklapp scattering cease to contribute to
superconductivity when they coexist. Then superconductivity
arises solely from residual umklapp scattering in the absence
of normal scattering. This empirical rule is without full the-
oretical justification at present.

Validity of our empirical rule lies chiefly in its capability
of extracting virtually identical atomic pseudopotentials for
the electron–phonon interaction from not one but four metals
in the normal and superconducting states. These are niobium,
tantalum, lead and aluminum, thoroughly investigated
examples of conventional weak and strong coupling super-
conductors. Added credibility is gained from the prediction of
Tc for each element with good accuracy. Preliminary results
for three other metals, molybdenum iridium and tungsten, are
equally encouraging. The range of Tc now covered extends
from 12 mK to 9.5 K, almost three decades.

To underpin the empirical rule we demonstrate that,
when normal and umklapp scattering coexist, the pair occu-
pancy of destination states is doubly defined with conflicting
values. We provide an alternative rigorous proof valid in the
BCS theory. Apart from being supported by the excellent
numerical results in four metallic superconductors, the rule
also explains features of the relations observed by Matthias.
In light of the rule the high Tc so far predicted for metallic
hydrogen is probably overly optimistic. We recognize that
further work will be needed to test if the proposed empirical
rule can be applied to validate more aspects of the BCS theory
quantitatively.

Appendix

The following is a concise and more accessible version of the
proof in [30–32]. The BCS reduced Hamiltonian has the
following interaction term [1]:

∑− ′
†

′
′V b b , (A.1)k

kk

kk k

where ′Vkk measures interaction strength, k and ′k identify
particle momenta while

= =′
†

′↑
†

− ′↓
†

− ↓ ↑b a a b a aand (A.2)k k kk k k

with a and †a being the single particle destruction and gen-
eration operators. Expression (A.1) can be written as:

∑−

+

′↑
†

− ′↓
†

− ′↑
†

′↓
†

′
′ − ↓ ↑

↓ − ↑

(

)

V a a a a

a a a a

1

2

.

(A.3)
k k

k k

kk

kk k k

k k

Here the first term in the brackets simply is the product of †b
and b in expression (A.2). By reversing the signs of the
dummy indices k and ′k (values of ′Vkk not affected) we find
the second term. Expression (A.3) highlights that there are
two allowed spins for each orbit. This can be seen clearly
when we permute the two †a ʼs and two aʼs in the second term.

Now consider the following scattering event arising from
the first term in the brackets of Expression (A.3):

↑ − ↓ →
′ ↑ − ′ ↓

− ′ ↑ ′ ↓
⎧⎨⎩

N
U

k k
k k

k k
( , )

( , ), -process
( , ), -process

(A.4)

with the N and U-processes being illustrated by the solid and
dashed curved arrows in figure 1, respectively, both arrows
start from k. Also consider the event arising from the second
term in the brackets:

− ↑ ↓ →
− ′ ↑ ′ ↓

′ ↑ − ′ ↓
⎧⎨⎩

N
U

k k
k k

k k
( , )

( , ), -process
( , ), -process

(A.5)

when −k and −k′ are the initial and end states for normal
scattering (−k and k′ for umklapp scattering). Clearly we
have identical end states from the N and U-processes in
expressions (A.4) and (A.5) respectively. We also have
identical end states from the U and N-processes in expressions
(A.4) and (A.5) respectively.

In the BCS theory the ground state (trial quasiparticle
wave function) must be of the form

Ψ

Φ

∣ 〉 = − + −

+

′↑
†

− ′↓
†

′↑
†

− ′↓
†

( )
)

(h h a a h

h a a

1 1

(A.6)

k k

k k

N N U

U

in order to make expression (A.3) applicable to for example
the N and U-processes in expressions (A.4) and (A.5)
respectively, hN and hU being pair occupation probabilities.
Here just two pairs of quasiparticles are generated explicitly,
others written collectively as Φ| 〉. Since =′↑

†
′↑

†a a 0k k and
=− ′↓

†
− ′↓
†a a 0k k , due to double Fermion occupation, we find
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from equation (A.6)

Ψ Ψ

Φ Φ

= −

− − − 〈 | 〉⎤⎦
[

( ) ( )

h h

h h h h

1

2 1 1 (A.7)

N U

N N U U

which is not normalized unless hN or hU vanishes, consistent
with the conclusion in [30–32].
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