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Determining stationary-state quantum properties directly from system-environment interactions

F. Nicacio,1, ∗ M. Paternostro,2 and A. Ferraro2

1Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, 21941-972, RJ, Brazil
2School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, UK

Considering stationary states of continuous-variable systems undergoing an open dynamics, we unveil the con-
nection between properties and symmetries of the latter and the dynamical parameters. In particular, we explore
the relation between the Lyapunov equation for dynamical systems and the steady-state solutions of a time-
independent Lindblad master equation for bosonic modes. Exploiting bona-fide relations that characterize some
genuine quantum properties (entanglement, classicality, and steerability), we obtain conditions on the dynam-
ical parameters for which the system is driven to a steady-state possessing such properties. We also develop
a method to capture the symmetries of a steady-state based on symmetries of the Lyapunov equation. All the
results and examples can be useful for steady-state engineering processes.

The manipulation of the environment affecting the dynam-
ics of a quantum system, with the aim of driving the latter
towards a specific state, embodies a valuable tool for quan-
tum state engineering. Depending on assumptions about the
couplings, the open dynamics can lead to either an equilib-
rium state or to a dynamical steady-state. On the other hand,
in this scenario, it is critical to ensure that the desired state
is achieved regardless the fluctuations in the initial state of the
system. Protocols of this sort are known as reservoir engineer-
ing, stabilization, and design [1–4].

A standard approach to the modeling of the evolution of an
open system is the Lindblad master equation (LME) for the
density operator ρ̂ [4–6]:

dρ̂

dt
= − i

~
[Ĥ, ρ̂]− 1

2~

M∑
m=1

({L̂†mL̂m, ρ̂} − 2L̂mρ̂L̂
†
m), (1)

which, besides the unitary dynamics ruled by the Hamiltonian
operator Ĥ , accounts for a nonunitary dynamics as resulting
from the weak coupling (via the operators L̂k) to uncontrol-
lable environmental degrees of freedom. The LME is the most
general type of Markovian and time-homogeneous master
equation guaranteeing trace preservation and complete posi-
tivity. Despite the fundamental and very restrictive Marko-
vianity assumption, the LME is crucial for the description of
an ample set of dynamics in quantum optics and information,
mesoscopic physics, and quantum chemistry [4, 6, 7].

In this work we investigate properties and symmetries of
continuous-variable states driven to equilibrium by a linear
evolution governed by the time-independent Lindblad dynam-
ics. Gaussian states, which play a preponderant role in quan-
tum information science and are the natural candidates for
the implementation of quantum computation with continuous
variables [8], belong to such set of states.

From the mathematical point of view, the problem of
whether a linear LME has a stable steady-state is equivalent to
the solution of a Lyapunov equation for the covariance matrix
of the quantum state. The methodology used to solve Lya-
punov equations, known as Lyapunov stability theory [9], was
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developed in Ref. [10] in the context of dynamical systems.
This formalism was explored in Ref. [11] to determine condi-
tions for a state to be pure in the stationary regime.

In our work, we make use of the connection between the
LME and the Lyapunov theory to determine several proper-
ties of continuous-variables steady-states, such as classical-
ity [12], separability [13] (or bound entanglement [14]), and
steerability [15]. Further, we also explore the steady-state
symmetries induced by the dynamical symmetries of the Lya-
punov equation. This is particularly interesting, because it is
in general hard to characterize the symmetries of the states
working directly on the LME (1). This task becomes instead
fully manageable when dealing with finite matrices. Our re-
sults are applicable to systems with a generic number of de-
grees of freedom and their analyticity brings in turn robustness
for numerical examinations of the mentioned properties.

The remaining of this paper is organized as follows: In
Sec.I, we set the notation and describe the linear dynamics,
discussing the connection between the LME and the Lya-
punov theory. The mathematical results concerning the Lya-
punov equation are developed in Sec.II, which will be exten-
sively applied to find general properties of stationary solutions
in Sec.III. Symmetries of the system are analyzed in Sec.IV,
while examples are given in Sec.V. A method for engineer-
ing steady-states is presented in Sec.VI. Section VII presents
our conclusions, while in the Appendixes we further discuss
some technical aspects of the mathematical approach, includ-
ing a brief summary of the notation.

I. LINEAR DYNAMICS AND STATIONARY CONDITIONS

For a system of n continuous degrees of freedom (DF),
the generalized coordinates together with the canonical con-
jugated momenta are collected in a 2n column vector:

x̂ := (q̂1, ..., q̂n, p̂1, ...p̂n)†. (2)

In this notation, the canonical commutation relation (CCR) is
written compactly as [x̂j , x̂k] = i~ Jjk with Jjk given by the
elements of the symplectic matrix

J :=

(
0n In
−In 0n

)
. (3)
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We consider the evolution of a quantum state governed by
the LME with a quadratic Hamiltonian and linear Lindblad
operators, viz.,

Ĥ =
1

2
x̂ ·Hx̂+ ξ · Jx̂+H0,

L̂m = λm · Jx̂+ µm,

(4)

where ξ ∈ R2n and λm ∈ C2n are column vectors; H0 ∈ R
and µm ∈ C are constants and m = 1, ...,M . The Hes-
sian of the Hamiltonian is symmetric by definition: H =
H> ∈ Mat(2n,R). Under such conditions, the evolution
of the mean value vector 〈x̂〉t := Tr [x̂ρ̂(t)] ∈ R2n can be
retrieved from (1) by using only the CCR [4, 16]:

d〈x̂〉t
dt

= ξ − η + Γ〈x̂〉t, (5)

where we have introduced η :=
∑M
m=1 Im(µ∗m λm) ∈ C2n,

Γ := JH− ImΥJ ∈ Mat(2n,R), (6)

and

Υ :=

M∑
m=1

λmλ
†
m ∈ Mat(2n,C). (7)

The natural question that arises at this point is whether a
solution of (5) attains a finite asymptotic value when t →∞.
The answer is provided in the context of the Lyapunov stabil-
ity theory [9]. All solutions will be driven to an asymptotic
point, if the matrix Γ is asymptotically stable (AS), i.e., if its
spectrum has negative real part.

Interestingly enough, from the Lindblad dynamics (1) with
the operators in Eq.(4), a Lyapunov equation (LE) emerges
naturally for the stationary value of the covariance matrix
(CM) of the system, as we shall see. Defining the CM of the
state ρ̂ as V = V> ∈ Mat(2n,R) with elements [17]

Vjk = 1
~Tr [{x̂j − 〈x̂j〉t, x̂k − 〈x̂k〉t} ρ̂(t)] , (8)

and calculating its evolution [4, 16], the (possible) stationary
value of the CM will be the solution of the LE

VΓ> + ΓV + D = 0, (9)

with Γ in (6) and

D := 2 ReΥ = D> ∈ Mat(2n,R), (10)

which is positive semidefinite, D ≥ 0, by the definition of Υ.
The Lyapunov theorem and its extensions [9, 10, 18] guaran-
tee that for an AS matrix Γ, the solution of Eq.(9) exists and is
unique. Furthermore, those theorems also relate the stability
nature of the matrix Γ to the existence of matrices (in our case
V and D) satisfying the LE (9).

We stress that, in order to deduce Eqs.(5) and (9), we do not
need any assumptions about the initial state of the system. The
derivation of such equations only uses the LME, the particular
structure of Eqs. (4), and the CCR. Meanwhile, the LME with
the operators (4) will always preserve the Gaussian character
of an initial Gaussian state [16]. Once the CM of a steady-
state of the system is a solution of (9), which is unique and
does not depend on the initial state, any initial state will end
in a Gaussian steady-state.

II. LYAPUNOV EQUATIONS

In this section we show and develop results concerning the
generic Lyapunov equation

A P + PA† + Q = 0, (11)

and its solution. Since our objective is to understand prop-
erties of stationary solutions of the LME, it is convenient to
assume that (i) A ∈ Mat(m,C) is AS, (ii) P = P† ∈
Mat(m,C) and (iii) Q = Q† ∈ Mat(m,C). From now on,
the LE (11) will be represented by the triple bP,A,Qe.

The first of those assumptions (A is AS) is enough to prove
[9, 18] that the unique solution for the LE in (11) is written as

P(Q,A) =

∫ ∞
0

dt eAt Q eA†t . (12)

Furthermore, for any A ∈ GL(m,C), it is true that

In
(

eAt Q eA†t
)

= In (Q) , (13)

because the expression inside the parenthesis on the LHS is
a congruence transformation of Q. The symbol “In” refers
to the inertia index of a matrix, as defined in Appendix I. On
the other hand, once A is AS, then limt→∞ eAt = 0, which
guarantees the convergence of the integral in (12). These last
arguments about the structure of Eq.(12) are used in the proof
of the following result [9, 18]:

Proposition 1. Consider the solution (12) for the LE in (11).
If Q ≥ 0 (resp. Q > 0), then P ≥ 0 (resp. P > 0) .

Note that Prop.1 does not exclude the statement Q ≥ 0 =⇒
P > 0, since the set of matrices P such that P > 0 is a subset
of P ≥ 0, cf. Appendix I. This is the case provided the pair
(Q,A) is observable [9, 18]. For our purposes, this statement
is not necessary, however it is for the results in [11].

Now, let us go a bit further with the results in Prop.1, spe-
cializing the properties of the AS matrix A:

Proposition 2. Consider the LE bP,A,Qe with A = A†,
then P ≥ 0 (resp. P > 0) if and only if Q ≥ 0 (resp. Q > 0).

Proof. Since A is self-adjoint and negative definite (AS), it
is possible to write A = −

√
−A
√
−A, where

√
−A is the

unique self-adjoint positive definite square root of −A. From
the LE (11),

SpecR(Q) = −SpecR (AP + PA) (14)
= −SpecR

[(
P + APA−1

)
A
]

= SpecR

[√
−A

(
P + APA−1

)√
−A

]
.

Since the sum of positive semidefinite (resp. positive definite)
matrices is positive semidefinite (resp. positive definite), and
since a congruence transformation does not change the signs
of the eigenvalues [or the inertia of the matrix], it follows that
Q ≥ 0 (resp. Q > 0) if P ≥ 0 (resp. P > 0), which proves
the necessary condition. The sufficiency is in Prop.1.
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Note that, once one statement in Prop.2 is Q > 0⇐⇒ P > 0,
then the statement Q ≥ 0⇐⇒ P ≥ 0 necessarily means that
if Q has one null eigenvalue, then P will also have, and vice-
versa.

In the direction of the main task of this work, we must de-
velop some results concerning matrices of the form P + Ξ,
where P is the solution in Eq.(12) of bP,A,Qe and Ξ =
Ξ† ∈ Mat(m,C).

Corollary 1. P + Ξ ≥ 0 if Q[Ξ] := Q−ΞA† −AΞ ≥ 0.

Proof. It is easy to see that the LE bP+Ξ,A,Q[Ξ]e is equiv-
alent to the LE in (11). Thus, the proof follows from Prop.1,
since Q[Ξ] = Q†[Ξ].

The converse statement of Corol.1 is not true in general. By
using the restriction for the matrices A, as in Prop.2, we ob-
tain the following corollary giving a necessary and sufficient
condition.

Corollary 2. Consider A = A† (A is AS), then P + Ξ ≥ 0

if and only if Q̃[Ξ] := Q−{{{Ξ,A}}}+ ≥ 0.

Proof. As before, we construct the equivalent Lyapunov equa-
tion bP+Ξ,A, Q̃[Ξ]e, and use Prop.2 since Q̃[Ξ] =Q̃†[Ξ].

Note that, contrary to Props. 1 and 2, we did not mention the
strictly positive cases (Q[Ξ]>0, Q̃[Ξ]>0) in Corols. 1 and 2.
Actually, these cases follow the same prescription, but they
are not necessary for our next results.

In what follows, properties of the steady states, driven to
equilibrium under the linear evolution generated by (4), will
be considered from the perspective of the results developed in
this section.

III. BONA-FIDE RELATIONS AND STEADY-STATES

Through the temporal evolution of a state by the LME con-
ditioned to an AS dynamics, the dependence on the initial
condition is progressively erased by the environmental action.
Therefore the steady-state properties must be completely de-
termined only by the environment. An usual way to describe
properties of continuous-variable states is given by bona-fide
relations involving the CM of the states. From now on, we
will assume that the CM of a quantum state evolves with Γ
AS and D ≥ 0 and attains an asymptotic value described by
the LE (9) with solution V := P(D,Γ) in Eq.(12).

It is convenient to recall the definitions of the auxiliary ma-
trices defined in Corols. 1 and 2, but now for the LE in ques-
tion. For any matrix Ξ = Ξ† ∈ Mat(2n,C), we have

D[Ξ] := D−Ξ Γ> − Γ Ξ, D̃[Ξ] := D−{{{Ξ,Γ}}}+. (15)

A. Uncertainty Principle

Any quantum state is subjected to constrains imposed by
the uncertainty principle, which is only a consequences of the

CCR. For the continuous-variables case, this principle takes
into account only the CM (8). A genuine physical state has a
CM such that [19]

V + iJ2n ≥ 0. (16)

Given a Hamiltonian and a collection of Lindblad operators
as in (4), what can our corollaries say about the genuineness
of the steady-state generated by the LME? Invoking Corol.1,
the matrix V of a steady-state is a bona-fide CM if D[iJ] =

D − iΓJ − iJΓ> ≥ 0. However, using Eqs. (6) and (7), it
is not difficult to show that D[iJ] = 2Υ∗, which is always
positive semidefinite, according to the definition of Υ in (7).
Tautologically, this says that all linear LMEs with Γ AS and
D ≥ 0 will drive the system to a steady-state obeying the
relation (16), i.e., a genuine physical state.

On the other hand, Eq.(9) is a consequence of the CCR, as
mentioned before. Accordingly, the LME guarantees that the
uncertainty principle holds for all times, including the steady-
state limit, whereof the condition in Corol.1 is necessary and
sufficient regardless of whether Γ is symmetric. Before going
to the next bona-fide relation, it is important to remark that
this extension of Corol.1 to an “if and only if” condition is
only true for the relation in Eq.(16). For all the other relations
which will appear in what follows, the differences between
Corols. 1 and 2 should be considered.

B. Classical States

Classical States are defined as having a positive Glauber-
Sudarshan distribution function, they are also called P-repre-
sentable states. This definition relies on the possibility to ex-
press a desired state as a classical mixture of coherent states.
The necessary and sufficient condition for P-representability
of a Gaussian state is written in terms of its CM as the bona-
fide relation (see Appendix II)

V − I2n ≥ 0. (17)

The evolution that drives the system to a classical steady-
state is subjected to the sufficient condition given by Corol.1:

D[−I] = Γ + Γ> + D ≥ 0 =⇒ V − I2n ≥ 0. (18)

The contrapositive of the above statement says that if a given
LME is such that D[−I] has at least one negative eigenvalue,
it will lead the system to a nonclassical stationary state. The
matrix V is, by hypothesis, the CM of a steady-state of the
LME. Once the converse statement of (18) is not true, one
can conclude that there are classical steady-states which can
not be generated by a LME with dynamical matrices such that
D[−I] ≥ 0.

If we consider only steady-states generated by a LME with
Γ symmetric, by Corol.2 the possible classical states will obey
the necessary and sufficient condition

D̃[−I] = 2Γ + D ≥ 0⇐⇒ V − I2n ≥ 0. (19)
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This means that all states generated by a LME with Γ = Γ>

and D̃[−I] ≥ 0 are classical states. Conversely, all classical
states with CM V which are solutions of a LE with Γ = Γ>

are steady-states of a LME satisfying D̃[−I] ≥ 0.
Since classicality is related to mixtures of coherent states,

one instructive example is given by the CM V = I2n — i.e.,
the CM of any n-mode (or n-DF) coherent state. The sim-
plicity of this case enables us to derive an useful necessary
and sufficient condition besides the relation in Eq.(19). Ac-
tually, we will be concerned with the slightly more general
situation: the tensor product of n Gibbs-states with the same
occupation number. These states have the global CM written
as V = αI2n, which is a CM of a classical state if α ≥ 1.

Corollary 3. For any α > 0 and any Γ such that (Γ + Γ>) ≤
0, the matrix V = α I2n is a solution of the LE bV,Γ,De
if and only if α(Γ + Γ>) + D = 0. Furthermore, α =
1
2TrD/Tr(ImΥJ).

Proof. The sufficient condition is trivially obtained by con-
structing the LE bαI2n,Γ,De from (9). To prove the neces-
sary condition, one defines

I :=

∫ ∞
0

dt eΓt eΓ>t

and integrates it by parts to show that I Γ>+Γ I = −I2n. The
solution (12) with Q = D = −α(Γ + Γ>) and A = Γ shows
that V = −α(Γ I + I Γ>) = αI. Since Γ ∈ Mat(2n,R),
its complex eigenvalues will occur in conjugate pairs, then
Tr Γ ∈ R. Since it is also AS, Tr Γ 6= 0, then the value of
α holds if one considers the definition of Γ in Eq.(6) and the
fact that Tr(JH) = 0, since H is symmetric.

The state studied in Corol.3 is an example of the multiplic-
ity of the steady-state with respect to different matrices Γ and
D. There is an infinite number of matrices satisfying the rela-
tion α(Γ + Γ>) + D = 0 and giving rise to the same steady
state. However, for a given pair of matrices Γ and D, the
solution V(Γ,D) is uniquely given in Eq.(12).

C. Separable States

A necessary and sufficient condition for an n-mode Gaus-
sian state to be separable with respect to one of the modes,
say the kth one, is defined in terms of its CM as V>k + iJ ≥ 0,
where V>k := TkVTk. The transformation Tk = T−1

k = T>k
is a local time inversion on the x̂ operator, viz.,

Tkx̂ = (q̂1, ..., q̂k, ..., qn, p̂1, ...,−p̂k, ..., p̂n)> (20)

and, of course, can not be implemented unitarily. Since Tk is
orthogonal, we can express the separability condition equiva-
lently as [13, 14]

V + iJ>k ≥ 0. (21)

The statements in Eqs. (18) and (19) can be readily modi-
fied to the present case:

(Corollary 1) D[iJ>k ] ≥ 0 =⇒ V + iJ>k ≥ 0; (22a)

(Corollary 2) D̃[iJ>k ] ≥ 0⇐⇒ V + iJ>k ≥ 0. (22b)

The interpretations of these conditions are also readily adap-
ted from those in the previous subsection, it is just a question
of changing the dichotomy “classical/nonclassical” to “sepa-
rable/entangled”.

All classical states (not only the Gaussian ones) are separa-
ble, since they are written as a convex sum of coherent states
which are separable [see Eq.(A-1)]. As a consequence, a hier-
archy of the dynamics of LMEs can be established: the set of
matrices such that D̃[−I] ≥ 0 in (19) is a subset of those sat-
isfying D̃[iJ>k ] ≥ 0 in (22b). However, this is not true for the
matrices in (18) and (22a), because both only give a sufficient
condition.

Now, consider the following partition of the number of DF
of a state: n = n1 +n2, where ni is the number of DF of each
partition. Define also the local time inversion operation as

Tn2 x̂ =(q̂1, ..., q̂n, p̂1, ..., p̂n1 ,−p̂n1+1, ...,−p̂n1+n2)>. (23)

The separability criteria already exposed is a necessary and
sufficient condition only if n2 = 1. For all other cases, en-
tangled states with V + iTn2

JTn2
≥ 0 are bound entan-

gled, i.e., they have nondistillable entanglement [14]. One can
also relate the reservoir properties with this bona-fide relation
through the replacement J>k → Tn2

JTn2
in Eqs.(22). Note

that the bona-fide relation in question does not say whether
the state is separable or bound-entangled.

D. Gaussian Steerability

Quantum Steering is a form of correlation related to the
ability of one part of a system to modify the state of a com-
panion system when only local-measurements are performed
on the former. More precisely, if through local measurements
and classical communication one part of the system is able to
convince the other part that they share an entangled state, the
state is said to be steerable with respect to the first part [4].

As in the previous subsection, considering the partition of
the DF as n = n1 +n2, a state is non-Gaussian-steerable with
respect to the first part (with n1 DF) if and only if [15]

V + iΠ2 ≥ 0, Π2 := 1
2 (J + Tn2JTn2), (24)

with Tn2 defined in (23). In other words, it is not possible to
steer the state of part 1, making local Gaussian measurements
on part 2, if the last condition holds. The steering relation with
respect to the second part is obtained by changing the roles of
n1 and n2.

As before, this concept can be related to the dynamical ma-
trices, and one can derive similar formulas by just replacing
J>k → Π2 in (22). All Gaussian steerable states are entangled
[4], thus the set of matrices such that D̃[iΠ2] ≥ 0 is a subset
of the ones satisfying D̃[iJ>k ] ≥ 0.

This concludes our analysis of the bona-fide relations used
across this paper.
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IV. SYMMETRIES OF STEADY-STATES

In principle, symmetries of the steady-states can be asso-
ciated with the symmetries of the dynamics governed by the
LME [3, 7]. In the perspective developed in this work, the
relation of the steady-state symmetries and the symmetries of
the dynamical matrices Γ and D will be investigated.

Two LEs, bV,Γ,De and bV′,Γ′,D′e, are said to be co-
variant when their matrices are related by

V′ = WVW>, Γ′ = WΓW−1, D′ = WDW>, (25)

for W ∈ GL(2n,R). Note that, for an orthogonal W, all
above matrices are subjected to the same transformation. This
covariance is helpful to determine the invariance properties of
a steady-state, working directly at the level of the CM:

Proposition 3. If Γ and D are invariant under W ∈
GL(2n,R) [i.e., WΓW−1 = Γ and WDW> = D], then
V is invariant as well [i.e., WVW> = V]. In this case,
we say that W is a symmetry transformation of the Lyapunov
equation.

Proof. Writing the solution V(Γ,D) as in Eq.(12) for the
LE bV,Γ,De, and since det W 6= 0, it is easy to see that
V(Γ,D) = V(WΓW−1,WDW>), i.e., V remains un-
changed.

Let us give some particular but useful examples. Consider
the transformation

W = σ̂z ⊗ I2 =

(
I2 02

02 −I2

)
∈ GL(4,R). (26)

If Γ and D are invariant under this transformation, they are
necessarily written as Γ = Γ1 ⊕ Γ2 and D = D1 ⊕ D2,
where Γj , Dj ∈ Mat(2,R). As a consequence of Prop.3,
V = V1 ⊕ V2, i.e., it will be the CM of a state without
position-momentum correlations. This invariance can be re-
trieved directly from the solution (12): if A and Q are block-
diagonals then P will also be block diagonal.

Another example is the transformation

W =

(
02 I2
I2 02

)
∈ GL(4,R). (27)

If Γ and D are invariant under this, the CM will have momen-
tum correlations equal to position correlations:

V =

(
V1 V12

V12 V1

)
. (28)

Focusing on the symplectic group, i.e., choosing W ∈
Sp(2n,R) ⊂ GL(2n,R), we use the definition of Γ in (6)
and the covariance relation (25) to write

V′ = WVW>, H′ = W−>HW−1, λ′ = Wλ. (29)

This symplectic covariance, by the Stone-von Neumann theo-
rem [20], is nothing but the representation of a unitary trans-
formation of the LME:

ρ̂ −→ Ûρ̂Û†, Ĥ −→ ÛĤÛ†, L̂i −→ ÛL̂iÛ
†, (30)

where the unitary operator Û is the Metaplectic operator asso-
ciated with W ∈ Sp(2n,R) [16, 20].

If we rearrange the elements of (8) consistently with the re-
ordering x̂ 7→ x̌ := (q̂1, p̂1, ..., q̂n, p̂n) of (2), then the invari-
ance under the (nonreordered) transformation in (26) implies
that the steady-state of the system, with CM V = V1⊕V2, is
the product state ρ̂ = ρ̂1⊗ρ̂2. In the reordered basis, the trans-
formation (26) is symplectic. Similarly, the (nonreordered)
matrix in (27) is also symplectic in the reordered basis, and
it realizes the exchange of the subsystems. Consequently, the
matrix in (28) is the CM of states with same local purity (sym-
metric states).

As a last example, consider a symplectic rotation R ∈
K(n) := Sp(2n,R) ∩ O(2n). As a consequence of its sym-
plecticity and orthogonality, it is written as [19]

R =

(
Y Z
−Z Y

)
(31)

with Y,Z ∈ Mat(n,R) satisfying the following conditions:

YY> + ZZ> = In, YZ> − ZY> = 0n. (32)

Any matrix written as M := m1I2n + m2J ∈ Mat(2n,R),
with m1,m2 ∈ R is invariant under the whole group K(n).
Note that, if M = M>, then m2 = 0. If we consider

Γ = −γ1I2n + γ2J, D = δI2n, (33)

i.e., both invariant under K(n), then Prop.3 implies that V =
ν I2n. By the other side, Corol.3 is a necessary and sufficient
condition for this CM, thus ν = γ

2δ . It is important to mention
that the matrices Γ and D on that corollary need not to be
invariant.

The subgroup of local rotations in K(n) is described as the
set of matrices (31) with

Y = Diag(y1, y2, ..., yn), Z = Diag(z1, z2, ..., zn), (34)

which corresponds to a rotation

Ri :=

(
yi zi
−zi yi

)
∈ K(1) (35)

in each respective canonical pair (q̂i, p̂i). The matrix Γ ∈
Mat(2n,R) is invariant under the local rotation subgroup if it
is of the following form:

Γ =

(
Γ1 Γ2

−Γ2 Γ1

)
(36)

with Γi := Diag(γi1, ..., γin) ∈ Mat(n,R). Since D is sym-
metric, it will be invariant under the same subgroup if it is
written as

D = Diag(d1, ..., dn, d1, ..., dn) ∈ Mat(2n,R). (37)

Assuming that Γ and D have this invariant structure, Prop.3
guaranties that the CM of the steady-state will be

V = Diag(v1, ..., vn, v1, ..., vn), vi ∈ R ∀i, (38)

which is the CM of n-mode thermal state.
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V. EXAMPLES

Let us now present some examples to show the usefulness
of the results presented in this work.

A. Two Oscillators interacting with Thermal Baths

Consider two coupled harmonic oscillators, each one inter-
acting with its own thermal bath. The frequency of the oscil-
lators are ω1 and ω2 and the spring constant is κ.

The Hamiltonian of the system is given by (4) with ξ = 0,
H0 = 0 and

H =

[
ω1 + κ

2 −κ2
−κ2 ω2 + κ

2

]
⊕
[
ω1 0
0 ω2

]
. (39)

The coupling between a given oscillator and the respective
reservoir is described by the Lindblad operators [4]

L̂k =
√
~ζk(N̄k + 1) âk, L̂

′
k =

√
~ζkN̄k â†k, k = 1, 2, (40)

where ζk ≥ 0 are the bath-oscillator couplings, N̄k ≥ 0 are
thermal occupation numbers, and âk :=(q̂k+ ip̂k)/

√
2~ is the

annihilation operator associated with mode k. This choice for

the reservoirs and Eq.(4) allow us to identify

λ1 =
√

ζ1
2 (N̄1 + 1)(i, 0,−1, 0)>,

λ′1 =
√

ζ1
2 N̄1(i, 0,−1, 0)†,

λ2 =
√

ζ2
2 (N̄2 + 1)(0, i, 0,−1)>,

λ′2 =
√

ζ2
2 N̄2(0, i, 0,−1)†.

(41)

With the above vectors, and using Eqs.(6), (7) and (10), one
finds

D = DDD ⊕DDD, DDD := Diag[ζ1(2N̄1 + 1), ζ2(2N̄2 + 1)],

Γ =


− ζ12 0 ω1 0

0 − ζ22 0 ω2

−ω1 − κ
2

κ
2 − ζ12 0

κ
2 −ω2 − κ

2 0 − ζ22

 . (42)

For simplicity, we will consider ζ1 = ζ2 = ζ, ω1 = ω2 = ω,
and the eigenvalues of Γ become

SpecC(Γ) =
{
− ζ2 ± iω,−

ζ
2 ± i

√
ω(ω + κ)

}
. (43)

As one can see, Γ is AS since Re [SpecC(Γ)] < 0 for all
(positive) values of the parameters.

The separability of the steady-state will be retrieved from
Eqs.(22). Since Γ 6= Γ>, Eq.(22a) will be applied and, calcu-
lating the eigenvalues of D[iJ>k ], one finds

SpecR(D[iJ>2 ]) =

{
ζ(N̄1 + N̄2 + 1)±

√
κ2

2 + ζ2(N̄1 − N̄2)2 + ζ2 ±
√

κ4

4 + ζ2κ2 + 4ζ4(N̄1 − N̄2)2

}
. (44)

The steady-state is separable if this spectrum is non-negative,
or explicitly when

ζ

κ
≥ S(N̄1, N̄2) :=

√
(2N̄1 + 1)(2N̄2 + 1)

16N̄1N̄2(N̄1 + 1)(N̄2 + 1)
. (45)

In this example, states with 0 ∈ SpecR(D[iJ>k ]) are all lying in
the surface ζ/κ = S(N̄1, N̄2). The classicality of the steady-
state will be determined by Eq.(18) with

SpecR(D[−I]) ={
ζ(N̄1 + N̄2)± κ

2 ±
√

κ2

4 + ζ2(N̄1 − N̄2)2

}
,

(46)

and the steady-state will be classical if

ζ

κ
≥ P(N̄1, N̄2) :=

N̄1 + N̄2

4N̄1N̄2
. (47)

In Fig.1 we show the functions in (45) and (47). Since a clas-
sical state is always separable, S(N̄1, N̄2) < P(N̄1, N̄2).

ζ
κ

N̄1

N̄2

Figure 1. (Color Online) Separability surface S (bottom) and Clas-
sicality surface P (top). States either on or above S are separable
while states either on or above P are classical. Between S and P
there are classical and nonclassical separable states. Bellow S, there
are separable and entangled states. The divergence of both functions
for N̄1 → 0 and for N̄2 → 0 are not shown in this plot.
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To understand the sufficiency of the results for the system in
consideration, as a consequence of the fact that Γ 6= Γ>, we
will explore the separability and classicality criteria directly
applying both to the CM of the steady-state. Using Eqs. (42),
we are able to obtain analytically the solution V = P(Γ,D)
using (12) or solving algebraically the LE bV,Γ,De. For
simplicity and without loss of generality, we choose N̄1 =
N̄2 = N̄ and the solution is

V = (2N̄ + 1)I4 +

(2N̄ + 1)κ

ζ2 + 4ω(ω + κ)

[
ω 1

2ζ
1
2ζ (ω + κ)

]
⊗
[
−1 1

1 −1

]
.

(48)

The steady-state is classical if and only if the above CM obeys
(17), or working out its eigenvalues, if and only if

ζ

κ
≥ P ′(N̄) :=

√
1

4N̄2
−
(

2ω

κ
+ 1

)2

. (49)

As for separability, the steady state will be separable if and
only if the condition (21) is satisfied, which reads as

ζ

κ
≥ S ′(N̄) :=

√
1

16N̄2(N̄ + 1)2
−
(

2ω

κ
+ 1

)2

. (50)

In Fig. 2, the two functions representing the necessary and
sufficient conditions in Eqs. (49) and (50) are shown. We also
compare them with the two sufficient conditions (45) and (47),
already plotted in Fig. 1. It is clear that, for the system in ques-
tion, even if the sufficient criteria become tighter for smaller
values of N̄ , they are in general unable to determine whether
a state is entangled or nonclassical.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

2

4

6

8

ζ
κ

N̄

Entangled Non-Classical
(Separable)

Classical
(Separable)

S←

S ′→
P←

P ′→

Figure 2. (Color Online) Necessary and sufficient conditions for
classicality and for separability of the steady-state. We show the
functions P ′(N̄) in (49) and S ′(N̄) in (50), as indicated in the
graph. The regions limited by these two functions indicates the
nature of the steady-state. We also plot the functions S(N̄ , N̄) in
(45) and P(N̄ , N̄) in (47) as dashed curves, see Fig. 1. In this plot
ω/κ = 0.5.

For the Gaussian-steering property, we also consider the
case N̄1 = N̄2 = N̄ and the sufficient condition is determined

by calculating the matrix D[iΠk] [the matrix Πk is defined in
(24), and here n1 = n2 = 1], which has the eigenvalues

SpecR(D[iΠ1]) = SpecR(D[iΠ2]) ={
(2N̄ + 1), ζ(2N̄ + 1)±

√
4ζ2 + κ2

}
. (51)

The steady-state will be non-Gaussian steerable with respect
to both partitions if ζ/κ ≥ [4(2N̄ + 1)2 + 4]−1/2.

B. Two oscillators interacting with thermal baths in RWA

Let us consider the same system as before, but with the
Hamiltonian

H =

[
$1 Ω
Ω $2

]
⊕
[
$1 Ω
Ω $2

]
. (52)

This Hamiltonian is derived from the one in Eq.(39) by ap-
plying a rotating wave approximation (RWA). The procedure
and the validity of this result are carefully discussed in the
Appendix of Ref.[21], as well as the relation among the cou-
pling constant Ω in Eq.(52) with the parameters in Eq.(39),
see [22] for details. Considering also the same structure for
the reservoirs in (41), one finds

Γ =


− ζ12 0 $1 Ω

0 − ζ22 Ω $2

−$1 −Ω − ζ12 0

−Ω −$2 0 − ζ22

 , (53)

which is AS with eigenvalues

SpecC(Γ)=
{
− ζ1+ζ2

4 ± 1
4

√
(ζ1 − ζ2)2 − 4Ω2 ± i$

}
, (54)

where we used $1 = $2 =: $. Note that Γ in (53) and D
in (42) are invariant under a rotation by J ∈ K(2). Following
Prop.3, the steady-state CM for this system will also be, i.e.,
V = JVJ>, which means that position-momentum correla-
tions are antisymmetric and position-position correlations are
equal to momentum-momentum correlations. This symmetry
help us to solve algebraically the LE (9), obtaining [23]

V =

 v1 0 0 v14

0 v2 −v14 0
0 −v14 v1 0
v14 0 0 v2

 , (55)

with

v1 = 2
ζ1N̄1 + ζ2N̄2

ζ1 + ζ2
+

2(N̄1 − N̄2)ζ1ζ
2
2

(ζ1 + ζ2)(4Ω2 + ζ1ζ2)
+ 1,

v2 = 2
ζ1N̄1 + ζ2N̄2

ζ1 + ζ2
+

2(N̄2 − N̄1)ζ2
1ζ2

(ζ1 + ζ2)(4Ω2 + ζ1ζ2)
+ 1,

v14 =
4ζ1ζ2Ω(N̄2 − N̄1)

(ζ1 + ζ2)(ζ1ζ2 + 4Ω2)
. (56)

Note that, if ζ2 = 0, then V = (2N̄1 + 1)I4, which has a sim-
ple structure, but it can not be simply retrieved by symmetries
of Γ and D.
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The simple form of (55) can be used to explicitly analyze
the results in conditions in (18). Considering for simplicity
ζ1 = ζ2 = ζ, the (doubly degenerate) spectrum of (55) is

SpecR(V) =

{
N̄1 + N̄2 + 1± (N̄1 − N̄2)√

1 + 4Ω2/ζ2

}
. (57)

From this, it is easy to see that the state (55) is classical for
any values of the parameters, since V − I4 ≥ 0. On the other
hand, let us calculate

SpecR(D[−I]) =
{

2ζN̄1, 2ζN̄2

}
, (58)

which is non-negative for any value of N̄1 and N̄2. The state-
ment in (18) thus tells us that all steady-states of this system
belong to the set of classical states, which was already found
by means of Eq.(57).

C. Cascaded OPO

Consider an optical parametric oscillator (OPO) coupled to
the vacuum field [11]. The Hamiltonian is written as Ĥ =
i~ε(â†2 − â2)/4, where ε ≥ 0 denotes the effective pump
intensity. The coupling with the vacuum is described by the
operator L̂ =

√
~κâ, where κ > 0 is the damping cavity rate.

With the help of Eqs. (4), (6), (7), and (10), one readily
reaches

Γ =

[
1
2 (ε− κ) 0

0 − 1
2 (ε+ κ)

]
, D = κ I2. (59)

The matrix Γ = Γ> will be AS in so far as κ > ε. Also,
D > 0, once κ > 0. Following the statement in (19), since
D̃[iJ>2 ] = Diag (ε,−ε), the steady-state will be nonclassical if
ε 6= 0 and will be classical only if ε = 0. The LE is trivially
solved to give the CM of the steady-state:

V = Diag[κ/(κ− ε), κ/(κ+ ε)], (60)

which is a squeezed thermal state and corresponds to the
coherent-state solution in [11] if ε = 0.

For a cascaded OPO [11], the system is described by the
Hamiltonian Ĥ = Ĥ1 + Ĥ2 + 1

2i (L̂
†
1L̂2 − L̂†2L̂1) with Ĥj =

i~εj(â†2j − â2
j )/4 and L̂j =

√
~κâj . The coupling of the

system with the intracavity vacuum is represented by L̂ =

L̂1 + L̂2. Under these circumstances we write

D =

[
κ κ
κ κ

]
⊕
[
κ κ
κ κ

]
, (61)

and

Γ =

[
ε1−κ

2 0
−κ ε2−κ

2

]
⊕
[
− ε1+κ

2 0
−κ − ε2+κ

2

]
(62)

with spectrum given by

Spec(Γ) =
{
− 1

2 (κ± ε1),− 1
2 (κ± ε2)

}
. (63)

Note that Γ 6= Γ> is AS if κ > max{|ε1|, |ε2|}. Now the
eigenvalues of D[iJ>2 ] in (22) can be calculated, yielding

SpecR(D[iJ>2 ]) = {(1±
√

5)κ, 2κ, 0}, (64)

which shows that the state will be always entangled following
Corol.1. The same arguments can be applied to determine
the Gaussian steerability. Calculating the matrix D[iΠk] [the
matrix Πk is defined in (24), and here n1 = n2 = 1], which
has the eigenvalues

SpecR(D[iΠ1]) =
{

(1±
√

5)
κ

2
, (3±

√
5)
κ

2

}
,

SpecR(D[iΠ2]) =
{

(3±
√

17)
κ

2
, k, 0

}
.

(65)

From these, one concludes that the state will be always Gaus-
sian steerable with respect to both modes since these spectra
is nonpositive.

Following Prop.3, the CM of the steady-state of the cas-
caded OPO will have the symmetry induced by (26), and reads

V =

[
k

k−ε1 − 2κε1
g−

− 2κε1
g−

−κh+

g−

]
⊕
[

k
k+ε1

2κε1
g+

2κε1
g+

κh−
g+

]
, (66)

where we have defined

g± = (ε1 + ε2 ± 2κ)(ε1 ± κ),

h± = (ε21 + ε1ε2 ± ε1κ+ 2κ2 ∓ κε2)(ε2 ∓ k)−1.

D. OPO and Thermal Baths

Consider the Hamiltonian dynamics of two particles de-
scribed by

Ĥ =
ε

4
{{{q̂1, p̂1}}}+ +

ε

4
{{{q̂2, p̂2}}}+ +

κ

2
(q̂2p̂1 + p̂2q̂1). (67)

This Hamiltonian is similar to the one in the previous exam-
ple, it is basically the Hamiltonian of the cascaded OPO with
a phase change [4]. If the particles are in contact with the
thermal baths, as in (40), the dynamical matrices become

Γ = Γ> = 1
2

[
ε− ζ k
k ε− ζ

]
⊕ 1

2

[
−(ε+ ζ) k

k −(ε+ ζ)

]
, (68)

and D is as in (42), and now we are considering N̄1 = N̄2 =
N̄ and ζ1 = ζ2 = ζ. The eigenvalues of Γ are

Spec(Γ) =
{
− 1

2ζ ± 1
2 (ε+ κ),− 1

2ζ ± 1
2 (ε− κ)

}
, (69)

and it will be AS if ζ > ε + κ. The eigenvalues of D[−I] in
(19) are

SpecR(D[−I]) =
{

2ζN̄ ± (ε+ κ), 2ζN̄ ± (ε− κ)
}
, (70)

which shows that the state will be classical if and only if
2ζN̄ ≥ (ε+ κ). The eigenvalues of D̃[iJ>2 ] in (22b) are

SpecR(D̃[iJ>2 ]) = {2ζN̄ ± κ, 2ζ(N̄ + 1)± κ}, (71)
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and the steady-state will be entangled if and only if 2ζN̄ < κ.
In the interval (ε + κ) > 2ζN̄ ≥ κ, the state is nonclassical
and separable. The steerability of the state is determined by

SpecR(D̃[iΠ1]) = SpecR(D̃[iΠ2]) ={
(2N̄ + 1

2 )ζ ±
√
ζ2 + κ2, (2N̄ + 3

2 )ζ ±
√
ζ2 + κ2

}
.(72)

As a consequence of the chosen parameters, the steady state
is symmetric with respect to the steerings of both partitions.
This is state is steerable if and only if (2N̄+ 1

2 )ζ <
√
ζ2 + κ2.

VI. ENGINEERING STEADY-STATES

The unavoidable influence of uncontrollable degrees of
freedom are usually responsible for losses of the quantumness
of a system through the procedure called decoherence. How-
ever, a steady-state with a desired quantum property can be
produced by controlling the parameters of the system and of
the environmental action. As the examples of the last section,
systems of bosonic degrees of freedom have been extensively
studied in what concerns entanglement generation [24, 25],
production of pure states [11, 26], and engineering of graph
states [11, 25]. On the experimental side, realizations of these
techniques in the context of atomic ensembles were already
performed [27].

To develop a simple theoretical engineering-state method
for bosonic degrees of freedom, we will use the results pro-
vided by the Williamson theorem [19, 20, 28]:

Theorem 1 (Williamson). Let M ∈ Mat(2n,R) be a pos-
itive definite matrix: M = M> > 0. This matrix can be
diagonalized by a symplectic congruence, i.e., there exists
S ∈ Sp(2n,R) such that

SMS> = Diag(µ1, ..., µn, µ1, ..., µn) =: Λ, (73)

where µj ≥ µk > 0 for j > k.

The double-paired ordered set (or the diagonal matrix) Λ is
called symplectic spectrum of M, and µk are its symplectic
eigenvalues (SE). These can be found from the (Euclidean)
eigenvalues of JM [20], which turn out to be

SpecC(JM) = Diag(iµ1, ..., iµn,−iµ1, ...,−iµn). (74)

Suppose one wants to design a reservoir structure able to
produce a steady-state (with n degrees of freedom) described
by a 2n × 2n CM V′. If one identifies this CM with M in
(73), the first step is to find a suitable LE able to produce
its corresponding symplectic spectrum Λ as a solution, i.e.,
its is necessary to find matrices Γ′ and D′ satisfying the LE
bΛ,Γ′,D′e. Assuming that it is possible to design a system-
reservoir structure with this LE, one applies the symplectic
covariance (29) to it and finds⌊

V′,S−1Γ′S,S−1D′S−>
⌉
, (75)

which, by Eq.(73), is the LE with solution V′ = S−1ΛS−>.
Reservoir engineering can then be realized by finding some

convenient matrix Λ and a system-reservoir structure suitable
to the unitary transformations, as in (30). Following Eq.(29),
the engineered Hamiltonian and Lindblad operators will be,
respectively, such that H′ = S>HS and λ′ = S−1λ.

A peculiar example using (75) appears when one is able
to produce a reservoir structure such that D′ = βΛ and
Γ′ = −βI2n with β > 0, thus the use of (73) gives that
bV′,−βI2n, βV′e. This shows that a Lindblad equation with
Υ = 1

2βV′ + iβI2n [see Eq.(7)] will have a steady-state au-
tomatically given by a Gaussian with CM V′.

In fact, the matrix Λ in (73) is like the CM in (38), thus
any Γ′ as in (36) and D′ as in (37), which are invariants un-
der the local rotations in (35), are appropriate to the first step
of the method. It is noticeable that not all reservoir struc-
ture are suitable to produce a diagonal matrix Λ as a CM of a
steady-state, since it can not have the desired invariant struc-
ture for performing the first step. However, it is still possible
to use the covariance relation (29) to design a specific steady-
state from a known simple steady-state of some system, one
of these cases (the OPO in Sec. V C) will be analyzed at the
end of this section.

The special condition presented in Corol.3 can be used to
engineer a specific and important class of states. Explicitly,
we will use the relation (29) to generate a state with CM V′ =
αSS>, where S ∈ Sp(2n,R) and α ≥ 1. In other words,
we want to know which matrices Γp AS and Dp ≥ 0 are
necessary to construct a LE with the solution given by the
desired CM. Note that the above-mentioned CM represents a
pure state if and only if α = 1 [11, 19, 20].

As stated in Corol.3, the n-mode Gibbs state with V =
αI2n is generated by any LE of the form bV,Γ′,−α(Γ′ +
Γ′>)e, for all matrices Γ′ AS such that (Γ′ + Γ′>) ≤ 0. Us-
ing the relation (29), we are able to obtain a covariant LE
bV′,Γp,Dpe with

V′ = αSS>, Γp = SΓ′S−1, Dp = −α S(Γ′+Γ′>)S>. (76)

It is interesting to note that, recalling Corol.3, the value of α
only depends on the reservoir structure (it does not depend on
the Hamiltonian of the system) used to prepare the initial state
V = αI2n; conveniently the Hamiltonian at this stage can be
taken as zero. Another remarkable fact is that any one-mode
Gaussian state (n = 1) is included in the scheme provided
by Eq.(76): these states have a CM written as V′ in (76) with
α = µ1 ≥ 1 and S ∈ Sp(2,R), as a consequence of the
Williamson theorem.

In [11], the authors established specific conditions for a sys-
tem to be driven to a pure steady-state when evolving under
the LME subjected to the restrictions in (4). Equation (76)
with α = 1 constitutes a simple connection with some of their
results.

Examples

a. Two Mode Thermal Squeezed States (TMTSS). Con-
sider the following CM

V′ = (2n̄+ 1)SrS
>
r , (77)



10

with

Sr :=

[(
cosh r sinh r
sinh r cosh r

)
⊕
(

cosh r − sinh r
− sinh r cosh r

)]
, (78)

where r ≥ 0 is the squeezing parameter and n̄ ≥ 0 is the
mean number of thermal photons of both modes. Note that
Sr ∈ Sp(4,R). Following the criteria (21) and (24), the state
in (77) will be respectively entangled iff r > ln(2n̄ + 1) and
steerable iff r > cosh−1(2n̄+ 1).

If one wants to engineer a reservoir with the steady-state
given in (77), it is possible to apply the scheme in Eq.(76). For
this purpose, one needs a reservoir structure able to produce
a steady-state of the form V = αI2n with α = (2n̄ + 1).
An example of a system with this steady-state is the one in
Sec.V B with N̄1 = N̄2. The system in Sec.V A can also be
used to this end, but now, besides the condition N̄1 = N̄2, one
needs to take κ = 0 — this condition is necessary to guarantee
that Γ + Γ> ≤ 0, as required in Corol.3. Recalling that the
Hamiltonian dynamics does not affect the value of α in (76),
one can use either ω1 = ω2 = κ = 0 and ζ1 = ζ2 := ζ in
(42), or$1 = $2 = Ω = 0 and ζ1 = ζ2 := ζ in (53) to obtain
a reservoir structure with Γ′ = − ζ2 I4 and D′ = (2n̄+ 1)ζ I4.
This structure produces the steady-state V = (2n̄+ 1)I2n.

Now, one needs to apply the covariance relation (76) and
determine the engineered reservoir with matrices Γp and Dp

through the symplectic matrix (78), i.e.,

Γp = −ζ
2
I4, Dp = (2n̄+ 1)ζ SrS

>
r . (79)

From Eq.(29), one can see that λ′ = Srλ, and the Lindblad
operators in (4) for λ′ are characteristics of a squeezed thermal
bath.

b. OPO Steady-States. The steady-state in (66) is a pure
steady-state iff ε1 = −ε2 [11]. Under these conditions and if
we define ε :=

√
(κ+ ε2)/(κ− ε2), the CM of this steady-

state is written as

V′ = SpS
>
p , Sp :=

(
1+ε

2
1−ε

2
1−ε

2
1+ε

2

)
⊕
(

1+ε
2ε

ε−1
2ε

ε−1
2ε

1+ε
2ε

)
, (80)

which is entangled for any value of ε. Obviously, if one wants
to produce this pure state as a steady-state of an OPO, the
only step is to produce an OPO satisfying the mentioned con-
ditions. On the other side, it is not possible to produce it by
using the covariance rules in (76) for an OPO, since Corol.3
requires Γ + Γ> ≥ 0, which is not the case for Γ in (62) with
ε1 = −ε2.

By the Willianson theorem, the symplectic spectrum of the
CM of the pure state in (80) is the identity matrix [29]. If one
can choose suitable values of the parameters in (61) and (62)
such that Γ′ and D′ satisfy the LE bI4,Γ′,D′e, then Eq.(75)
can be applied. In fact, this happens when ε1 = ε2 = 0. Thus,
preparing an OPO system such that this last condition holds,
Eq.(75) becomes⌊

SpS
>
p ,SpΓ′S−1

p ,SpD′S>p
⌉
. (81)

with D′ as in (61) and

Γ′ =

[
−κ2 0
−κ −κ2

]
⊕
[
−κ2 0
−κ −κ2

]
. (82)

Note that the matrices Γ′ and D′ in this example do not have
the invariant structure in (35). Note also that the same pure
state can be engineered by using thermal baths. The recipe for
this case is just (79) but replacing Sr by Sp and using n̄ = 0.

An entangled and steerable (with respect to both partitions)
mixed state can also be prepared by following the same recipe.
Suppose that one wants to create the bellow state as a steady-
state of an OPO-covariant-LE:

V′ = S−1
p ΛS−>p , (83)

with Sp defined in (80) and

Λ = Diag
[
1, (1− ε)−1, 1, (1 + ε)−1

]
. (84)

This matrix is the solution for the LE bΛ,Γ′,D′e with D′ in
(61) and Γ′ in (62) both with κ = 1, ε1 = 0 and ε2 = ε. By
the same recipe as before, the LE in (75) has the above V′ as
solution if we replace S by Sp and the mentioned matrices Γ′

and D′.

VII. FINAL REMARKS

Symmetries and properties of the Lyapunov equation were
used to classify the features of the steady state of a LME with
a quadratic Hamiltonian and linear Lindblad operators. The
connection with the Lyapunov equation eases the characteri-
zation of the state, a task that is typically difficult when per-
formed using the master equation directly.

For Gaussian steady-states, we focused on known bona-
fide relations for the covariance matrix of a state. Specifi-
cally, we considered conditions for the classicality, separabil-
ity, and steerability of Gaussian states. We remark, however,
that the extension for any other bona-fide relation is straight-
forward and can be performed following the lines presented
here. For instance, we can refer to the characterization of tri-
partite entanglement given in Ref. [30]. We also analyze the
consequences for the covariance matrix of a steady-state when
a transformation symmetry of the Lyapunov equation is per-
formed.

We focused our examples on systems with one or two de-
grees of freedom, which has enabled us to compare the results
of our corollaries with the results extracted directly from the
covariance matrix of the system after solving the Lyapunov
equation. However, our results are applicable to systems with
a generic number of degrees of freedom. For large systems, in
particular in the absence of symmetries, numerical solutions
might be needed to find the covariance matrix of the steady-
state; for instance, the systems considered in Ref. [31]. In this
situation, instabilities associated with the algorithms for solv-
ing Lyapunov equations may arise [32]. The robustness of the
analytical results shows the advantage with respect to either
perturbations of the systems parameters or preparation impre-
cisions. In other words, our results are advantageous since one
does not need to solve a Lyapunov equation to know some of
the system properties or symmetries. In addition, our results
are suitable for the engineering of (a reservoir leading to a
specific) steady-state of a LME having suitable properties and
symmetries.
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APPENDICES

Appendix I: Notations and Definitions

Throughout the text we use some mathematical objects
whose notations are defined here.

• Mat(m,K): set of all m ×m square matrices over the
field K.

• GL(m,K) := {M ∈ Mat(m,K)|det M 6= 0}: Gene-
ral linear group over field K.

• Sp(2m,R) := {M ∈ Mat(2m,R)|MJM> = J}: Real
symplectic group.

• O(m) := {M ∈ Mat(m,R)|MM> = Im}: Real or-
thogonal group.

• Im: Identity matrix in Mat(m,K).

• 0m: Zero matrix in Mat(m,K).

• SpecK(M) := {ν1, ..., νl} is the spectrum of M ∈
Mat(m,K). It is the set of its eigenvalues νk ∈ K, ∀k
and l ≤ m.

• M>: Transposition of M; M−>: Inverse of M>.

• M∗: Complex conjugation of the elements of M.

• In(M) := (n+, n0, n−)(M): Inertia index, i.e., the
triple containing the number of eigenvalues of M with
positive (n+), null (n0) and negative (n−) real part.
N.B. if M ∈ Mat(m,K), then m = n+ + n0 + n−.

In what follows, M ∈ Mat(m,K) and M = M†:

• M > 0 (resp. M < 0): Positive (resp. negative) defi-
niteness of M, i.e., all its eigenvalues are positive (resp.
negative).

• M ≥ 0 (resp. M ≤ 0): Positive (resp. negative)
semidefiniteness of M, i.e., all its eigenvalues are non-
negative (resp. nonpositive). In this text, the statement
M ≥ 0 (resp. M ≤ 0) means that M can, but not nec-
essarily, have null eigenvalues. This is the same as say
that the set of matrices such that M > 0 (resp. M < 0)
is a subset of the ones satisfying M ≥ 0 (resp. M ≤ 0).

It is noteworthy that, following our definitions, the sum of
two positive (resp. negative) semidefinite matrices is posi-
tive (resp. negative) semidefinite, i.e., the sum will have non-
negative (resp. non-positive) eigenvalues. In addition, the sum
of two positive (resp. negative) definite matrices is positive
(resp. negative) definite.

Appendix II: On the P-Representability of States

Due to the absence of a proof in the literature, this appendix
is devoted to prove that the necessary and sufficient condition
for P-Representability of a n-mode Gaussian state is Eq.(17).

A quantum state ρ̂ is P-representable, by definition, if it
can be written as a convex and regular sum of coherent states
through the Glauber-Sudarshan P -function [33]:

ρ̂ =

∫
P (ζ) |ζ〉〈ζ| d2nζ, (A-1)

where ζ ∈ R2n and |ζ〉 is a coherent state.
The sufficient condition is proved in [12] for two mode

Gaussian states, i.e., n = 2 in (A-1). The extension for any n-
mode state (not only the Gaussians) follows the same recipe:
using the definition of the CM (8) with the ρ̂ in (A-1), Eq.(17)
follows immediately.

To prove the necessary condition (only for Gaussian states),
we choose two Gaussian states ρ̂ and ρ̂0, with the respective
CMs V and V0 such that V ≥ V0. These states can be related
through a Gaussian noise channel [34]:

ρ̂ =
1

(π~)n

∫ +∞

−∞

e−
1
~ ζ·∆

−1ζ

√
Det∆

T̂ζ ρ̂0T̂
†
ζ d2nζ. (A-2)

The operators T̂ζ are the Weyl displacement operators [20],
and ∆ := V − V0 ≥ 0. Mathematically speaking, Eq.(A-
2) express the very known fact that the convolution of two
Gaussian functions is a Gaussian function. If we choose V0 =
I2n and ρ̂0 as a vacuum state, the positive-semidefiniteness of
∆ implies relation (17), as we should prove.
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