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Beamforming Design for Wireless Information and
Power Transfer Systems: Receive Power-Splitting vs

Transmit Time-Switching
Ali A. Nasir, Hoang D. Tuan, Duy T. Ngo, Trung Q. Duong and H. Vincent Poor

Abstract—Information and energy can be transferred over the
same radio-frequency channel. In the power-splitting (PS) mode,
they are simultaneously transmitted using the same signal by
the base station (BS) and later separated at the user (UE)’s
receiver by a power splitter. In the time-switching (TS) mode, they
are either transmitted separately in time by the BS or received
separately in time by the UE. In this paper, the BS transmit
beamformers are jointly designed with either the receive PS ratios
or the transmit TS ratios in a multicell network that implements
wireless information and power transfer (WIPT). Imposing UE
harvested energy constraints, the design objectives include (i)
maximizing the minimum UE rate under the BS transmit power
constraint, and (ii) minimizing the maximum BS transmit power
under the UE data rate constraint. New iterative algorithms of
low computational complexity are proposed to efficiently solve
the formulated difficult nonconvex optimization problems, where
each iteration either solves one simple convex quadratic program
or one simple second-order-cone-program. Simulation results
show that these algorithms converge quickly after only a few
iterations. Notably, the transmit TS-based WIPT system is not
only more easily implemented but outperforms the receive PS-
based WIPT system as it better exploits the beamforming design
at the transmitter side.

Index Terms—Energy harvesting, power splitting, quadratic
programming, second-order cone programming, time switching,
transmit beamforming, wireless information and power transfer

I. INTRODUCTION

Dense small-cell deployment is identified as one of the ‘big
pillars’ to support the much needed 1, 000× increase in data
throughput for the fifth-generation (5G) wireless networks [1].
While there is a major concern with the energy consumption
of such a dense small-cell deployment, recent advances in
wireless power transfer allow the emitted energy in the radio
frequency signals to be harvested and recycled [2]–[6]. The
scavenged radio frequency (RF) energy is stored in the device
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battery and later used to power other signal processing and
transmitting operations. For example, an radio frequency-
powered relay can be opportunistically deployed to extend
network coverage without the need to access a main power
supply. The wireless power transfer from a base station (BS)
to its users (UEs) is viable in a dense small-cell environment,
because the close BS-UE proximity enables an adequate
amount of radio frequency (RF) energy to be harvested for
practical applications [7]–[9].

The two basic realizable receiver structures for separating
the received signal for information decoding (ID) and energy
harvesting (EH) are power splitting (PS) and time switching
(TS) [10]. In the PS approach, information and energy are
simultaneously transmitted using the same signal by the BS.
At the UE, a power splitter is employed to divide the received
signal into two parts of distinct powers, one for ID and
another for EH. In the receive TS approach, instead of the
power splitter a time switch is applied on the received signal,
allowing the UE to decode the information in one portion
of time and harvest the energy in the remaining time. In the
transmit TS approach, information and energy are transmitted
by BS in different portions of time. The UE then processes
the received signals for ID and EH separately in time. The
TS structure has received considerable research attention (see
[3], [11]–[13]) due its simple implementation. Although the
performance of the receive TS approach can be worse than
the PS approach [3], that of the transmit TS approach has not
been reported in the literature.

Transmit beamforming is beneficial for both PS-based and
TS-based WIPT systems. With beamforming, the signal beams
are steered and the radio frequency (RF) energy is focused
at the desired UEs. Beamforming design without energy
harvesting has been studied for multicell multi-input-single-
output (MISO) [14]–[18] or single-cell MISO [19] networks.
Except for [17] and [18], all the formulated problems are
solved in a decentralized manner by applying Lagrangian
duality and uplink-downlink duality. In a single-cell energy
harvesting MISO network with PS-based receivers, [20]–[24]
jointly design transmit beamformers at the BS and receive PS
ratios at the UEs to minimize the sum beamforming power
under UE signal-to-interference-plus-noise-ratio (SINR) and
EH constraints. Such indefinite quadratic problem is then
recast as a semidefinite program (SDP) with rank-one matrix
constraints. The rank-one matrix constraints are dropped to
have semidefinite relaxation (SDR) problem.To deal with the
rank-more-than-one solution given by SDR, [24] proposes us-
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ing a randomization method after SDR. As shown in [25]–[27],
the performance of such a method is inconsistent and could
be poor in many cases. An approximate rank-one solution
with compromised performance has been proposed in [28].
Suboptimal algorithms based on zero-forcing and maximum
ratio transmission are proposed in [21] and [24]. As expected,
they are outperformed by the SDR solution. Surprisingly, the
joint design of transmit beamformers and TS ratios at the
receivers has not been adequately addressed in the literature
although it is much easier to practically implement TS-based
receivers. The main reason is that even the SDR approach does
not lead to solutions with tractable computation in this case.
Also to the best of our knowledge, such joint design has not
been previously considered for the transmit TS case.

This paper addresses the joint design of transmit beamform-
ing and either PS ratios or transmit TS ratios in a WIPT-
enabled MISO multicell network. We choose to investigate
the transmit TS approach instead of the receive TS counterpart
because of its potential to outperform the receive PS approach.
As will be shown later, it is actually the case. Specifically,
we consider two important design problems: 1) Maximizing
the minimum UE rate under BS transmit power and UE
harvested energy constraints, and 2) Minimizing the maximum
BS transmit power under the UE rate and harvested en-
ergy constraints. As the considered optimization problems are
highly nonconvex, their global optimality is not theoretically
guaranteed by any practical methods.

Here we exploit the partial convexity structure of the
problems to propose new algorithms based on either quadratic
programming iteration or second-order cone iteration. Signif-
icantly, our simulation results with practical parameters show
that the proposed algorithms for the receive PS-based WIPT
system tightly approach the bounds provided by the SDR
approach. This observation demonstrates their ability to locate
the global optimum of the original nonconvex problems in the
considered numerical examples. While the upper/lower bound
is not available for the transmit TS-based WIPT system by
the SDR approach, our practical simulation results reveal that
this system outperforms the receive PS-based system due its
ability to efficiently exploit the transmit beamforming power.
It is worth noting that the TS-based WIPT system is typically
simpler to implement than the PS-based counterpart.

The rest of the paper is organized as follows: Section II
considers the optimization of the receive PS-based WIPT
system whereas Section III considers the optimization of the
transmit TS-based WIPT system. Section IV evaluates the per-
formance of our proposed algorithms by numerical examples
and analyzes their computational complexity. Finally, Section
V concludes the paper.

Notation. Standard notation is used throughout the paper.
In particular, <{·} denotes the real part of its argument, ∇
denotes the first-order differential operator, and 〈x,y〉 , xHy.

II. MAX-MIN RATE AND MIN-MAX POWER
OPTIMIZATION FOR RECEIVE POWER-SPLITTING WIPT

SYSTEMS

Consider the downlink of a K-cell network. As shown in
Fig. 1, the BS of a cell k ∈ K , {1, . . . ,K} is equipped
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Fig. 1. Downlink multiuser multicell interference scenario consisting of K
cells. To keep the drawing clear, we only show the interference scenario in
cell 1. In general, the interference occurs in all K cells.

with M > 1 antennas and it serves Nk single-antenna UEs
within its cell. By BS k and UE (k, n), we mean the BS that
serves cell k and the UE n ∈ Nk , {1, . . . , Nk} of the same
cell, respectively. Assume universal frequency reuse where all
UEs in all cells share the same frequency band. While the
radio spectrum is best utilized in this approach, the signal
interference situation among multiple UEs in multiple cells is
most severe. Beamforming is then used to mitigate the effect
of interference by steering the signal beams in the intended
directions.

Denote by wk̄,n̄ ∈ CM×1 the beamforming vector by BS
k̄ ∈ K for its UE (k̄, n̄) where n̄ ∈ Nk̄ , {1, . . . , Nk̄}. Let
hk̄,k,n ∈ CM×1 be the flat fading channel vector between
BS k̄ and UE (k, n), which includes large-scale pathloss and
small-scale fading. Denote xk̄,n̄ as the information signal to
be transmitted by BS k̄ to UE (k̄, n̄) where E{|xk̄,n̄|2} = 1.
The complex baseband signal received by UE (k, n) is then
expressed as:

yk,n =
∑
k̄∈K

hHk̄,k,n

∑
n̄∈Nk̄

wk̄,n̄xk̄,n̄ + zak,n, (1)

where zak,n ∼ CN (0, σ2
a) is the zero-mean circularly complex

Gaussian noise with variance σ2
a at the receive antenna of UE

(k, n). To show the effect of interference at UE (k, n), let us
explicitly write (1) as:

yk,n = hHk,k,nwk,nxk,n + hHk,k,n
∑

n̄∈Nk\{n}

wk,n̄xk,n̄

+
∑

k̄∈K\{k}

hHk̄,k,n

∑
n̄∈Nk̄

wk̄,n̄xk̄,n̄ + zak,n. (2)

The first term in (2) is the intended signal for UE (n, k), the
second term is the intracell interference from within cell k,
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and the third term is the intercell interference from other cells
k̄ ∈ K \ {k}.

The short BS-UE distances allow the UEs to practically
implement the wireless information and power transfer. Thus,
the UE (k, n) applies the power splitting (PS) technique to
coordinate both information decoding (ID) and energy harvest-
ing (EH). Specifically, the power splitter divides the received
signal yk,n into two parts in the proportion of αk,n : (1−αk,n),
where αk,n ∈ (0, 1) is termed as the PS ratio for UE (k, n).
The first part √αk,nyk,n forms an input to the ID receiver as:
√
αk,nyk,n + zck,n =

√
αk,n

∑
k̄∈K

hHk̄,k,n

∑
n̄∈Nk̄

wk̄,n̄xk̄,n̄ + zak,n

+ zck,n, (3)

where zck,n ∼ CN (0, σ2
c ) is the additional noise introduced by

the ID receiver circuitry. Upon denoting w , [wk,n]k∈K,n∈Nk
and α , [αk,n]k∈K,n∈Nk , the signal-to-interference-plus-noise
ratio (SINR) at the input of the ID receiver of UE (k, n) is
given by:

SINRk,n ,
|hHk,k,nwk,n|2

ϕk,n(w, αk,n)
, (4)

where

ϕk,n(w, αk,n) ,
∑

n̄∈Nk\{n}

|hHk,k,nwk,n̄|2︸ ︷︷ ︸
intracell interference

+
∑

k̄∈K\{k}

∑
n̄∈Nk̄

|hHk̄,k,nwk̄,n̄|2︸ ︷︷ ︸
intercell interference

+σ2
a + σ2

c/αk,n,

Assuming a normalized time duration of one second, the
energy of the second part

√
1− αk,nyk,n of the received

signal yk,n is harvested by the EH receiver of UE (k, n) as

Ek,n(w, αk,n) , ζk,n(1− αk,n)
(
pk,n(w) + σ2

a

)
, (5)

where the constant ζk,n ∈ (0, 1) denotes the efficiency of
energy conversion at the EH receiver,1 and

pk,n(w) ,
∑
k̄∈K

∑
n̄∈Nk̄

|hHk̄,k,nwk̄,n̄|2.

Ek,n can be stored in a battery and later used to power the
operations of UE (k, n) (e.g., processing the received signals
in the downlink, or transmitting data to the BS in the uplink).

A. Max-Min Rate Iterative Optimization

First, we aim to consider max-min rate optimization prob-
lem, which provides fairness in allocating the radio resources
to the most disadvantaged user, especially that at the cell
edges. As this user suffers from severe interference and
only achieves low throughput, it is sensible to maximize its
throughput for an acceptable quality of service. We aim to
jointly optimize the transmit beamforming vectors wk,n and

1The value of ζk,n is typically in the range of 0.4−0.6 for practical energy
harvesting circuits [5].

the PS ratios αk,n for all k ∈ K, and n ∈ Nk by solving the
following max-min rate optimization problem:

max
wk,n∈CM×1,
αk,n∈(0,1),
∀ k∈K, n∈Nk

min
k∈K,n∈Nk

ln

(
1 +
|hHk,k,nwk,n|2

ϕk,n(w, αk,n)

)
(6a)

s.t.
∑
n∈Nk

‖wk,n‖2 ≤ Pmax
k , ∀k ∈ K (6b)∑

k∈K

∑
n∈Nk

‖wk,n‖2 ≤ Pmax, (6c)

Ek,n(w, αk,n) ≥ emin
k,n , ∀k ∈ K, n ∈ Nk. (6d)

Constraint (6b) caps the total transmit power of each BS
k at a predefined value Pmax

k . Constraint (6c) ensures that
the total transmit power of the network will not exceed the
allowable budget Pmax, which helps limit any potential undue
interference from the considered multicell network to another
network. Constraint (6d) requires that the minimum energy
harvested by UE (k, n) exceeds some target emin

k,n for useful
EH. It is obvious that (6) is equivalent to the following max-
min SINR problem:

max
wk,n∈CM×1,
αk,n∈(0,1),
∀ k∈K, n∈Nk

min
k∈K,n∈Nk

fk,n(w, αk,n) ,
|hHk,k,nwk,n|2

ϕk,n(w, αk,n)

s.t. (6b)− (6d). (7)

While (6b) and (6c) are convex, the objective in (7) is not
concave and the constraint (6d) is not convex due to the strong
coupling between wk,n and αk,n in both the SINR and EH
expressions [see (4) and (5)]. Moreover, the objective in (7)
is also nonsmooth due to the minimization operator. Indeed,
(7) is a nonconvex nonsmooth function optimization problem
subject to nonconvex constraints. If one fixes αk,n at some
constants, problem (7) would still be nonconvex in wk,n. It is
not straightforward to even find a feasible solution that satisfies
constraints (6b)-(6d).

In principle, both problems (6) and (7) could be solved
by the d.c. optimization framework of [29] and [30], where
each function fk,n(w, αk,n) in the objective (6a) would be
recast as a d.c. (difference of two convex functions) function
in numerous constrained additional variables. The objective

min
k∈K,n∈Nk

fk,n(w, αk,n) in (6a) would then be represented as

a difference of a convex nonsmooth function and a smooth
convex function for the d.c. iteration technique of [31] to
apply. In this paper, we will develop a new and more efficient
approach to solve problem (7).

As observed in [32], for w̄k,n = e−.arg(hHk,k,nwk,n)wk,n,
one has |hHk,k,nwk,n| = hHk,k,nw̄k,n = <{hHk,k,nw̄k,n} ≥ 0

and |hHk′,k,n′wk,n| = |hHk′,k,n′w̄k,n| for (k′, n′) 6= (k, n) and
 ,
√
−1. The original problem (7) is thus equivalent to the
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following optimization problem:

max
wk,n∈CM×1,
αk,n∈(0,1),
∀ k∈K, n∈Nk

min
k∈K,n∈Nk

fk,n(w, αk,n) ,
(<{hHk,k,nwk,n})2

ϕk,n(w, αk,n)
(8a)

s.t.<{hHk,k,nwk,n} ≥ 0, ∀ k ∈ K, n ∈ Nk, (8b)
(6b), (6c), (6d) .(8c)

Since the function f̃k,n(wk,n, t) , (<{hHk,k,nwk,n})2/t is
convex in wk,n ∈ CM×1 and t > 0 [26], it is true that [33]

f̃k,n(wk,n, t) ≥ f̃k,n(w
(κ)
k,n, t

(κ))

+ 〈∇f̃k,n(w
(κ)
k,n, t

(κ)), (wk,n, t)− (w
(κ)
k,n, t

(κ))〉

= 2<
{
hHk,k,nw

(κ)
k,n

}
<
{
hHk,k,nwk,n

}
/t(κ)

−
(
<
{
hHk,k,nw

(κ)
k,n

})2

t/(t(κ))2 (9)

for all wk,n ∈ CM×1,w
(κ)
k,n ∈ CM×1, t > 0, t(κ) > 0.

Therefore, given (w(κ), α(κ)) from κ-th iteration, substituting
t := ϕk,n(w, αk,n) and t(κ) := ϕk,n(w(κ), α

(κ)
k,n) into the

above inequality (9) gives

fk,n(w, αk,n) ≥ f (κ)
k,n(w, αk,n), ∀(w, αk,n) (10)

where

f
(κ)
k,n(w, αk,n) ,

2<
{

(w
(κ)
k,n)Hhk,k,n

}
<
{
hHk,k,nwk,n

}
ϕk,n(w(κ), α

(κ)
k,n)

−

(
<
{
hHk,k,nw

(κ)
k,n

})2

ϕk,n(w, αk,n)

ϕ2
k,n(w(κ), α

(κ)
k,n)

(11)

The function f
(κ)
k,n(w, αk,n) is concave quadratic and agrees

with fk,n(w, αk,n) at (w(κ), α
(κ)
k,n) as:

fk,n(w(κ), α
(κ)
k,n) = f

(κ)
k,n(w(κ), α

(κ)
k,n). (12)

Next, the nonconvex energy harvesting constraint (6d) can
be expressed as

emin
k,n

ζk,n(1− αk,n)
− pk,n(w) ≤ 0, ∀k ∈ K, n ∈ Nk, (13)

which is still nonconvex. From

|hHk̄,k,nwk̄,n̄|2 ≥ −|hHk̄,k,nw
(κ)

k̄,n̄
|2

+ 2<
{(

w
(κ)

k̄,n̄

)H
hk̄,k,nh

H
k̄,k,nwk̄,n̄

}
,

∀wk̄,n̄,w
(κ)

k̄,n̄
(14)

it follows that

pk,n(w) ≥ p(κ)
k,n(w), ∀w and pk,n(w(κ)) = p

(κ)
k,n(w(κ))

(15)
where

p
(κ)
k,n(w) , −pk,n(w(κ))

+ 2
∑
k̄∈K

∑
n̄∈Nk̄

<
{

(w
(κ)

k̄,n̄
)Hhk̄,k,nh

H
k̄,k,nwk̄,n̄

}
.

Algorithm 1 QP-based Iterative Optimization to Solve Prob-
lem (7)

1: Initialize κ := 0.
2: Choose a feasible point (w

(0)
k,n, α

(0)
k,n), ∀k ∈ K, n ∈ Nk of

(7).
3: repeat
4: Solve QP (17) for w

(κ+1)
k,n and α

(κ+1)
k,n , ∀k ∈ K, n ∈

Nk.
5: Set κ := κ+ 1.
6: until convergence of the objective in (7).

Therefore, whenever (w(κ), α(κ)) is feasible to (6d), the
nonconvex constraint (6d) is inner-approximated by the convex
constraint

emin
k,n

ζk,n(1− αk,n)
− p(κ)

k,n(w) ≤ σ2
a, ∀k ∈ K, n ∈ Nk. (16)

From (12) and (16), for a given (w
(κ)
k,n, α

(κ)
k,n) the following

convex quadratic program (QP) provides minorant maximiza-
tion for the nonconvex program (7):

max
wk,n∈CM×1,
αk,n∈(0,1),
∀k∈K,n∈Nk

min
k∈K
n∈Nk

f
(κ)
k,n(w, αk,n)

s.t. (6b), (6c), (8b), (16). (17)

Using (17), we propose in Algorithm 1 a QP-based iterative
algorithm that solves the max-min SINR problem (7). Here,
the initial point w(0) , [w

(0)
k,n]k∈K,n∈Nk can be found by

randomly generating M × 1 complex vectors followed by
normalizing them to satisfy (6b) and (6c). For a given w(0),
α(0) , [α

(0)
k,n]k∈K,n∈Nk is then generated by solving (6d) with

an equality sign. In each iteration of Algorithm 1, only one
simple QP (17) needs to be solved. The solution of which is
then used to improve the objective value in the next iteration.

Proposition 1: Algorithm 1 generates a sequence
{(w(κ),α(κ))} of improved points for (7), which converges
to a Karush-Kuhn-Tucker (KKT) point.

Proof: Let us define

F (w,α) , min
k∈K
n∈Nk

fk,n(w, αk,n) and

F (κ)(w,α) , min
k∈K
n∈Nk

f
(κ)
k,n(w, αk,n),

which satisfies [cf. (10) and (12)]

F (κ)(w,α) ≥ F (κ)(w,α) ∀ w,α and

F (κ)(w(κ),α(κ)) = F (κ)(w(κ),α(κ)).

Hence,

F (w(κ+1),α(κ+1)) ≥ F (κ)(w(κ+1),α(κ+1))

> F (κ)(w(κ),α(κ)) = F (w(κ),α(κ)),

where the second inequality follows from the fact that
(w(κ+1),α(κ+1)) and (w(κ),α(κ)) are the optimal solution
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and a feasible point of (17), respectively. This result shows that
(w(κ+1),α(κ+1)) is a better point to (7) than (w(κ),α(κ)).

Furthermore, the sequence {(w(κ),α(κ))} is bounded by
constraints (6b) and (6c). By Cauchy’s theorem, there is a
convergent subsequence {(w(κν),α(κν))} with a limit point
(w̄, ᾱ), i.e.,

lim
ν→+∞

[
F (w(κν),α(κν))− F (w̄, ᾱ)

]
= 0.

For every κ, there is ν such that κν ≤ κ ≤ κν+1, and so

0 = lim
ν→+∞

[F (w(κν),α(κν))− F (w̄, ᾱ)]

≤ lim
κ→+∞

[F (w(κ),α(κ))− F (w̄, ᾱ)]

≤ lim
ν→+∞

[F (w(κν+1),α(κν+1))− F (w̄, ᾱ)] = 0, (18)

which shows that lim
κ→+∞

F (w(κ),α(κ)) = F (w̄, ᾱ). Each

accumulation point {(w̄, ᾱ)} of the sequence {(w(κ),α(κ))}
is indeed a KKT point according to [34, Th. 1].

It is noteworthy that our simulation results in Sec. IV further
show that the QP-based solution in Algorithm 1 achieves the
upper bound given by the SDR (A.1) described in Appendix A.

B. Iterative Optimization for Min-Max BS Power

Next, we will address the min-max BS power optimization
problem, which targets minimizing the highest BS radiation
power. The motivation is to limit an undue interference
from any BS to the neighboring cell users. Therefore, the
interference (and hence throughput) at individual users is
balanced across the whole network. The min-max BS power
optimization problem is formulated as follows:

min
wk,n∈CM×1,
αk,n∈(0,1),
∀ k∈K, n∈Nk

max
k∈K

∑
n∈Nk

‖wk,n‖2 s.t. (6d), (19a)

|hHk,k,nwk,n|2 ≥ γmin
k,n ϕk,n(w, αk,n),

∀k ∈ K, n ∈ Nk. (19b)

Here, (6d) requires that the amount of energy harvested by
UE (k, n) exceeds some target emin

k,n for useful EH, whereas

(19b) ensures a minimum throughput ln
(

1 + γmin
k,n

)
for each

UE (k, n). Similar to the max-min SINR problem (7), this
problem (19) is nonconvex due to the strong coupling between
wk,n and αk,n in the harvested energy expression (5).

Given that the SINR constraint (19b) can be expressed as a
second-order cone (SOC) constraint2, we now address problem
(19) via second-order cone programming (SOCP) in the vector
variables wk,n ∈ CM×1. Similar to (8b), we make the variable
change αk,n → α2

k,n in (19) to express (19b) as:

<
{
hHk,k,nwk,n

}
≥
√
γmin
k,n

√
ϕk,n(w, α2

k,n), ∀k ∈ K, n ∈ Nk,
(20)

2This only means the SINR function is quasi-convex. Therefore, the SOCP-
based optimization approach cannot be applied to solve problem (7).

Algorithm 2 SOC-based Iterative Optimization to Solve Prob-
lem (19)

1: Initialize κ := 0.
2: Choose a feasible point (w

(0)
k,n, α

(0)
k,n), ∀k ∈ K, n ∈ Nk of

(19).
3: repeat
4: Solve SOCP (24) for w(κ+1)

k,n and α(κ+1)
k,n , ∀k ∈ K, n ∈

Nk.
5: Set κ := κ+ 1.
6: until convergence of the objective (19).

which is equivalent to the following SOC:

<{hHk,k,nwk,n} ≥
√
γmin
k,n

∥∥∥∥∥∥∥
σa

σctk,n(
hH
k̄,k,n

wk̄,n̄

)
k̄,n̄∈K,N\{k,n}

∥∥∥∥∥∥∥
2

,

∀k ∈ K, n ∈ N , (21)(
tk,n 1
1 αk,n

)
� 0, ∀ k ∈ K, n ∈ N , (22)

where
(
hH
k̄,k,n

wk̄,n̄

)
k̄,n̄∈K,N\{k,n}

is an (KN−1)×1 column

vector. On the other hand, under the variable change αk,n →
α2
k,n in (16), the harvested energy expression (5) is inner-

approximated by the following convex constraints:

emin
k,n

ζk,n(1− α2
k,n)
− p(κ)

k,n(w) ≤ σ2
a, ∀k ∈ K, n ∈ Nk. (23)

As (w(κ), α(κ)) is also feasible to (23), the optimal solution
(w(κ+1), α(κ+1)) of the following convex program is a better
point to (19) than (w(κ), α(κ))

min
wk,n∈CM×1

αk,n∈(0,1), tk,n
∀k∈K,n∈Nk

max
k∈K

∑
n∈Nk

‖wk,n‖2 s.t. (21), (22), (23).

(24)
In Algorithm 2, we propose an SOC-based iterative algo-

rithm to solve problem (19). In order to obtain an initial feasi-
ble point to SOCP (24), we cannot use the inner-approximated
EH constraint (23) due to its dependence on the previously
optimized beamforming vector w(κ). However, the original EH
constraint (6d) can be implied by the following hard (tighter)
constraint in α2

k,n1
and a slack variable β2

k,n1
:√

emin
k,n /ζk,n

βk,n
−<{hHk,k,nwk,n} ≤ 0,∀k ∈ K, n1 ∈ Nk

(25a)

β2
k,n + α2

k,n ≤ 1,∀k ∈ K, n ∈ Nk, (25b)

which is independent of w(κ).3 Hence, the initial point to
SOCP (24) can easily be obtained by solving the following

3The satisfaction of the constraint (25) implies the satisfaction of the
original EH constraint (6d).
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SOCP:

min
wk,n∈CM×1,

αk,n∈(0,1), βk,n, tk,n,
∀k∈K,n∈Nk

max
k∈K

∑
n∈Nk ‖wk,n‖2

s.t. (21), (22), (25a), (25b). (26)

Once initialized from a feasible point, Algorithm 2 solves one
simple convex SOCP (24) in each iteration. The solution of
which is then used in the next iteration to improve the objective
value. Similar to Proposition 1, it can be shown that Algorithm
2 generates a sequence {(w(κ),α(κ))} of improved points for
problem (19), which converges to a KKT point. Our simulation
results in Sec. IV further show that the SOC-based solution
in Algorithm 2 achieves the lower bound given by the SDR
(A.2a), (A.2b), (A.1e), (A.1f) described in Appendix A.

III. MAX-MIN RATE AND MIN-MAX POWER
OPTIMIZATION FOR TRANSMIT TIME-SWITCHING WIPT

SYSTEMS

Unlike the power-switching system model in Sec. II, in
the time-switching (TS) based system, a fraction of time
0 < ρ < 1 is used for power transfer while the remaining
fraction of time (1 − ρ) for information transfer. Here ρ is
termed as the TS ratio. For power transfer, we are to design
beamforming vectors wE

k,n with the achievable harvested
energy ρEk,n(wE), where

Ek,n(wE) , ζk,n(pk,n(wE) + σ2
a),

pk,n(wE) ,
∑
k̄∈K

∑
n̄∈Nk̄

|hHk̄,k,nw
E
k̄,n̄|

2,

and wE , [wE
k,n]k∈K,n∈Nk . For information transfer, we are

to design beamforming vectors wI
k,n with the achievable data

rate

(1− ρ) ln

(
1 +
|hHk,k,nwI

k,n|2

ϕk,n(wI)

)
where

ϕk,n(wI) ,
∑

n̄∈Nk\{n}

|hHk,k,nwI
k,n̄|2︸ ︷︷ ︸

intracell interference

+
∑

k̄∈K\{k}

∑
n̄∈Nk̄

|hHk̄,k,nw
I
k̄,n̄|

2

︸ ︷︷ ︸
intercell interference

+σ2
a,

and wI , [wI
k,n]k∈K,n∈Nk . Therefore, the individual BS and

total power constraints for the TS-based system are:

ρ
∑
n∈Nk

‖wE
k,n‖2 +(1− ρ)

∑
n∈Nk

‖wI
k,n‖2 ≤ Pmax

k ,∀k ∈ K

(27a)

ρ
∑
k∈K

∑
n∈Nk

‖wE
k,n‖2 + (1− ρ)

∑
k∈K

∑
n∈Nk

‖wI
k,n‖2 ≤ Pmax,

(27b)

respectively. Here, the following constraints must also be
imposed:

‖wE
k,n‖2 ≤ Pmax, ‖wI

k,n‖2 ≤ Pmax
k , ∀k ∈ K, n ∈ Nk.

(28)

The max-min rate optimization problem for the TS-based
system is then formulated as:

max
0<ρ<1,

wxk,n∈C
M×1, x∈{I,E}

min
k∈K,n∈Nk

(1− ρ) ln(1 + fk,n(wI))

(29a)

s.t. ρEk,n(wE) ≥ emin
k,n , (29b)

(27), (28). (29c)

And the min-max BS power optimization problem for the TS-
based system is formulated as:

min
0<ρ<1,

wxk,n∈C
M×1, x∈{E,I}

max
k∈K

ρ
∑
n∈Nk

‖wE
k,n‖2 + (1− ρ)

∑
n∈Nk

‖wI
k,n‖2

(30a)

s.t. (1− ρ) ln
(
1 + fk,n(wI)

)
≥ rmin

k,n ,
(30b)

(28), (29b) (30c)

where (30b) ensures the minimum rate rmin
k,n (in nat/sec/Hz) is

achieved.
Remark 1: The transmit TS-based WIPT system is different

from the receive TS-based WIPT system [10] which switches
the received signal yk,n in (1) in the proportion of time 0 <
αk,n < 1 for information decoding. Accordingly, the joint
design of transmit beamformer w and receive TS ratios α ,
[αk,n]k∈K,n∈Nk is formulated as:

max
0<αk,n<1,

wk,n∈CM×1

min
k∈K,n∈Nk

(1− αk,n) ln(1 + fk,n(w))

s.t. (6b), (6c), and αk,nEk,n(w) ≥ emin
k,n , (31)

and

min
0<αk,n<1,

wk,n∈CM×1

max
k∈K

∑
n∈Nk

‖wk,n‖2

s.t. αk,nEk,n(w) ≥ emin
k,n ,

(1− αk,n) ln(1 + fk,n(w)) ≥ rmin
k,n . (32)

Compared with the receive PS-based optimization problems
(7) and (19), the power and EH constraints in (31) and (32)
remain the same while the data rate in (31) and (32) is lower.
The receive PS-based design thus outperforms the receive TS-
based design in general. On the other hand, the transmit TS-
based optimizations (29) and (30) exploit the separate designs
of wI for ID and wE for EH. For this reason, they outperform
the receive PS-based designs in (7) and (19) as will be shown
later.

A. Iterative Max-Min Rate Optimization

We will now solve the nonconvex problem (29). First, let
us make the following change of variable:

1− ρ = 1/β, (33)

which satisfies the linear constraint

β > 1. (34)
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Thus, the power constraints (27) become the following convex
constraints:∑

n∈Nk

‖wE
k,n‖2 +

1

β

∑
n∈Nk

‖wI
k,n‖2 ≤

Pmax
k +

1

β

∑
n∈Nk

‖wE
k,n‖2, ∀k ∈ K

(35a)∑
k∈K

∑
n∈Nk

‖wE
k,n‖2 +

1

β

∑
k∈K

∑
n∈Nk

‖wI
k,n‖2 ≤

Pmax +
1

β

∑
k∈K

∑
n∈Nk

‖wE
k,n‖2. (35b)

Similar to (8), problem (29) can now be equivalently expressed
by

max
α,β,

wxk,n∈C
M×1,x∈{I,E}

min
k∈K,n∈Nk

1

β
ln

(
1 +

(<{hHk,k,nwI
k,n})2

ϕk,n(wI)

)
(36a)

s.t. <
{
hHk,k,nw

I
k,n

}
≥ 0, ∀k ∈ K, n ∈ Nk, (36b)

pk,n(wE) ≥
emin
k,n

ζk,n

(
1 +

1

β − 1

)
− σ2

a, (36c)

(28), (34), (35). (36d)

Note that unlike (8), the objective function in (36) is quite
complex to handle due to the additional factor 1/β, while the
power constraint (35) is nonconvex. To deal with this, we first
exploit the fact that function f(x, t) = ln(1+1/x)

t is convex in
x > 0, t > 0 which can be seen by examining its Hessian. The
following inequality for all x > 0, x̄ > 0, t > 0 and t̄ > 0
then holds true:

ln(1 + 1/x)

t
≥ f(x̄, t̄) + 〈∇f(x̄, t̄), (x, t)− (x̄, t̄)〉

= 2
ln(1 + 1/x̄)

t̄
+

1

t̄(x̄+ 1)
− x

(x̄+ 1)x̄t̄

− ln(1 + 1/x̄)

t̄2
t. (37)

By replacing 1/x→ x and 1/x̄→ x̄ in (37), we have:

ln(1 + x)

t
≥ a− b

x
− ct, (38)

where a = 2 ln(1+x̄)
t̄ + x̄

t̄(x̄+1) > 0, b = x̄2

t̄(x̄+1) > 0, c =
ln(1+x̄)
t̄2 > 0. From that,

1

β
ln

1 +

(
<{hHk,k,nwI

k,n}
)2

ϕk,n(wI)

 ≥
a(κ) − b(κ) ϕk,n(wI)(

<
{
hHk,k,nw

I
k,n

})2 − c
(κ)β (39)

where

a(κ) = 2
ln(1 + d(κ))

β(κ)
+

d(κ)

β(κ)(d(κ) + 1)
> 0,

b(κ) =
(d(κ))2

β(κ)(d(κ) + 1)
> 0,

c(κ) =
ln(1 + d(κ))

(β(κ))2
> 0,

d(κ) =
(
<
{
hHk,k,nw

I,(κ)
k,n

})2 /
ϕk,n(wI,(κ)). (40)

Now, using(
<
{
hHk,k,nw

I
k,n

})2 ≥ 2<{hHk,k,nw
I,(κ)
k,n }<

{
hHk,k,nw

I
k,n

}
−
(
<
{
hHk,k,nw

I,(κ)
k,n

})2

, ψk,n(wI
k,n)

together with (39) leads to

1

β
ln

1 +

(
<
{
hHk,k,nw

I
k,n

})2

ϕk,n(wI)

 ≥ a(κ) − b(κ) ϕk,n(wI)

ψk,n(wI
k,n)

− c(κ)β

, f
(κ)
k,n(wI , β) (41)

for
ψk,n(wI

k,n) ≥ 0, ∀k ∈ K, n ∈ Nk. (42)

As the function f
(κ)
k,n(wI , β) is concave on (42), the follow-

ing convex program provides minorant maximization for the
nonconvex program (36) for a given (wE,(κ),wI,(κ), β(κ)):

max
β,

wxk,n∈C
M×1, x∈{I,E}

min
k∈K,n∈Nk

f
(κ)
k,n(wI , β) (43a)

s.t
∑
n∈Nk

‖wE
k,n‖2 +

1

β

∑
n∈Nk

‖wI
k,n‖2 ≤ Pmax

k

+
1

β(κ)

∑
n∈Nk

2<
{

(w
E,(κ)
k,n )HwE

k,n

}
− β

(β(κ))2

∑
n∈Nk

‖wE,(κ)
k,n ‖

2, ∀k ∈ K, (43b)

∑
k∈K

∑
n∈Nk

‖wE
k,n‖2 +

1

β

∑
k∈K

∑
n∈Nk

‖wI
k,n‖2 ≤ Pmax

+
1

β(κ)

∑
k∈K

∑
n∈Nk

2<
{

(w
E,(κ)
k,n )HwE

k,n

}
− β

(β(κ))2

∑
k∈K

∑
n∈Nk

‖wE,(κ)
k,n ‖

2, (43c)

∑
k̄∈K

∑
n̄∈Nk̄

[
2<
{
hHk̄,k,nw

E,(κ)

k̄,n̄
hHk̄,k,nw

E
k̄,n̄

}
−
∣∣∣hHk̄,k,nwE,(κ)

k̄,n̄

∣∣∣2] ≥ emin
k,n

ζk,n

(
1 +

1

β − 1

)
− σ2

a,

(43d)
(28), (34), (36b), (42) (43e)
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Algorithm 3 Iterative Optimization to Solve Problem (36)
1: Initialize κ := 0.
2: Choose a feasible point

(
wE,(0),wI,(0), β(0)

)
of (36).

3: repeat
4: Solve convex program (43) for(

wE,(κ+1),wI,(κ+1), β(κ+1)
)
.

5: Set κ := κ+ 1.
6: until convergence of the objective in (36).

Here, convex constraints (43b), (43c) and (43d) are the inner
approximations of nonconvex constraints (35) and (36d) due
to the convexity of function 1

β ‖x‖
2, which leads to

‖x‖2

β
≥

2<
{

(x(κ))Hx
}

β(κ)
− ‖x

(κ)‖2

(β(κ))2
β,

∀x ∈ CN ,x(κ) ∈ CN , β > 0, β(κ) > 0. (44)

The proposed solution for the max-min rate problem (36)
(and hence (29)) is summarized in Algorithm 3. Similar to
Proposition 1, it can be shown that Algorithm 3 generates a
sequence

{(
wE,(κ),wI,(κ), β(κ)

)}
of improved points of (36),

which converges to a KKT point. In Algorithm 3, the feasible
point

(
wE,(0),wI,(0), β(0)

)
of (36) is found as follows. We fix

β(0) and solve the following convex problem for fixed rmin >
0:

max
wxk,n∈CM×1,x∈{I,E}

min
k∈K,n∈Nk

<
{
hHk,k,nw

E
k,n

}
−
√
emin
k,n /

(
ζk,n

(
1− 1/β(0)

))
, (45a)

s.t. <
{
hHk,k,nw

I
k,n

}
≥
√
erminβ(0) − 1

×

∥∥∥∥∥ σa(
hH
k̄,k,n

wI
k̄,n̄

)
k̄,n̄∈K,N\{k,n}

∥∥∥∥∥
2

,

k ∈ K, n ∈ N , (45b)(
1− 1/β(0)

) ∑
n∈Nk

‖wE
k,n‖2 +

(
1/β(0)

)
×
∑
n∈Nk

‖wI
k,n‖2 ≤ Pmax

k , ∀k ∈ K, (45c)(
1− 1/β(0)

)∑
k∈K

∑
n∈Nk

‖wE
k,n‖2 +

(
1/β(0)

)
×
∑
k∈K

∑
n∈Nk

‖wI
k,n‖2 ≤ Pmax, (45d)

(28) (45e)

and then iteratively solve the following convex problem:

max
wxk,n∈CM×1,x∈{I,E}

min
k∈K,n∈Nk

∑
k̄∈K

∑
n̄∈Nk̄

[
2<
{
hHk̄,k,nw

E,(κ)

k̄,n̄

×hHk̄,k,nw
E
k̄,n̄

}
−
∣∣∣hHk̄,k,nwE,(κ)

k̄,n̄

∣∣∣2]
−
emin
k,n

ζk,n

(
1 +

1

β(0) − 1

)
− σ2

a

s.t. (28), (45b), (45c), (45d) (46)

Algorithm 4 Iterative Optimization to Solve Problem (47)
1: Initialize κ := 0.
2: Choose a feasible point

(
wE,(0),wI,(0), β(0)

)
of (47).

3: repeat
4: Solve the convex program (48) for(

wE,(κ+1),wI,(κ+1), β(κ+1)
)
.

5: Set κ := κ+ 1.
6: until convergence of the objective (48).

where the initial point w
E,(0)
k,n for (46) is obtained from the

solution of (45). Problem (46) is solved for κ = 0, 1, 2, . . .
until a positive optimal value is attained. If problem (45)
or (46) is infeasible with β(0) or solving (46) fails to give
a positive optimal value, we repeat the above process for
a different value of β(0) in order to find a feasible point(
wE,(0),wI,(0), β(0)

)
.4

B. Iterative Min-Max Power Optimization

We now turn our attention to the min-max BS power
optimization problem (30), which is equivalently expressed
as:

min
β>0,

wxk,n∈C
M×1, x∈{E,I}

max
k∈K

[ ∑
n∈Nk

‖wE
k,n‖2 +

1

β

∑
n∈Nk

‖wI
k,n‖2

− 1

β

∑
n∈Nk

‖wE
k,n‖2

]
(47a)

s.t. (28), (34), (36d), (47b)
1

β
ln
(
1 + fk,n(wI)

)
≥ rmin

k,n . (47c)

From (41) and (44), the following convex program provides
majorant minimization for the nonconvex program (47) for a
given (w

E,(κ)
k,n ,w

I,(κ)
k,n , β(κ)):

min
β>0,

wxk,n∈C
M×1, x∈{E,I}

max
k∈K

[ ∑
n∈Nk

‖wE
k,n‖2 +

1

β

∑
n∈Nk

‖wI
k,n‖2

− 1

β(κ)

∑
n∈Nk

2<
{

(w
E,(κ)
k,n )HwE

k,n

}
+

β

(β(κ))2

∑
n∈Nk

‖wE,(κ)
k,n ‖

2

]
(48a)

s.t. (28), (34), (36b), (42), (43d), (48b)

f
(κ)
k,n

(
wI , β

)
≥ rmin

k,n , (48c)

where f (κ)
k,n(wI , β) is defined in (41).

The proposed solution for the min-max BS power opti-
mization problem (47) (and hence (30)) is summarized in
Algorithm 4. Similar to Proposition 1, it can be shown that
Algorithm 4 generates a sequence

{(
wE,(κ),wI,(κ), β(κ)

)}
of

improved points of (48), which converges to a KKT point. In

4Simulation results in Sec. IV show that in almost all of the scenarios
considered, problems (45) or (46) are feasible and a positive optimal value of
(46) is obtained in one single iteration for the first tried value β(0) = 1.11.
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Fig. 2. Topology of the multicell network used in the numerical examples

Algorithm 4, the feasible
{(

wE,(0),wI,(0), β(0)
)}

of (47) can
be found by first fixing β(0) and solving the convex feasibility
problem with the following constraints:√

emin
k,n /

(
ζk,n

(
1− 1/β(0)

))
−<{hHk,k,nwE

k,n} ≤ 0,

k ∈ K, n ∈ N , (49a)

<
{
hHk,k,nw

I
k,n

}
≥
√
er

min
k,n β

(0) − 1

×

∥∥∥∥∥ σa(
hH
k̄,k,n

wI
k̄,n̄

)
k̄,n̄∈K,N\{k,n}

∥∥∥∥∥
2

,

k ∈ K, n ∈ N , (49b)
(28), (36b). (49c)

IV. NUMERICAL EXAMPLES AND COMPLEXITY ANALYSIS

In the numerical examples, a 3-cell network model with 4
UEs per cell shown in Fig. 2 is used. The cell radius is set as 40
m and the BS-to-UE distance as 20 m to enable practical WIPT
[7], [8]. For large-scale propagation loss, a pathloss exponent
equal to 4 is assumed. For small-scale fading, a Rician fading
channel is generated according to

hk̄,k,n =

√
KR

1 +KR
hLOS
k̄,k,n +

√
1

1 +KR
hNLOS
k̄,k,n, ∀k̄, k, n

(50)

where KR = 10 dB is the Rician factor; hLOS
k̄,k,n

∈ CM×1 is
the line-of-sight (LOS) deterministic component; and hNLOS

k̄,k,n
∼

CN (0, 1) is the circularly-symmetric complex Gaussian ran-
dom variable that models the Rayleigh fading component.
Here, the far-field uniform linear antenna array model is used
with

hLOS
k̄,k,n =

[
1, ejθk̄,k,n , ej2θk̄,k,n , . . . , ej(M−1)θk̄,k,n

]T
for θk̄,k,n = 2πd sin(φk̄,k,n)/λ, where d = λ/2 is the
antenna spacing, λ is the carrier wavelength and φk̄,k,n is

the direction of UE (k, n) to BS k̄ [21]. In the simulations,
φk̄,k,n is generated as a random angle between 0o and 360o.
For simplicity and without loss of generality, we assume that
γmin
k,n = γ in (19b), rmin

k,n = r in (30b), and ζk,n = ζ,
emin
k,n = e, ∀k, n. Unless specified otherwise, we set the target

minimum EH threshold as e = −20 dBm. In all simulations,
we also set ζ = 0.5, σ2

a = −90 dBm and σ2
c = −90 dBm.

The error tolerance used in the stopping condition is set as
10−3 for all algorithms. All simulations are conducted using
MATLAB 2015b and CVX 2.1 [35].

A. Results for Max-Min Rate Problems (7) and (29)

Algorithm 1, the nonsmooth optimization algorithm of [27]
and the SDR approach are used to solve the PS-based problem
(7), whereas Algorithm 3 is to solve the TS-based problem
(29). Assuming that Pmax = 22 dBW, Figs. 3 and 4 plot
the maximized minimum UE rate for different values of BS
transmit power Pmax

k and BS transmit antenna number M .
Figs. 3 and 4 show that the minimum UE rate improves by
increasing the power budget Pmax

k and the number of BS
antennas M , respectively, due to an increase in the available
radio resources. In Fig. 4, we also evaluate the performance
of the algorithms for different values of the target minimum
EH threshold, e = {−20,−10} dBm. Fig. 4 shows that by
increasing the target EH threshold from e = −20 dBm to
e = −10 dBm, the achievable information rate is reduced since
more time (in the TS-based system) or power (in the PS-based
system) is required to meet the increased EH requirement.
However, it is important to mention that the percentage of
decrease in the information rate for the TS-based system is
quite less than that for the PS-based system.

In addition, we can see from Figs. 3 and 4 that the
performance of Algorithm 1 coincides with the upper bound
obtained by the SDR approach in all the considered simulation
setups. Although the proposed algorithm of [27] also achieves
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Fig. 6. Convergence of proposed Algorithms 1 and 3 for M = 4 and
Pmax
k = 16 dBW.

this bound, it requires much higher computational complexity
than Algorithm 1 as will be analyzed shortly. It should be
noted that Algorithm 1 does not perform any bisection search
as is the case for both the SDR approach and the algorithm of
[27]. Note further that the SDR approach only provides rank-
one matrices W?

k,n in no more than 61.7% of the time [27]. In
contrast, the nonsmooth optimization algorithm of [27] always
returns rank-one matrix solutions, and Algorithm 1 of course
directly gives the optimal vectors w?

k,n because no matrix
optimization is involved. Figs. 3 and 4 also show that transmit
TS-based WIPT system with Algorithm 3 considerably out-
performs the receive PS-based counterpart. Such throughput
enhancement is generally not possible with the receive TS-
based WIPT system as has been reported in the literature. With
its high performance and easy implementation, the transmit
TS-based solution could be an attractive candidate for practical
WIPT systems.

Applying Algorithm 3 for the max-min rate problem (29),
Fig. 5 plots the optimized value of the transmit TS ratio ρ for
different values of the target EH threshold e and the number
of BS antennas M = {4, 5, 6}. As can be seen, by increasing
the target EH threshold e the optimized TS ratio ρ increases
since more time duration is required to fulfill the increased EH
requirement. It is further observed that the optimized value of
the TS ratio ρ is smaller in the presence of a larger number
of BS antennas.

Fig. 6 illustrates the fast convergence of Algorithms 1 and 3
which terminate in as few as 8 and 4 iterations, respectively.
Here, each iteration corresponds to solving one simple QP
(17) in Algorithm 1, one convex problem (43) in Algorithm
3, and one SDP (A.1a)–(A.1f) in the SDR approach. Note that
initializing the proposed Algorithms 1 and 3 only requires a
single iteration.

The computational complexities of Algorithm 1, the nons-
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TABLE I
COMPLEXITY ANALYSIS FOR ALG. 1, SDR APPROACH AND [27] (TO SOLVE PROBLEM (7)), AND ALG. 3 (TO SOLVE PROBLEM (29))

Algorithms avg. # iter scal var lin cons quad cons SD cons
Alg. 1 (PS) 11 60 24 16 0

Algorithm of [27] (PS) 26.5 132 40 0 36
SDR approach (PS) 17 132 40 24 12

Alg. 3 (TS) 6.8 97 25 20 0

mooth optimization algorithm of [27], the SDR method and
Algorithm 3 are O

(
iA1(M + 1)3K3N3(3KN +K + 1)

)
,

O
(
i[26]

(
(M2 +M + 2)KN/2

)3
(6KN +K + 1)),

O
(
iSDR

(
(M2 +M + 2)KN/2

)3
(6KN +K + 1)

)
and

O
(
iA3 (2KNM + 1)3(3KN +2K + 3)

)
, respectively [36].

Here, iA1 = 11 is the average number of times that QP (17)
is solved by Algorithm 1; i[26] = 26.5 is the average number
of times that an SDP is solved by [27]; iSDR = 17 is the
average number of times that the feasibility (convex) SDR
(A.1b)–(A.1f) is solved; and iA3 = 6.8 is the average number
of times that QP (43) is solved by Algorithm 3. Note that
the initialization (46) for Algorithm 3 requires 1.1 iterations
on average. For the particular case of M = 4, N = 4,K = 3
and Pmax

k = 16 dBW, Table I shows the average number of
iterations required (‘avg. # iter.’) as well as the numbers
of scalar variables (‘scal var’), linear constraints (‘lin
cons’), quadratic constraints (‘quad cons’) and semidefinite
constraints (‘SD cons’) of the concerned algorithms. Clearly,
Algorithms 1 and 3 are the most computationally efficient as
they involve the smallest numbers of iterations, variables and
constraints.

B. Results for Min-Max BS Power Optimization Problems (19)
and (30)

Algorithm 2 and the SDR approach are used to solve
problem (19) whereas Algorithm 4 is to solve problem (30).

Figs. 7 and 8 plot the minimized maximum BS transmit
power for different values of the minimum rate r and BS
transmit antenna number M . As expected, the BS transmit
power requirement increases by setting higher target rates and
decreases by using more BS antennas, respectively. In Fig. 8,
we also evaluate the performance of the proposed algorithms
for different values of the target minimum EH threshold
e = {−20,−10} dBm. By increasing the target EH threshold
from e = −20 dBm to e = −10 dBm, the required BS transmit
power increases to meet the increased EH requirement. As can
be observed, Algorithm 2 achieves the lower bound given by
SDR under all the network settings considered. Furthermore,
the transmit TS-based WIPT system by Algorithm 4 clearly
outperforms the receive PS-based WIPT system by at least 3.5
dB in power.

Applying Algorithm 4 for the min-max BS power opti-
mization problem (30), Fig. 9 plots the optimized value of
the transmit TS ratio ρ for different values of the target EH
threshold e and the number of BS antennas M = {4, 5, 6}.
Similar trends for the optimized TS ratio for Algorithm 3
in Fig. 5 can now be observed for Algorithm 4 in Fig. 9.
Finally, Fig. 10 shows that Algorithm 2 quickly converges
within 3 iterations to the theoretical lower bound obtained
after solving the relaxed SDR (A.2a), (A.2b), (A.1e), (A.1f)
[see AppendixA]. In this algorithm, each iteration corresponds
to solving one SOCP (24). On the other hand, Algorithm 4
requires about 6 iterations to converge where each iteration
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Fig. 10. Convergence of Algorithms 2 and 4 for M = 5 and r = 2.31
bits/sec/Hz.

solves one QP (48).
The computational complexities of Algorithm 2, the

SDR method and Algorithm 4 are O
(
iA2(M + 2)3K3

N34KN
)
, O

((
(M2 +M + 2)KN/2

)3
6KN

)
and

O
(
iA4(2KNM + 1)3(4KN +K + 2)

)
, respectively [36].

Here iA2 = 3 and iA4 = 6.99 are the average number of
iterations required for Algorithms 2 and 4 to converge.
For the particular case of M = 4, N = 4,K = 3 and
r = 2.316 bit/sec/Hz, Table II shows the required number
of variables and constraints, where ‘SOC cons’ denotes the
required number of second-order cone constraints. Although
Algorithm 4 for the transmit TS-based WIPT system requires
more computational effort than Algorithm 2 for the receive
PS-based WIPT system, the former system outperforms the
latter system as previously shown in Figs. 7 and 8.

V. CONCLUSIONS

In this paper, we have jointly designed the BS transmit
beamformers with either the receive PS ratios or the transmit
TS ratio for wireless energy harvesting multicell network.
The design objectives include maximization of the minimum
data rate among all UEs and minimization of the maximum
BS transmit power. To solve the highly nonconvex problem
formulations, we have proposed new iterative optimization
algorithms of low computational complexity that are based on
quadratic programming and second-order cone programming.
Simulation results with practical parameters show that the
algorithms converge quickly and that the transmit TS-based
WIPT system outperforms the receive PS-based WIPT system.
In the case of PS-based designs, the proposed algorithms
tightly approach the theoretical bound in the considered nu-
merical examples.

APPENDIX A
SDR-BASED APPROACH TO SOLVE PROBLEMS (7) AND (19)

In the SDR-based approach, problem (7) in the beamform-
ing vectors wk,n is recast as the following problem in their

outer products Wk,n , wk,nw
H
k,n < 0:

max
Wk,n∈CM×M ,
αk,n∈(0,1), γ,
∀ k∈K, n∈Nk

γ (A.1a)

s.t.
1

γ
Tr{Hk,k,nWk,n} −

∑
n̄∈Nk\{n}

Tr{Hk,k,nWk,n̄}

−
∑

k̄∈K\{k}

∑
n̄∈Nk̄

Tr{Hk̄,k,nWk̄,n̄}

≥ σ2
a +

σ2
c

αk,n
, ∀k ∈ K, n ∈ Nk

(A.1b)∑
n∈Nk

Tr{Wk,n} ≤ Pmax
k , ∀k ∈ K (A.1c)∑

k∈K

∑
n∈Nk

Tr{Wk,n} ≤ Pmax (A.1d)∑
k̄∈K

∑
n̄∈Nk̄

Tr{Hk̄,k,nWk̄,n̄}

≥
emin
k,n

ζk,n(1− αk,n)
− σ2

a, ∀k ∈ K, n ∈ Nk
(A.1e)

Wk,n < 0, ∀k ∈ K, n ∈ Nk (A.1f)
rank(Wk,n) = 1, ∀k ∈ K, n ∈ Nk. (A.1g)

Let us denote W , [Wk,n]k∈K,n∈Nk . By fixing γ and
further ignoring the difficult rank-one constraint (A.1g), (A.1)
is relaxed to the feasibility SDP (A.1b)–(A.1f). Because (A.1b)
is the only constraint that involves γ and it is monotonic in
γ, the optimal value of γ can be found via a bisection search
in an outer loop. The optimization process is repeated until
(W,α, γ) converges to (W?,α?, γ?), ∀k ∈ K, n ∈ Nk,
in which case (A.1a)–(A.1f) is solved. The obtained solution
by SDR approach is not guaranteed to be of rank one,
i.e., rank(W?

k,n) > 1 is mostly observed. Thus, SDR-based
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TABLE II
COMPLEXITY ANALYSIS FOR ALG. 2 AND SDR APPROACH (TO SOLVE PROBLEM (19)), AND ALG. 4 (TO SOLVE PROBLEM (30))

Algorithms avg. # iter scal var lin cons quad cons SD cons SOC cons
Alg. 2 (PS) 3 72 12 24 0 12

SDR approach (PS) 1 132 36 24 12 0
Alg. 4 (TS) 6.99 97 25 28 0 0

solution can serve as an upper bound for max-min rate problem
(7) .

Similarly, problem (19) in beamforming vectors wk,n is
recast as the following rank-one constrained SDP in the outer
products Wk,n , wk,nw

H
k,n < 0, ∀k ∈ K, n ∈ Nk:

min
Wk,n∈CM×M ,
αk,n∈(0,1),
∀ k∈K, n∈Nk

max
k∈K

∑
n∈Nk

Tr{Wk,n} (A.2a)

s.t. Tr{Hk,k,nWk,n} ≥ γmin
k,n

 ∑
n̄∈Nk\{n}

Tr{Hk,k,nWk,n̄}

+
∑

k̄∈K\{k}

∑
n̄∈Nk̄

Tr{Hk̄,k,nWk̄,n̄}+ σ2
a +

σ2
c

αk,n

 ,

∀k ∈ K, n ∈ Nk
(A.2b)

(A.1e), (A.1f), (A.1g). (A.2c)

By ignoring the rank-one constraint (A.1g), the optimal solu-
tion

∑
k∈K

∑
n∈Nk Tr{W?

k,n} of the SDR formed by (A.2a),
(A.2b), (A.1e), (A.1f) provides a lower bound of the actual
optimal value of problem (19).
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