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Abstract 

Introduction of porosity to calcium phosphate scaffolds for bone repair has created a new 

challenge when measuring bioresorption in vitro, rendering traditional outcome measures 

redundant. The aim of this study was to identify a surrogate endpoint for use with three 

dimensional (3D) scaffolds. Murine RAW 264.7 cells were cultured on dense discs of -

tricalcium phosphate in conditions to stimulate osteoclast (OC) formation.  Multinucleated 

OC were visible from Day 6 with increases at Day 8 and Day 10. Resorption pits were first 

observed at Day 6 with much larger pits visible at Days 8, 10 and 12. The concentration of 

calcium ions in the presence of cells was significantly higher than cell free cultures at Days 3 

and 9. Using linear regression analysis, Ca ion release could account for 35.9% of any 

subsequent change in resorption area. The results suggest that Ca ion release is suitable to 

measure resorption of a TCP ceramic substrate in vitro. This model could replace the more 

accepted resorption pit assay in circumstances where quantification of pits is not possible 

e.g. when characterising 3D tissue engineered bone scaffolds. 

 

Key words: Calcium phosphate, porous, osteoclasts, resorption, outcome measures 
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1. Introduction 

In cases of significant trauma, damage to bone may be too extensive for natural remodelling 

to occur and surgery is the most likely treatment option, often in conjunction with a bone 

graft to stimulate healing [1]. Bone grafting using autologous or allograft bone is the ‘gold 

standard’ but there are associated limitations; a second surgical procedure with related 

donor-site morbidity, concerns of immunogenicity and demand outweighing supply [2-4]. This 

has led to a demand for synthetic bone grafts but to date commercially available synthetic 

grafts have been unable to match the clinical results seen with autograft [2, 5].   

 

Ideally synthetic bone grafts should be biocompatible, integrate with the bone resorption 

process and aid new bone ingrowth whilst retaining sufficient mechanical strength.  

Resorbable materials that can utilise the bone’s natural remodelling process to degrade, 

releasing non-toxic by-products that can be easily metabolised by the body, are very 

attractive for use as bone graft substitutes.  However, some alleged resorbable bone graft 

substitutes have been detected years after in vivo implantation [6, 7].  Innovation of porous 

scaffolds with an interconnected pore structure has allowed for increased bone ingrowth [8-11] 

and subsequent increased rate of resorption in vivo [12-15].     

 

The introduction of porosity has caused a new challenge for researchers when measuring 

bioresorption of new materials, rendering the traditional in vitro methods insufficient. The 

traditional methods used to assess resorbability of bone substitutes in vitro are OC formation 

indicated by tartrate-resistant acid phosphatase (TRAP) expression and a cell-based 

resorption assay, alternatively known as a ‘pit’ assay, developed by Boyde [16] and 

Chambers [17].  Initially developed as an assay to investigate OC biology using dentine or 

bone as a substrate, it is now routinely used to understand biomaterial resorption.  OCs are 

cultured on biomaterial surfaces for specific periods and then detached, at which point the 

excavated areas (pits) beneath the cells can be analysed by scanning electron microscopy 
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(SEM) in terms of pit number, pit area or pit volume.  The simplest method is to determine 

the number of pits, which can be quantified using reflected light microscopy (RLM), where 

staining is not required [18] or by light microscopy (LM) using simple staining techniques [19].  

Pit area can be quantified using image analysis software applied to SEM or LM.  Ideally, pit 

volume would be the best method when quantifying resorption as both pit area and depth 

can be calculated, however, the required equipment is expensive and specialised [20-23].  All 

of these methods are time consuming, labour intensive and, crucially, do not easily translate 

to quantification of resorption on porous materials where visualisation of internal structures is 

difficult.  Thus, there is an imperative for an appropriate measure of resorption that can be 

adopted for both porous and dense calcium phosphate ceramics.   

 

Other methods used to indicate OC resorption are based on their activity, generally 

assessed using biochemical markers such as the OC enzyme, TRAP, which although not 

uniquely expressed by osteoclasts is an often used marker [24, 25].  TRAP activity is 

commonly measured using either a colorimetric method [26, 27] or by using an enzyme-linked 

immunosorbent assay (ELISA) which uses TRAP specific antigen-antibody reactions to 

measure TRAP activity [28, 29].  Another commonly used in vitro biochemical assay is a 

colorimetric calcium assay [24, 30], however, there has been no systematic attempt to identify 

an outcome measure of OC resorption that directly correlates with pit measurements and is 

transferrable through a broad range of in vitro experiments.  

 

The aim of this study was to establish the suitability of several outcome measures as 

possible indicators of OC resorption in vitro in order to identify a surrogate endpoint which 

could replace pit area.  To accurately correlate pit area with alternative outcome measures, 

the assay was performed on dense beta-tricalcium phosphate (β-TCP) [31], which allowed pit 

formation and area to be analysed on a substrate free from microscopic imperfections. 
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2. Materials and methods 

 

2.1 Material Preparation  

TCP powder was prepared by an aqueous precipitation technique using a diammonium 

phosphate solution (NH4)2HPO4 (Carlo Erba, France) and a calcium nitrate solution 

Ca(NO3)2.4H2O (Brenntag, France). The solution pH was adjusted to a constant value of 6.5 

by continuous addition of ammonium hydroxide.  Temperature was maintained at 30°C and 

the solution was matured for 24 h. After maturation, the solution was filtered and the 

precipitate dried at 80°C. The precipitate was then calcined at 750°C and the powder was 

subsequently ground to break up any agglomerates formed during calcination.  The grinding 

step was conducted by ball milling in a high density polyethylene milling jar and Y-PSZ 

grinding media for 3 h [31].  

 

TCP samples were prepared by a slip casting method. TCP powder (65 wt.%) was 

suspended in deionised water (dH20) to form a slurry. To enhance slip stability, a 

commercial organic defloculant (Darvan C, R.t.Vanderbilt. Co. Inc. USA) was introduced (1.5 

wt.% of TCP content).  After ball milling for 1 h, the slip was poured into a plaster mould 

(diameter 3.8 mm x 30 mm), dried and sintered (1100 oC for 3 h) with a heating rate of 5 

°C/min.  Density of the sintered samples, determined by Archimedes’ method was >99% [31].  

Final cylindrical samples were cut into 3 mm thick discs using a diamond saw (Struers 

Accutom-50, Struers UK).  Each disc was mounted in acrylic resin (Varidur 3000, Buehler, 

UK) and ground (Buehler Alpha Grinder-Polisher) on one side using silicon carbide papers of 

decreasing grade (P400, P1200, P2500, P4000) followed by a final polish using a 0.05µm 

alumina and silicon oxide suspension (Buehler).  Polished discs were removed from the 

acrylic resin using a 48 h soak in chloroform, then washed with 70% isopropyl alcohol 

(Sigma Aldrich, UK) and sterilised by autoclaving at 121oC for 30 min in an alkaline 
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atmosphere. This provided smooth discs with <1% porosity to ensure accurate 

measurements of resorption pit area.  

 

2.2 Cell culture of RAW 264.7 cells 

RAW 264.7 cells (ATCC, UK) were routinely cultured under standard conditions (370C, 5% 

CO2/95% air) in α-MEM medium supplemented with  foetal bovine serum (FBS) (10% v/v), 

penicillin/streptomycin (1% v/v) and  L-glutamine (4mM) (all reagents from Invitrogen, UK). 

At day 0, cells were seeded onto the polished side of -TCP discs at a density of 2.5 x104 

cells/cm2. To initiate differentiation, Receptor Activator of Nuclear Factor κB Ligand (RANKL, 

PeproTech EC, UK) was filter sterilised (0.2 µm filter) and added to complete culture 

medium (20 ng/mL).  Culture medium with RANKL was replaced every 3 days. Hydrochloric 

acid (HCL) (15 mM) (Sigma Aldrich) was added to cultures on days 3, 6 and 9 (including cell 

free controls) to increase acidification and promote osteoclastogenesis [32].  Cultures were 

maintained for 12 days. A total of six samples were used per time point for all conditions. 

Time points were chosen based on our own preliminary studies of the life cycle of RAW 

264.7-derived OCs. 

 

2.3 OC identification 

At day 6, 8, 10 and 12, cultures were fixed in paraformaldehyde (3.7% w/v) in phosphate 

buffered saline (PBS) for 10 min, washed in PBS and permeabilised in  Triton X-100 (1% 

v/v) in PBS for 20 min, rinsed again and stained for 20 min with AlexaFluor 488 Phalloidin 

(Invitrogen) to label cytoskeletal F-actin.  Cultures were then washed with PBS and 

incubated at 37oC for 5 min with DAPI dilactate (Invitrogen), a nucleic acid counterstain, 

rinsed again in PBS and air dried.  Cultures were imaged under fluorescence microscopy 

(Leitz-Laborlux D) at x16 magnification.  The surface area (SA) analysed per field of view 

was 1 mm2.  Based on four fields (SA 4 mm2), 35% of a 3.8 mm disc (SA 11.34 mm2) was 

analysed.  Actin rings were counted and expressed as mean of all fields.  Multiple actin rings 
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within an OC were counted individually: an OC was defined as having three or more nuclei 

(Figure 1 a-b). 

 

OC formation was determined using a TRAP staining kit (Sigma-Aldrich).  On day 6, 8, 10 

and 12, cultures were fixed in citrate/acetone solution for 30 s, washed in dH20 and air dried 

for 15 min.  Cultures were then covered in a solution containing napthol AS-BI phosphoric 

acid and fast garnet GBC salt and incubated for 1 h at 37oC in the dark.  Cultures were 

rinsed with dH2O for 3 min and allowed to air dry before viewing under LM (Leitz-Laborlux D) 

at x16 magnification.  The method for counting mean number of TRAP positive cells was 

similar to the actin ring count and required the presence of three or more nuclei (Figure 1 c-

d).  Using four fields of view, 35% of the total SA of a 3.8 mm disc was analysed. 

 

2.4 OC activity 

OC TRAP enzyme activity was measured by the conversion of p-nitrophenyl phosphate (p-

NPP) to p-nitrophenol (p-NP) in the presence of sodium tartrate.  On days 6, 8, 10 and 12, a 

separate set of cells were lysed with 100 µL lysis buffer (1M NaCl and 0.1% Triton-X 100) 

and subjected to a freeze-thaw cycle.  Cell lysate (50 µL) was then transferred to an assay 

plate in duplicate.  p-NPP (50 µL of 10 mM) in buffer solution (40 mM sodium tartrate 

dehydrate, 50 mM Acetic acid 100%, brought to pH 4.8 with sodium hydroxide (NaOH)) was 

added to the cell lysate and incubated at room temperature for 45 min.  The reaction was 

stopped with 50 µL NaOH (0.2 M) (all reagents were from Sigma Aldrich).  Optical 

absorbance was read at 405 nm on a microplate reader (Genios, Tecan, Austria) and TRAP 

activity was quantified against a standard curve.   

 

Culture medium during media changes on days 3, 6, 9 and 12, were retained and diluted 

with dH2O to a final volume of 10 mL. Elemental concentrations of Ca and P ions were 
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quantified using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (Perkin Elmer 

Optical Emission Spectrometer, Optima 4300 DV).  

 

2.5 Resorption Assay 

Assessment of resorption pits was visualised by SEM at day 6, 8, 10 and 12.  To prepare 

samples for sputter coating, they were transferred into a 24-well plate containing 1ml 

isopropanol (70%) (Sigma Aldrich) per well and sonicated for 5 minutes.  Samples were then 

cleaned one at a time in a petri-dish containing isopropanol (70%).  A small brush was used 

to remove the cells.  Samples were air dried then sputter coated with gold using a Polaron 

E5150 sputter coater and viewed on a JEOL 6500F SEM (JEOL Ltd., Japan) at 15kV. 

 

Resorption pit area measurements were performed using Image J v1.45 software (National 

Institute of Health) [33].  A threshold function was used to convert the SEM image into binary 

mode followed by a particle analysis function to quantify the percentage area resorbed by 

the RAW 264.7 OC cells.  At x100 magnification (SA 1.13mm2/field of view), 30% of a 3.8 

mm disc was analysed.  The percentage area resorbed was expressed as mean of the fields 

(3 fields/sample, n=6).   

 

2.6 Statistics 

Statistical Analysis for all outcome measures was conducted using IBM SPSS v.22 software 

(IBM, UK).  Differences between treatment groups were assessed using one-way analysis of 

variance (ANOVA) with a post-hoc, Bonferroni test. Relationships between each outcome 

measure were investigated using a Pearson’s correlation test.  A p-value of less than 0.05 

was considered statistically significant. A total of six samples were used per time point for all 

conditions. Finally, linear regression analysis was used to investigate if the outcome 

measures were predictive of resorption area and by how much. Using the candidate 
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outcome measures with the strongest correlations to resorption pit area first, a regression 

model was built with forced entry of each independent variable. 

 

 

3. Results 

Successful OC formation from RAW 264.7 monocytes was confirmed by multinuclearlity,  

TRAP expression and actin ring formation (Figure 1). TRAP positive OC were visible from 

Day 6, increased in number by Day 10 and decreased at Day 12 (Figure 2a). The largest 

change in OC number was from Day 8 to Day 10 increasing by 87% (15 OC to 28 OC 

respectively), followed by a 40% decrease from Day 10 to Day 12. 

 

Actin ring formation did not follow the same trends observed with TRAP positive OC count 

and large standard deviations were observed for all time points (Figure 2a).  Fluorescence 

microscopy indicated that the size and shape of actin rings formed changed with time (data 

not shown).  At Day 6 actin rings were smaller than Day 10 or 12. With various sizes visible 

at Day 8.  This could be due to multiple smaller actin rings being formed by sections of the 

OC membrane upon first attachment to the substrate, which then merge as the OC either 

increases in size or forms a sealing zone to begin resorption. To compensate for this, the 

number of actin rings was analysed as a ratio of OC number. When adjusted, actin ring:OC 

ratio showed a decreasing trend with time (Figure 2b) with the greatest number of actin rings 

per OC at Day 6.   

 

TRAP expression, actin ring formation and multinuclearity confirmed the presence of OCs: 

functionality of the cells was determined by measuring TRAP activity. TRAP activity 

increased from Day 6 to Day 10 and decreased at Day 12 (Figure 3a) supporting the trends 

observed for TRAP expression described previously. Cultures of cells without the addition of 

RANKL expressed similar levels of TRAP activity to cells/+RANKL at Days 4 and 12 
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indicating that RAW 264.7 monocytes produce a basal level of TRAP enzyme regardless of 

RANKL stimulation.  

 

For efficient OC formation and activity, an acidic environment is required [32] and this in itself 

could contribute to resorption of the ceramic substrate therefore pH values were monitored 

throughout. After addition of 15mM HCL to cultures at Day 3, a marked difference in pH can 

be observed between cell cultures and cell free cultures (Figure 3b).  Cell free culture 

medium decreased from an alkaline state on Day 3 to near neutral at pH 7.44 on Day 12.  

Cells +RANKL and cells –RANKL culture medium decreased more rapidly from Day 3 to Day 

6 with smaller changes at Day 9 and an increase at Day 12 when OC activity is reduced. In 

these groups at Day 8, pH dipped to 6.9 which is reportedly optimal for OC activity [32]. 

Cultures containing cells +RANKL produced the lowest pH values at four of the eight time 

points measured perhaps indicating that the presence of OC and/or resorption also 

contributes to pH change.   

 

Mineral ion release into culture medium was time dependent and reflects the trends 

observed with TRAP activity and OC number however, basal Ca ion concentration in culture 

medium was approximately 72 mg/L and all conditions produced lower Ca concentrations 

(Figure 4a) indicating that the substrate had apatite formation on its surface. This apatite is 

likely to be calcium-deficient hydroxyapatite (CDHA) and could be contributing to the 

reduction in pH at the early time points. Ca ion concentrations, even in cell free conditions, 

increased from Days 3 to 9 and decreased at Day 12 (Figure 4a), however the concentration 

of Ca ions in cultures with cells was higher than cell free cultures at all time points except 

Day 6 and this was statistically significant at Days 3 and 9 (p<0.001).  These results suggest 

that there was some dissolution of the ceramic that was increased in the presence of cells 

due to active resorption. 
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P ion concentration showed little change from Days 3 to 9 before decreasing at Day 12 

(Figure 4a). Basal P ion concentration in culture medium was approximately 31 mg/L and 

levels similar to this were found at Days 3, 6 and 9. Statistically significant increases were 

observed for culture medium with cells compared to culture medium without cells at Days 9 

and 12 (p<0.01).  

 

Light coloured areas on SEM micrographs represent resorption pits (Figure 4). Resorption 

pits were circular or lobe-shaped and first observed at Day 6 with much larger pits visible at 

Days 8, 10 and 12. In the absence of RANKL stimulation multinucleated cells were absent 

and no pits were visible even at day 12 (Figure 5 a-d). Higher magnification SEM 

micrographs (not shown) suggest that resorption pits may be deeper with time, as the grains 

of the underlying ceramic become more visible. Quantification of the resorption pit area 

showed that there was a significant increase at Day 8 (Figure 4d).  At x100 magnification, 

30% of the total surface of the β-TCP sample was analysed. Maximum surface resorption 

recorded was ~20%. There was no significant difference in percentage area resorbed 

between Days 8 and 12 and standard deviation was large within each time point. This, taken 

with the SEM analysis, suggests that perhaps OC are excavating deeper with time and not 

forming new pits.  

 

Statistical analysis showed that all outcome measures were significantly affected by time.  

Following log transformation of pit area to normalise the data, a Pearson’s correlation 

analysis was performed to determine the relationships between all outcome measures 

(Table 1). Most outcome measures showed some degree of correlation with all others with 

the exception of pit area. The strongest and most significant of these were those of TRAP 

activity correlated with TRAP positive OC count (r = 0.670**) and OC count correlated with 

Ca ion concentration (r = 0.708**).  Interestingly, Ca ion concentration correlated negatively 
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with pH (r = -0.740**). Importantly, log pit area had a moderate correlation with TRAP 

activity, OC count and Ca ion concentration (r = 0.447*, 0.450* and 0.599 respectively).   

 

Using linear regression analysis, the ability of the three candidate outcome measures to 

predict a change in resorption pit area was assessed in isolation and then a model was built 

adding the candidate outcome measures stepwise in order of increasing strength of 

correlation to resorption pit area i.e. Ca ion release, followed by addition of TRAP activity, 

and then addition of pH (Table 2).  The R-squared value indicates how much of the change 

in resorption area is accounted for by the model therefore a change in Ca ion release would 

account for 35.9% of any subsequent change in resorption area, compared to 21.9% for 

TRAP activity and 4.5% for pH. When Ca ion release and TRAP activity are included 

together, this value increased to 44.8%. Including pH to model as a third predictor only 

marginally increased this value to 45.5%. For the model to have any meaning the F statistic 

should be greater than 1 further indicating that the addition of the third variable has limited 

value. The caveat to this is that the F statistic was not statistically significant for any model 

however the p value was 0.051 for Ca ion release and given that the resorption area showed 

such variability, the results could still be indicative of a predictive ability.  

 

 

4. Discussion 

Predicting the in vivo resorbability of a calcium phosphate (CaP) based biomaterial is 

difficult. The propensity of the material to dissolve in cell-free tests at physiologically relevant 

pH values is not always indicative of its resorbability in the body, particularly with modern 

materials which can be doped with bioactives designed to directly affect OC behaviour [34]. 

Therefore, in vitro cell based assays remain an important tool for testing novel CaP based 

biomaterials. The aim of this study was to identify a quantifiable outcome measure of OC 

resorption that directly correlates with OC pit measurements and is transferrable through a 
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broad range of in vitro experiments, in particular for use with 3D CaP scaffolds.  The 

outcome measures investigated were Ca and P mineral release into cell culture medium, 

TRAP activity and pH.  In order to accurately correlate pit area with the alternative outcome 

measures, the assay was performed using dense β-TCP as even minimally porous materials 

were previously found to give inaccurate results.   

 

All measured outcomes varied significantly with time and reflected the natural cycle of OCs 

in culture as they were formed from monocyte precursors, increased in activity and then 

became exhausted and apoptosed  [35]. OC formation was established by the expression of 

TRAP enzyme in multi-nucleated cells (>3 nuclei) and the formation of actin rings, however, 

OC formation is not a guarantee of substrate resorption and indeed, mononuclear cells are 

also able to resorb substrates [32], so several measures of activity were also included. The 

first of these was activity of the TRAP enzyme. Although TRAP is not uniquely expressed by 

these cells, active OCs have been shown to express higher levels of TRAP activity 

compared to inactive OCs [36]. Reassuringly, the number of OCs formed did correlate with 

activity of the TRAP enzyme but RAW 264.7 cells without the addition of RANKL displayed 

similar TRAP activity to cells with RANKL at Days 4 and 12, and this basal level of activity 

must be accounted for when using TRAP activity as an indication of OC function. The basal 

level of TRAP activity of RAW 264.7 cells in the absence of RANKL is difficult to establish 

and has been reported in the literature as 10% of +RANKL levels at day 3 [37], 20% at day 5 

[38] and 50% at day 6 [39] but this will depend greatly on the experimental conditions used in 

each experiment. Given the high levels in the current study, it may be that the TCP itself is 

contributing to basal expression of this enzyme making it imperative that baseline level 

controls are included in every experiment. From Day 6 however, there was a time dependent 

increase in TRAP activity in the presence of RANKL and the difference between that and the 

basal activity was significant, so it is possible to detect active OCs using this outcome 

measure.  
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When an OC is polarised on a substrate surface a sealing zone forms containing a dense 

ring of actin. The presence of the actin ring is indicative of the resorptive phase of the OC [40, 

41] therefore this could be a further potential measure of OC resorption on 2D substrates in 

vitro. However, actin ring formation did not follow the same trends observed with TRAP 

positive OC count and TRAP activity results. One may expect to see an increase in actin ring 

formation with an increase in OC number but this was not the case. Observations from 

fluorescence microscopy indicated that the size and shape of actin rings changed with time, 

generally increasing in size. This resulted in a decreasing ratio of actin rings to TRAP 

positive OC. Although the number of actin rings did correlate with TRAP activity, this was 

only of moderate strength and the variation in this outcome measure suggests that it would 

not be suitable for use for in vitro biomaterial testing. 

 

The pH required for optimal OC formation is pH 7.35-7.4 [42] and for resorption activity pH 

6.95 [32]. Previous experimental work investigating the effects of 15 mM HCL addition to 

culture medium in the absence of cells recorded pH 7.52 after 8 days in culture (results not 

shown). It was hypothesised that the metabolic activity of cells, acidic in nature, would 

further reduce culture medium pH. Certainly OC exhibit a change in pH when they are in 

their active state although this change is within a localised region beneath the cell delineated 

by the sealing zone and ruffled border [43-45]. Addition of OC to acidified culture medium did 

indeed further reduce the pH and coincided with an increase in TRAP activity (from Day 5), 

OC number (from Day 6) and resorption (from Day 8). Furthermore, a reduction in pH was 

correlated to an increase in OC number (r = 0.420) and an increase in Ca ion concentration 

in the medium (r = 0.740) which might suggest that this could be used as part of a suite of 

measures to indicate resorption, albeit perhaps an imprecise one. Cell-free conditions 

showed that the ceramic alone was associated with a reduction in pH with time and this 

could be due to CDHA formation on the ceramic surface. Although the presence of CDHA 
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was not confirmed, the phase of CaP that precipitates is determined by the pH of the 

environment: in the range of 2 < pH <4 dicalcium phosphate (DCPD) will be the preferred 

phase, 5 < pH < 7 this will be octocalcium phosphate (OCP) and at higher pH values (7 to 9) 

calcium deficient hydroxyapatite (CDHA will precipitate) [46-48]. 

 

Mineral ion release into culture medium was assessed as a potential indicator of OC 

resorption based on the mechanism of OC-mediated resorption of CaP ceramics [49, 50].  

When an OC attaches to CaP, it secretes HCL [44, 45] and enzymes [51-53] to digest the 

inorganic and organic phases forming a resorption pit under the actively resorbing OC.  The 

Ca and P ions released from the inorganic phase are taken up by the OC, processed and 

released into the extracellular environment.  As the inorganic mineral dissolves, the Ca2+ 

concentration within the microenvironment can increase from 8- 40 mmol/L (320–1600 mg/L) 

[45].  This local increase in Ca2+ concentration increases intracellular Ca, promoting margin 

retraction and OC cell de-adhesion [54], ceasing resorption.  After detachment of OC from the 

CaP, the accumulated by-products of resorption are released into the extracellular 

environment. With that, as OC number and activity increases one would expect mineral ion 

release into culture medium to increase. There was a reduction in Ca ion levels below basal 

level in the culture medium at Day 3 and 6 in both cell and cell-free conditions that could 

suggest the formation of CDHA on the -TCP surface. Similar reductions in Ca levels in vitro 

have been reported by others [55, 56]. Ca ion levels did not return to basal levels during the 

experiment however, they did increase with time and were higher in the cell conditions 

compared to cell-free at Day 9, indicating that in addition to dissolution of the ceramic, there 

was also active resorption. Furthermore, Ca ion release into culture medium reflected the 

trends observed with TRAP activity and OC number, correlating well with both, and to 

changes in pH.   
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P ion release was also not present in greater amounts in medium from cultures with cells 

compared to without cells until Day 9 and remained at basal levels during this period. At Day 

12 there was a reduction in P levels. The mechanism of this loss of P is not clear, especially 

given that the Ca and P loss in the medium is not stoichiometric, but others have reported 

similar findings in the presence of bioactive glasses [57, 58]. It is likely that this loss of P is 

responsible for the surprising finding that P ion concentration was negatively correlated with 

TRAP activity and resorption pit area. 

 

Each of the outcome measures above are considered as adjuncts to the “gold standard” 

assay of resorptive capability- the resorption pit assay, and it is to this that other results must 

be compared. The results showed that the percentage area resorbed significantly increased 

at Day 8 and the maximum β-TCP surface resorption was ~20%.  Although no significant 

difference in percentage area resorbed was found beyond Day 8 standard deviations were 

large and SEM analysis suggests the possibility that resorption pit depth increased with time 

that was not reflected in area measurements. Even given this variability, resorption pit area 

still showed a moderate correlation with TRAP activity (r = 0.447) and Ca ion release (r = 

0.599) count which provides some evidence for the use of these outcome measures as 

surrogate endpoints of resorption. This was confirmed by regression analysis which 

indicated that Ca ion release was the strongest predictor of the three variables considered 

and could account for more than a third of potential changes in resorption pit area. It was 

disappointing that this regression model did not quite reach significance but given the 

variability in resorption pit area measurements this was perhaps not surprising. Volumetric 

measurements of the resorption pits formed may have been preferable and perhaps would 

have proved more sensitive and more strongly correlated to other measures.  

 

There are a number of limitations to this study the most important one being the lack of 

volumetric measurements. Furthermore, the chemistry of calcium and phosphate dissolution, 
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precipitation and re-precipitation in a small volume static culture system is complex and 

increasing the bioavailability of ceramic in the substrate has been shown to favour osteoclast 

formation [59]. Therefore further research is needed to ascertain the reproducibility of these 

results with other CaP materials, however, the need to answer these questions is clear given 

our current limited ability to measure resorption of 3D scaffolds reliably in vitro. It may also 

be a consideration that a cell line was used in this study to generate osteoclasts. Our own 

unpublished pilot experiments suggested that the pattern of results for both the cell line and 

a primary source of osteoclast precursor cells were similar but that higher numbers of 

osteoclasts were produced earlier with the cell line. This, and the problems of reproducibility 

related to inter-donor variability for primary cells, led us to choose the cell line for these 

experiments.  Future development of this model will now require the comparison of 

resorption profiles for TCP porous structures with those predicted by 2D results but it will be 

crucial to consider the effect of geometry on osteoclastogenesis. The effects of pore size 

and pore characteristics on osteoblasts and osteoprogenitor cells are well established[60] but 

the effects on osteoclasts are less well known. 

 

5. Conclusion 

The results of this study would suggest that Ca ion release is suitable to measure resorption 

of TCP in vitro and this could be strengthened by the addition of TRAP activity. Caution 

must be taken however, to control for basal levels of TRAP activity in monocytic cells and to 

ensure that results are taken during the peak of OC activity in the formation- activity-

apoptosis cycle of this in vitro assay. If both outcome measures are in accord, this should 

provide robust evidence that could replace the more accepted resorption pit assay in 

circumstances where quantification of pits is not possible, for example when determining 

resorbability of 3D scaffolds in vitro.  
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Figure Legends 

Figure 1. Multinucleated cells in cultures stimulated with RANKL at day 12 showing nuclei 

counterstained with DAPI (a and c), actin ring formation (b) and expression of TRAP enzyme 

(d). Key: blue: nuclei, green: actin ring, red: TRAP. 

Figure 2: (a) number of actin rings and TRAP positive OC formed, (b) ratio of actin rings to 

TRAP positive OC per high power field. Mean +/- SD. 

Figure 3: (a) TRAP activity of RAW 264.7 cells on β-TCP up to 12 days and (b) pH of culture 

medium with and without RAW 264.7 cells and RANKL. Mean +/- SD 

 

Figure 4: (a) Ca and P ion concentration in cell culture medium and (b) percentage surface 

area resorbed by RAW 264.7 OC up to 12 days. Mean +/- SD. Basal Ca ion concentration in 

culture medium is 72mg/L (           ). Basal P ion concentration in culture medium is 31mg/L  

(           )    ** p<0.01, ***p<0.001 

 

Figure 5: SEM micrographs of β-TCP resorption by RAW 264.7 OC. Left column with cells, 

right column following cell removal. (a-d) without RANKL stimulation, (e-l) + RANKL.   
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Table 1: Correlation statistics between all outcome measures  Top figure in each cell 

represents the Pearson correlation factor (r) showing the strength of correlation and bottom 

figure indicates significance of the results (p-value).  TRAP = TRAP activity, AR = Actin ring 

count, OC = TRAP+ve OC count, Ca = Ca ion concentration, P = P ion concentration, 

AR:OC = Ratio of actin ring to TRAP+ve OC, logArea = log of the percentage area resorbed. 

**Correlation is significant at the 0.01 level, * Correlation is significant at the 0.05 level. 

 

 TRAP pH AR OC Ca P AR:OC logArea 

TRAP  -0.225 

0.137 

0.381** 

0.01 

0.670** 

<0.001 

0.572* 

0.013 

-0.775 

<0.001 

-0.374 

0.079 

0.447* 

0.037 

pH -0.225 

0.137 

 -0.359* 

0.015 

-0.42** 

0.003 

-0.74** 

<0.001 

0.385** 

<0.001 

-0.047 

0.83 

-0.212 

0.344 

AR 0.381** 

0.01 

-0.359* 

0.015 

 0.553** 

<0..001 

0.084 

0.74 

0.155 

0.54 

0.625** 

<0..001 

-0.232 

0.3 

OC 0.670** 

<0.001 

-0.42** 

0.003 

0.553** 

<0.001 

 0.708** 

<0.001 

-0.313 

0.206 

-0.492* 

0.017 

0.45* 

0.036 

Ca 0.572* 

0.013 

-0.74** 

<0.001 

0.084 

0.74 

0.708** 

<0.001 

 -0.207 

0.081 

-0.565 

0.07 

0.599 

0.510 

P -0.775** 

<0.001 

0.385** 

<0.001 

0.155 

0.54 

-0.313 

0.206 

-0.207 

0.081 

 0.577 

0.063 

-0.783** 

0.004 

AR:OC -0.374 

0.079 

-0.047 

0.83 

0.625** 

<0.001 

-0.492* 

0.017 

-0.565 

0.07 

0.577 

0.063 

 -0.439* 

0.046 

logArea 0.447* 

0.037 

-0.212 

0.344 

-0.232 

0.3 

0.45* 

0.036 

0.599 

0.510 

-0.783** 

0.004 

-0.439* 

0.046 
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Table 2: Hierarchical regression analysis  

 

Model Elements in order of addition R R2 F change Significance 

Ca release 0.599 0.359 5.038 0.051 

TRAP activity 0.468 0.219 2.523 0.147 

pH 0.212 0.045 0.938 0.344 

Ca release + TRAP activity 0.669 0.448 1.287 0.29 

Ca release + TRAP activity + pH 0.675 0.455 0.093 0.769 

 
(a) 

(c) 

(b) 

100 M 100 M 100 M 
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(a) 

(c) 

(b) 

(d) 

*** 

*** 

** 

(a) 

(b) 


