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Abstract  

Biomaterial related infections have a significant impact on society and are a major 

contributor to the growing threat of antimicrobial resistance. Current licensed antibiotic 

classes struggle to breakdown or penetrate the exopolysaccharide biofilm barrier, resulting in 

sub-therapeutic concentrations of antibiotic at the surface of the biomaterial, treatment failure 

and increased spread of resistant isolates. This paper focuses for the first time on the ability 

of ultrashort Fmoc-peptide gelators to eradicate established bacterial biofilms implicated in a 

variety of medical device infections (Gram-positive: Staphylococcus aureus, Staphylococcus 

epidermidis and Gram-negative Escherichia coli, Pseudomonas aeruginosa). The effect of 

increasing the cationicity of the FmocFF via addition of di-lysine and di-orntithine was also 

studied with regard to antibacterial activity. Our studies demonstrated that Fmoc-peptides 

(FmocFF, FmocFFKK, FmocFFFKK, FmocFFOO) formed surfactant-like soft gels at 

concentrations of 1% w/v and above using a method of glucono-δ-Lactone pH induction. The 

majority of Fmoc-peptides (0.5-2% w/v) demonstrated selective action against established 

(grown for 24 hour) biofilms of Gram-positive and Gram-negative pathogens with FmocFF 

and FmocFFKK particularly promising. These results are likely to increase the clinical 

translation of short-peptide gelator platforms within the area of anti-infective biomaterials 

including as wound dressings and coatings for prostheses, catheters, heart valves and surgical 

tubes. In the long-term this will lead to wider treatment choices for clinicians and patients 

involved in the management of medical device infections and reduce the burden of 

antimicrobial resistance. 
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Abbreviations 

N-α-9-Fluorenylmethoxycarbonyl (Fmoc) 
2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) 
3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) 
Advanced Chemistry Development labs (ACD/I-labs) 
Colony forming units per millitre (CFU/mL) 
Deuterium chloride (DCl)  
Deuterium oxide (D2O)   
Dichloromethane (DCM) 
Dimethylformamide (DMF) 
Fmoc-L-Lysine (Fmoc-Lys(Boc)-OH) 
Fmoc-L-Ornithine (Fmoc-L-Orn(Boc)-OH) 
Glucono-δ-lactone (GdL) 
Hydrochloric acid (HCl) 
International Organisation for Standardisation (ISO)  
loss moduli (Gʺ)  
Minimum inhibitory concentration (MIC)   
Minimum bactericidal concentration (MBC) 
Minimum biofilm eradication concentration (MBEC) 
Müller Hinton Broth (MHB)  
N,N-Diisopropylethylamine (DIPEA) 
Phosphate Buffer Saline (PBS) 
Sodium  hydroxide (NaOH) 
Sodium chloride (NaCl)  
Sodium deuteroxide (NaOD) 
storage moduli (Gʹ)  
Three dimensional (3D)  
Trifluoroacetic acid (TFA) 
Triisopropylsilane (TIPS) 

 

Introduction  

Peptide nanomaterials are becoming increasingly prevalent throughout pharmaceutical 

research as an innovative solution to healthcare’s greatest challenges, for example cancer [1], 

HIV/AIDs [2] and tissue engineering [3]. Of particular interest is the use of ultrashort 

peptides, composed of seven or less amino acid monomer units, with the ability to form 



supramolecular structures in response to changes in physiological stimuli (pH [4], enzymes 

[5], ionic strength [6]). Ultrashort peptides are advantageous with respect to ease of synthesis, 

reduced cost compared to larger peptides/proteins used in biomedical therapies and are more 

accessible to upscale to manufacturing quantities for pharmaceutical applications [7]. The 

most studied of these ultrashort variants are the fluorenyl-9-methoxycarbonyl (Fmoc) 

dipeptides composed of a highly aromatic π-conjugate electron system attached to a variety 

of peptide sequences including leucine-glycine (LG), phenylalanine-glycine (FG) [8], 

tyrosine-threonine (YT), tyrosine-serine (YS), tyrosine-asparagine (YN) [9], tyrosine-leucine 

(YL) [10] and most notably di-phenylalanine (FF) [11]. Interest in Fmoc-peptides is primarily 

due to its common use as an amino acid protecting group in peptide synthesis and it has been 

successfully utilised as hydrogels for 3D tissue culture [12], within regenerative medicine 

[13], as sensors [14] and as a drug delivery platform [15]. 

Peptide hydrogels are promising molecules within the area of bacterial infection prevention 

and treatment [9,16-18]. Resistance to the current supply of antibiotics is increasing at an 

alarming rate and there has been a relative lack of alternative therapeutic strategies translating 

clinically. Biomaterial infection is a major contributor due in part to the development of a 

surface attached exopolysaccharide bacterial biofilm. This biofilm restricts penetration of 

antibiotics to the medical device surface resulting in increased tolerance to recommended 

therapeutic doses of antibiotics [19]. A number of synthetic hydrogel-based coating are 

currently utilised to prevent the growth of bacteria and biofilm development at the medical 

device surface [20]. Peptide hydrogels, demonstrating antibacterial properties, may serve as 

promising molecules to alleviate the burden of biomaterial infections. The ability of FmocFF 

peptide to eradicate biofilm formation has, to our knowledge, never previously been studied. 

This paper will assess whether FmocFF peptides and cationic ultrashort variants 

(FmocFFKK, FmocFFFKK, FmocFFOO) can eradicate preformed 24 hour biofilms of Gram-

positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative 

(Escherichia coli, Pseudomonas aeruginosa) bacteria commonly implicated in biomaterial 

infections. 

 

Materials and methods  

Peptide synthesis, purification and identification 



N-α-9-Fluorenylmethoxycarbonyl (Fmoc)-lysine and Fmoc-phenylalanine conjugated Wang 

resin, Fmoc-L-Phenylalanine (Fmoc-Phe-OH), Fmoc-N-ε-t-Butyloxycarbonyl-L-Lysine 

(Fmoc-Lys(Boc)-OH), Fmoc-L-Ornithine (Fmoc-L-Orn(Boc)-OH), and 2-(1H-benzotriazol-

1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) were purchased from Merck 

Chemicals Ltd (Nottingham, U.K.).  Piperidine, dichloromethane (DCM), methanol, diethyl 

ether, dimethylformamide (DMF), N,N-Diisopropylethylamine (DIPEA) were obtained from 

Sigma Aldrich (Dorset, U.K.). Trifluoroacetic acid (TFA), Triisopropylsilane (TIPS) and 

thioanisole were obtained from Tokyo Chemical Industry Ltd (Oxford, U.K.). FmocFF, 

FmocFFKK, FmocFFFKK and FmocFFOO (Figure 1) were synthesised using standard solid-

phase Fmoc peptide synthesis protocols using methods previously demonstrated by our group 

[4]. Peptides were cleaved from Wang resin, producing carboxylic acid terminated structures, 

via a mixture of 95% v/v TFA, 2.5% v/v TIPS and 2.5% thioanisole (2 hours, room 

temperature). The identity of each peptide was confirmed via mass spectroscopy (Finnigan 

LCQ Ion Trap Mass Spectrometer, Thermo-Finnigan, San Jose, USA) (Table S1). Peptide 

purity was analysed via reverse-phase HPLC using an Agilent 1260 Infinity system, fitted 

with a Gemini C18, 250mm× 4.6mm column, a 100-80% acetonitrile gradient (20 minutes) in 

0.05% TFA water at a flow rate of 1.5mL/minute. All peptides were found to have greater 

than 90% purity. 

 

pH-triggered peptide gelation via acid titration and glucono-δ-lactone induction 

Fmoc-peptide hydrogels were prepared as previously outlined via pH-triggered induction 

methods [21]. Two methods were studied to trigger gelation, namely titration with 0.5 M 

hydrochloric acid (HCl) and use of glucono-δ-lactone (GdL) induction. In order to minimize 

variation in peptide gel structure and strength, a series of formulation steps were carefully 

followed as outlined in Table 1 for HCl titration and Table 2 for GdL induction. The method 

of peptide hydrogel preparation has previously been demonstrated to be important in dictating 

the overall ability to form hydrogels and in particular their mechanical properties (strength, 

flow). Each Fmoc-peptide was suspended in deionised water and dissolved fully by the 

addition of 1 M sodium hydroxide (NaOH) resulting in an increase of pH to pH 9. 

Subsequent reduction in pH via titration to pH 7 using 0.5 M HCl enabled their ability to 

form hydrogels to be explored. The use of GdL was hypothesised to allow a slow and 

controlled reduction in pH of the peptide solution over time due to hydrolysis of GdL to D-



gluconic acid [21]. Peptides were dissolved in 1.6 mL water and sonicated (Branson 3510 

sonic bath, Branson Ultrasonics, Connecticut, USA) for 2 minutes at the highest setting 

(42KHz ± 6%). Addition of 1 M NaOH facilitated complete dissolution (pH 9). The stock 

solution was then made up to a final volume of 2 mL with water and GdL (10 mg) was added 

to this basic peptide solution. Changes in pH were monitored using Whatman pH indicator 

paper (pH 1-14) purchased from Sigma-Aldrich (Dorset, U.K.). Critical minimum gelation 

concentration (% w/v) for each peptide was defined, where possible, by a gel inversion assay 

24 hours after initial preparation to ensure full hydrogel development. Flow characteristics 

were used to determine peptides which formed gels or solutions. Gels remaining suspended 

and solutions demonstrating flow properties when inverted. 

 

Fourier transform infra-red spectroscopy 

FTIR spectra were utilized to study peptide secondary structures and were obtained using a 

Jasco 4000 series FTIR spectrometer (Jasco Inc. Tokyo, Japan) at a resolution of 2 cm-1 and a 

wavelength range of 4000-400 cm-1 (128 scans). Peptide samples were prepared as described 

above (Table 1) but using deuterated solvents, namely deuterium oxide (D2O), sodium 

deuteroxide (NaOH) and deuterium chloride (DCl) (Sigma Aldrich, Gillingham, Dorset, 

U.K.). This was to eliminate strong overlapping absorption bands in the amide I region, at 

approximately 1640 cm−1, observed in the presence of standard water [22]. Peptide 

hydrogels/solutions were sandwiched between two 25mm2 calcium fluoride discs (0.05 mm 

spacer). A D2O, DCl, NaOD mixture was used as a background and subtracted from all 

spectra.   

 

Oscillatory rheology   

Rheological measurements were performed using an Anton Paar Physica MCR301 rheometer 

(St Albans, U.K.). A cup (7 mL Sterilin plastic sample vial, diameter 14.5 mm) and four-

blade vane (8.5 x 8.5 mm) measuring system was used to perform frequency sweeps. For 

frequency 2 mL of the gels were prepared as described previously using the GdL induction 

method (Table 2) [21]. All experiments were performed at 25 °C from 1-100 rad s-1 at a strain 

of 0.0003%. 

 



Biofilm susceptibility assay 

Fmoc-peptides were evaluated for their ability to reduce the viability of established biofilms 

(grown for 24 hours) of Gram-positive (S. epidermidis (ATCC 35984) and S. aureus (ATCC 

29213)) and Gram-negative (P. aeruginosa (PAO1) and E. coli (ATCC 11303)) bacterial 

pathogens implicated in nosocomial and biomaterial related infections (obtained from LGC 

Standards, London, U.K.) as previous demonstrated by our group [4]. Bacterial cultures were 

prepared in Müller Hinton broth (MHB) and incubated in a gyro-rotary incubator at 37°C 

overnight prior to optically adjusted dilution to 2 × 106 colony forming units per mL 

(CFU/mL) in MHB. 100 μL of each bacterial culture was placed in separate wells of sterile 

Nunc 96-well microtitre plates (VWR International, Leicestershire, U.K.). Biofilms were 

formed on the surface of the well over 24 hours under the shear stress (100 revolutions per 

minute) provided by a Gallenkamp gyrorotary incubator at 37 °C. After 24 hour incubation 

bacterial cultures were decanted and each microtitre well irrigated thrice with 200μL of 

sterile autoclaved 0.9% w/v sodium chloride (NaCl) to remove non-adhered bacteria. Washed 

plates were gently tapped upside down on a sterile paper towel to remove residual wash. 100 

μL of each Fmoc-peptide (0.5-2% w/v) was introduced to each biofilm containing well and 

incubated for 24 hours at 37°C in a gyro-rotary incubator.  Plates were again washed thrice 

with 0.9% w/v NaCl and biofilm viability was determined using alamarBlue® (Biorad, 

Kidlington, U.K.) cell viability assay. A 20% v/v solution of alamarBlue® was prepared in 

MHB and 200 μL was added to each well of the 96-well plates and incubated until fully 

developed and represented by a colour change from blue to pink (normally 2 hours for these 

bacterial isolates). Control wells included those containing bacteria only in PBS as the 

negative control (100% survival) and 70% ethanol as the positive control (100% kill). In a 

method previously outlined by our group hydroxyproyl methylcellulose (HPMC) was utilized 

as an inert non-antibacterial hydrogel control [17]. It was determined that the process of 

rinsing peptide hydrogels from the microtitre plate does not result in significant removal of 

adhered bacteria or adversely impact on biofilm viability. Developed plates were read at 570 

nm using a Tecan Sunrise plate reader (Tecan Ltd, Reading, U.K.). The percentage reduction 

in biofilm viability was determined using the following equation. 

100
70

Peptide
0

0
5700

0570

570570 x
PBSAbsEthanolAbs

PBSAbsAbsviabilityreduction
nmnm

nmnm












−
−

=
 



 (1) 

Haemolysis assay 

The ability of Fmoc-peptides to lyse mammalian cell membranes was established using a 

haemolysis assay commonly employed to study antimicrobial peptide toxicity [23]. 100 μL of 

fresh equine erythrocytes (Laboratory supplies, Antrim, U.K.) were treated with 100 μL of 

Fmoc-peptides (0.5-2.0% w/v) for 1 hour at 37 °C in sterile Nunc 96-well microtitre plates 

with six replicates at each concentration. Control wells included PBS (0% haemolysis, 

negative control) and 0.1% v/v Triton X-100 (100% haemolysis, positive control, obtained 

from Sigma Aldrich, Dorset, U.K). After 1 hour incubation, erythrocytes were centrifuged at 

1000 g in 1.5 mL Eppendorfs® (Sigma Aldrich, Dorset, U.K.) and aliquots of the supernatant 

used to determine haemoglobin released in a fresh 96-well microtitre plate read at 405 nm 

using a Tecan Sunrise plate reader and Equation 2 below.  
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Cell viability assay 

The toxicity of Fmoc-peptides were also evaluated using a tissue culture cell viability assay 

and the International Organisation for Standardisation (ISO) biomaterial toxicity cell line 

NCTC L929 (ATCC CCL 1) murine fibroblast subcutaneous connective tissue (LGC 

Standards, London, U.K.) [4]. Minimum Essential Medium (MEM) containing L-glutamine, 

phenol red with Earle’s Salts, supplemented with 1% v/v penicillin/streptomycin and 10% v/v 

horse serum was used as a culture medium (Invitrogen, Paisley, U.K.). Cells were incubated 

at 37 °C in an atmosphere of 5% CO2 and subcultured at 80-90% confluency. Cells were 

cultured until at least third passage, inoculated at 1 x 104 cells per well in sterile Nunc 96-well 

microtitre plates and incubated for 24 hours. The media was removed and the surface 

attached cells exposed for 24 hours to 100 μL of a range of Fmoc-peptide concentrations 

studied for pH triggered hydrogelation (0.5-2% w/v) with six replicates for each 

concentration. Controls included 70% ethanol (100% kill, positive control) and PBS (100% 

viability, negative control). Cell viability was studied using alamarBlue® diluted to 10% v/v 

with supplemented MEM. The assay was allowed to develop for approximately 10 hours as 



optimal for the NCTC L929 cell line. Following development absorption was measured at 

570 nm using a Tecan Sunrise plate reader and cell viability was calculated using Equation 3 

below.  
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Statistical analysis 

Statistical analyses were performed using GraphPad Prism 6. A Kruskal-Wallis test, with a 

Dunn’s multiple comparisons test used to identify individual differences between reductions 

in biofilm viability for each Fmoc-peptide concentration relative to the negative PBS control. 

A Dunn’s multiple comparisons test was also used to compare the biofilm eradication 

efficacy of same Fmoc-peptide at varying concentrations (2, 1.5, 1.0 and 0.5%, same 

pathogen) and to compare the difference in biofilm eradication efficacy for each peptide at 

the same concentration (FmocFF, FmocFFKK, FmocFFFKK, FmocFFOO, same pathogen) . 

A Kruskal-Wallis test, followed by a Dunn’s multiple comparisons test was also utilised for 

statistical analysis relating to tissue culture cytotoxicity/cell viability data by comparison of 

percentage viability for the concentrations of Fmoc-peptides employed (2-0.5% w/v) to the 

PBS negative control (100% viability). Haemolysis data was also compared using similar 

statistical methods. Percentage haemolysis was compared to the negative PBS non-

haemolytic control which corresponded to 0% haemolysis. Kruskal-Wallis tests were 

employed rather than parametric Analysis of Variance (ANOVA) as data was shown to be 

non-normally distributed and therefore non-parametric using the Kolmogorov and Smirnov 

method.  In all cases a probability of p < 0.05 denoted significance. 

 

Results and Discussion  

Gel inversion assay 

Vial inversion provides a simple and quick assessment of the minimum critical gelation 

concentrations [24, 25]. This data provides a range of concentrations relating to Fmoc 



hydrogelation that can then studied for antibiofilm activity. An increase in pH via addition of 

1 M NaOH results in dissolution of Fmoc-peptides due ionisation of the carboxylic acid 

terminus. Addition of acid restores a proton to the carboxylate anion and has been previously 

reported to form homogenous FmocFF hydrogels at concentrations greater than 0.22% w/v 

and a pH less than 8 [12]. The rationale for studying two different methods of acidification is 

due to previous observations that pH triggered gelation is a kinetically driven process for 

short Fmoc peptides, whereby the rate of acidification significantly affects the form and 

strength of supramolecular hydrogels [8, 21]. There was a difference in hydrogel formation 

between the two methods in terms of minimum critical gelation concentrations (% w/v) for 

FmocFF (Table 3). HCl mediated gelation demonstrated difficulty with regard to forming 

homogenous hydrogels at previously reported concentrations for FmocFF with a minimum 

critical gelation concentrations of 1.5% w/v. GdL induced gelation was consistent with 

previously reported critical gelation concentrations for FmocFF (0.5% w/v, lowest 

concentration tested), providing evidence of a more sustained and kinetically favourable 

lowering of pH over time by slow hydrolysis of GdL to gluconic acid in the presence of water 

[8]. 

Peptide self-assembly is dependent upon hydrophobicity, steric hindrance and the ability of 

the peptide to hydrogen bond with both itself and the surrounding water molecules. The 

ability to form higher ordered structures, for example supramolecular hydrogels, is relative to 

the concentration of peptide residues present [26]. Consideration must also be given to the 

forces between the peptide and solvent (primarily water) at a molecular level and the 

hydrogen bonds that form between water molecules and hydrogen bond donators (amide 

bond) which tend to cause dissolution of peptide if above the optimal level required for 

gelation. As for all polymers, hydrogelation is a delicate balance between the forces that drive 

dissolution and those that govern precipitation [27]. Gazit proved that assembly occurs with 

the relatively hydrophobic dipeptide FF due to participation of its benzene ring motif in 

aromatic and π-π interactions and forms a central role in our Fmoc-peptide motif [28]. Highly 

conjugated systems, for example the aromatic groups present in phenylalanine and Fmoc, are 

comprised of overlapping p electron orbitals. These groups are located on the N terminus and 

their nature enables π-stacking of Fmoc-peptide molecules. For this reason we decided to 

include an extra phenylalanine moiety to study its effect on hydrogelation. There was no 

significant difference observed in minimum critical gelation concentrations for FmocFFKK, 

FmocFFFKK and FmocFFOO with the formation of opaque white hydrogels at 1% w/v for 



both pH induction methods (Figure 2). Lysine and ornithine residues increase the 

hydrophilicity of the peptide motif, in theory, by possessing more hydrogen bond donators 

(primary amine R-group and extra amide bonds). These groups would also exist in a cationic 

form at physiological pH, as pH would be less than the predicted pKa for the R-group primary 

amine of lysine (10.2-10.8) and ornithine (10.1-10.7), using the Advanced Chemistry 

Development labs (ACD/I-labs) pKa predictor. An expected increase in the minimum critical 

gelation concentration was not observed for cationic variants using HCl titration (Table 3). 

GdL induction is likely to be a truer reflection of the gelation process and is less prone to 

experimental deviations and artefacts due to pH related assembly kinetics [8, 21]. Therefore it 

was selected as the preferred method for gel preparation in the studies below.  

 

Fourier transform infrared spectroscopy 

FTIR enabled the peptide secondary structures of Fmoc-peptides to be determined and their 

resultant spectra are outlined in Figure 3. Analysis was performed at concentrations above the 

minimum critical gelation concentration for each peptide (2% w/v). The FTIR spectra 

obtained indicate that the peptides self-assemble to form higher ordered β-sheet secondary 

structures as evidenced by the presence of discrete shoulders at ~1570 cm-1  and a trough in 

transmittance at ~1625 cm-1. Decrease in transmittance at ~1675 cm-1 relates to antiparallel β-

sheet formation. These observations correlate to what has been observed previously for 

FmocFF secondary structures and unsurprisingly confirm similar secondary structures for 

supramolecular peptide hydrogels containing basic amino acids [29].   

 

Oscillatory rheology 

Rheological analysis confirmed the Fmoc-peptides proved to be relatively poor gelators using 

the formulation guidelines outlined in Table 2. This resulted in the formation of surfactants of 

low viscosity as highlighted in Figure 4. The loss moduli (Gʺ) is consistently higher than the 

storage moduli (Gʹ) for each Fmoc-peptide. The highest value of gel strength FmocFF 

achieved was G′ of 46 Pa and was easily disrupted at low shear frequencies (~2 rads/s). 

Similar values were obtained when di-lysine (FmocFFKK), di-ornithine (FmocFFOO) and an 

extra phenylalanine (FmocFFFKK, data not shown) was incorporated into the FmocFF 

template. It is likely these relatively low values for elasticity can be attributed to the method 



of gel preparation (pH trigger) as demonstrated by the variation in gel strength for FmocFF 

preparations throughout the literature [30]. Smith and colleagues achieved a G′ of 104 Pa by 

the slow addition of concentrated HCl [11]. The FmocFF peptides investigated by Tang 

demonstrated very weak gel elasticity, possessing a G’ less than 1 Pa. These were formulated 

by a combination of diluted HCl (0.085 M) heating to 75−80 °C, vortexing and sonication 

[31]. Mixing and handling also highly influences the strength of Fmoc hydrogels [32]. A brief 

sonication step was introduced (Table 2) to our formulation, before addition of 1M NaOH, to 

increase breakdown of Fmoc-peptide aggregates and improve homogeneity. In spite of the 

low gel strength of our formulations low viscosity synthetic surfactants, including pluronics, 

have demonstrated potential for preventing bacterial attachment and biofilm formation when 

utilised as surface modifiers for model biomaterial surfaces [33, 34]. Therefore the 

antibiofilm activity of low viscosity Fmoc-peptides warrants further investigation.   

 

Biofilm susceptibility 

Biofilms are the key bacterial phenotype implicated in medical device infection and 

demonstrate increased tolerance to conventional antibiotics [35]. Our investigations centered 

on eradicating established preformed 24 hour biofilms of a broad-spectrum of pathogens 

implicated in a variety of medical device/biomaterial infections. Gram-positive S. aureus and 

S. epidermidis are causative pathogens of intravenous catheter, wound, prosthesis, 

endotracheal tubes and heart valve infections, whilst Gram-negative P. aeruginosa and E. 

coli are attributed to chronic wounds and implants that mediate gastro-intestinal and urinary 

function (e.g. urinary catheters) [20]. Fmoc conjugated hydrogels demonstrated broad-

spectrum antibiofilm activity with FmocFF in particular displaying significant activity against 

all pathogens at all concentrations tested (0.5-2% w/v) relative to the negative PBS control. 

Overall antibiofilm activity did not appear to concentration dependent for each of the 

individual Fmoc-peptides (FmocFF [Figure S3], FmocFFKK [Figure S4], FmocFFFKK 

[Figure S5], FmocFFOO [Figure S6] at the concentrations tested. Only FmocFFOO 

demonstrated significant differences in the percentage reduction in biofilm viability when the 

lowest concentration (0.5% w/v) and highest (2% w/v) were directly compared for Gram-

positive (S. aureus and S. epidermidis) biofilm reduction. This is likely due to the relatively 

high concentrations of peptides tested with concentrations chosen based on previously 

reported critical gelation concentrations for FmocFF. For example the lowest concentration 



tested (0.5% w/v) corresponds to 5 mg/mL of peptide which is significantly higher than the 

reported minimum inhibitory (MIC), bactericidal (MBC) and biofilm eradication (MBEC) 

concentrations for our own ultrashort non-gelating lipopeptide Fmoc-OOWW-NH2 [23] and 

the functionalised Fmoc-cationic amphiphiles of the Das group [36]. These values were 

found to be in the microgram per mL range for many of the same species (S. aureus, E.coli, 

P. aeruginosa). We decided to focus on biofilm phenotypes due to their increased prevalence 

in clinical infection but also because obtaining true MIC values visually or 

spectrophotometrically within microtitre plates is often difficult with Fmoc gelators as 

hydrogelation and/or precipitation can often be misled for bacterial growth.  

FmocFFFKK was the only peptide to display no significant biofilm reduction against any of 

the microorganisms tested at the highest concentration tested (2% w/v) when compared to the 

PBS negative control (Figure 5, 6, S1, S2). It was also the only Fmoc-peptide to demonstrate 

significant reduction in antibiofilm activity when compared directly to the same 

concentrations of FmocFFKK, FmocFFOO and particularly FmocFF (Figures S7-S10). There 

was evidence of peptide precipitation when FmocFFFKK hydrogels were prepared. This may 

have caused a reduction in the quantity of freely available peptide in solution and therefore a 

reduction in antibiofilm activity. Alteration in the hydrophobicity of these peptides may also 

have resulted impaired interaction with bacterial membranes and may explain why variable 

and less effective antibiofilm activity was observed in FmocFFFKK. A proposed optimal 

hydrophobicity of 40-60% has been suggested and excessive hydrophobicity, in this case 

through the introduction of an extra phenylalanine, may be associated with greatly reduced 

antimicrobial activity [37, 38]. 

FmocFFOO demonstrated significant reduction against only Gram-positive staphylococcal 

species at 2% w/v (Figures 5 and S1). Only FmocFF showed significant reduction in biofilm 

viability for all isolates at 0.5% w/v. Incubation with 2% w/v FmocFF resulted in significant 

mean viable biofilm reduction values greater than 90% for all pathogens (93% S. aureus 

[Figure 5], 97% E. coli [Figure 6] and 92% for P. aeruginosa [Figure S2]). By comparing the 

findings of this work to that of Paladini, Debnath and Iwansyah who targeted planktonic 

bacteria, it can be seen that the FmocFF conjugates investigated in this work show promising 

activity against the more resistant biofilm forms [36, 39, 40]. FmocFFKK (2% w/v) also 

demonstrates broad-spectrum activity with an 82% reduction in viable E. coli and S. aureus 

biofilms.  It may be possible that improved viscosity may increase the ability to bind and trap 

bacterial biofilm cells. FmocFF, prepared by GdL induction, is the only Fmoc-peptide to 



possess at critical gelation concentration below 1% w/v (0.5% w/v, Table 3).  Some 

investigations have discovered that assembly state, structural conformation, molecular 

folding and bulk mechanical properties are important in conferring antibacterial activity to 

hydrogels [2, 41-43]. Li and colleagues recently developed an anion sponge which enabled 

interaction with negatively charged structures in bacterial membranes resulting in cell lysis 

due to the cationic nature and detergent-like effects of their hydrogel [43]. Hydrogelation 

alone is unlikely to be a significant factor to eradicate biofilms, for example by limiting the 

movement and availability of nutrients and mediators of biomolecular processes. This is 

especially true for biofilms whereby bacteria successfully exist within the soft extracellular 

polymeric architecture of the biofilm matrix. The lack of efficacy of HPMC hydrogel controls 

in previous studies by our group also reduces the likelihood that hydrogelation is a standalone 

factor for antibacterial activity [4].  

FmocFF peptides have been utilised previously as a platform for antibacterial drug delivery 

but mainly against more antibiotic susceptible, free-flowing planktonic phenotype. A study 

by Paladini and colleagues utilised FmocFF hydrogels as a delivery system for 2% silver 

nanoparticles [39]. This resulted in a 99% reduction in the planktonic form of S. aureus with 

the investigators hypothesising a potential use for this as technology a wound dressing. 

However the study utilised silver nanoparticles as the active antibacterial molecule, whereas 

FmocFF served as a biologically inert medium. A similar study by Debnath investigated the 

antibacterial activity of a range of Fmoc-peptide pyridinium-functionalised cationic 

amphiphiles [36]. They discovered these molecules to be active against a broad-spectrum of 

planktonic bacteria, namely S. aureus, E. coli and P. aeruginosa. This is likely due to 

detergent-like effects of cationic hydrogels when in contact with hydrophobic anionic 

bacterial cell membranes as proven previously for Fmoc phenylalanine and leucine peptide 

co-assemblies [40]. This phenomenon is also observed in the antimicrobial activity of other 

notable self-assembling peptides platforms, for example Schneider’s group MAX and ARG 

peptide gelators [18, 44]. From our results we also believe that the FmocFF motif is 

responsible for introducing toxicity and antimicrobial activity to the peptide most likely due 

to its high aromaticity and surfactant-like properties. The introduction of cationic species has 

negligible effects on antibiofilm activity when direct statistical comparisons are made at the 

same concentrations and bacterial species (Figures S3-S6). 

 



Haemolysis and cell viability 

With the rise of nanotechnology and increased possibilities with regard to their use as 

therapeutics it has become critically important that their relative toxicity profiles are fully 

defined. The haemolysis assay provides a rapid visual indicator of the membrane-targeted 

toxicity of antimicrobial peptides. It has additional importance in the context of this work as 

the potential future applications of these Fmoc-peptides is as antimicrobial coatings for 

intravenous catheters where interaction with blood components, including red blood cells, is 

prevalent. The Fmoc peptides (Figure 7) demonstrated significant haemolytic activity across 

the majority of concentrations tested. Only 1% and 0.5% w/v FmocFFKK demonstrated no 

significant haemolysis relative to the negative PBS control (0.5% w/v: 19.9% haemolysis, 1% 

w/v: 25.8% haemolysis). These are relatively high values compared to previous values relating 

to cationic antimicrobial peptides investigated by our group, however as with antimicrobial 

investigations the concentrations in this study are in the milligram per mL range rather than 

microgram per mL concentrations of previous studies [4], [45]. It is likely that the 

hydrophobicity of the aromatic Fmoc and phenylalanine motifs is providing significant scope 

for hydrophobic interactions with lipids present in the membrane of erythrocytes resulting in 

significant haemolysis. Investigations involving the self-assembling peptide RADA16-1 show 

that not all peptides are in fact haemolytic. RADA16-1 demonstrated haemostatic activity with 

entrapment of blood components within nanofibres forming a morphologically similar fibre-

based clot to fibrin clots formed in the traditional blood-clotting cascade [47]. This highlights 

the potential benefit of assembling peptides as topical biomaterials for wound healing and as 

therapies for haemorrhagic conditions [48]. The haemolysis (Figure 7) and NCTC 929 cell 

cytotoxicity (Figure 8) results are not in good agreement. Whilst the haemolysis assay provides 

a good reflection of membrane toxicity, cell cytotoxicity via tissue culture analysis provides a 

more accurate reflection of the influence of Fmoc-peptides on the erythrocytes. The major 

limitation of haemolysis assays are that it is susceptible to osmotic variations in the test media. 

Fmoc-peptides were formulated according to the method of GdL induction (Table 2) whereby 

deionised water formed the majority of solvent. It may be possible that the hypo-tonicity of 

these peptide-deionised water mixtures may have contributed to increased haemolysis relative 

to the iso-osmolar PBS negative control. Research by Bucki demonstrated antimicrobial 

peptides (e.g. LL37) that do not damage human cells in isotonic solutions could be rendered 

hemolytic under hypo-osmotic conditions [49]. Tissue culture analysis using the NCTC 929 



cell line is also the preferred International Standard (ISO 10993-5) in vitro test for cytotoxicity 

of polymeric biomaterials [50]. 

 

The peptide conjugates variable cell cytotoxicity with no significant difference in cell viability 

for most compared to the PBS negative control. FmocFFFKK is the only peptide to demonstrate 

significant reduction in cell viability at 1% w/v and above.  There remains preferential toxicity 

for bacterial biofilms rather than mammalian NCTC 929 cells as a result of greater loss of 

viability in bacterial cells (Figures, 5, 6, S1, S2, 8). This may be because mammalian cell 

membranes possess a high concentration of cholesterol along with phosphatidylethanolamine, 

phosphatidylcholine and sphingomyelin rendering them with neutrally charged [51]. It has also 

previously been demonstrated by our group that these properties result in cationic peptides 

having reduced selectivity for mammalian cells in comparison to negatively charged bacterial 

cells [4, 23, 45,   52].  Both FmocFF and FmocFFKK demonstrated highest cell viability above 

60% at all concentrations tested. FmocFF has been widely investigated but doubts remain as to 

its inherent toxicity due to the presence of the highly aromatic Fmoc group and it’s similarities 

to notoriously toxic drugs such as tricyclic antidepressants. Although at 2% w/v FmocFF, 

FmocFFKK and FmocFFKK percentage cell viability were shown not to be significantly 

different than PBS their respective mean values of 62, 66 and 59% cell viability would warrant 

concern for their clinical translation. Questions remain as to whether this is a suitable level of 

toxicity to warrant bacterial biofilm reduction. As with any antimicrobial, for clinical 

translation to proceed the regulatory authorities involved in drug/biomaterial development 

require evidence that antibacterial efficacy far outweighs concerns regarding toxicity. Only 

truly randomised controlled clinical trials in afflicted human subjects can provide such 

assurance with data compared to placebo and market leading antibiotic/biomaterial controls.   

Tissue culture toxicity studies within the literature demonstrate variable cell toxicity and 

appeared to be dependent on the cell line studied. The Gazit group examined the toxicity of 

FmocFF and its derivatives against Chinese hamster ovary cells. Cells were exposed for 24 

hours and examined using a 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide 

(MTT) assay to confirm viability. Similar to our own tissue culture viability studies, cells that 

weregrown on a 500 μL (0.5% w/v) peptide hydrogel scaffold and demonstrated excellent 

viability (>90%) [53]. The Ulijn group also investigated cytocompatibility of 20 mM FmocFF 

and FmocFFK hydrogel mixes for the primary purpose of using them as potential cell culture 

matrices. FmocFF and FmocFFK exhibited excellent survival following 48 hours treatment 



using bovine chondrocytes (100%) but mean viability was reduced substantially when 3T3 

murine fibroblast cells (38%) and human dermal fibroblast (~15%) cells were studied [24]. The 

authors concluded that varying mechanical properties and chemical functionalities across the 

Fmoc-peptides affected cell survival across a variety of cell types. In the case of FmocFF and 

FmocFFK improved chondrocyte viability linked to enhanced protein adsorption, as commonly 

observed on charged surfaces [54]. Tailoring and modification of Fmoc-peptide hydrogels may 

improve their selectivity for bacterial cells further. The versatility of the peptide motif and 

wealth of functional groups means that localised delivery to infection sites and triggering of 

antibacterial activity/hydrogelation in response to a specific bacterial signal (enzyme, pH 

change) remains a real possibility and may serve as the most optimal method to reduce damage 

to healthy cells and tissue. Parenteral antimicrobial peptides currently do not have a successful 

record in the clinical trial arena due to systemic toxicity and issues relating to biostability [7]. 

Therefore the first antimicrobial peptide-hydrogel product is likely to be for more localised 

administration, whereby infection occurs at a single site such as wound or at the surface of a 

medical implant. The decreased size of the ultrashort Fmoc-peptide motif relative to larger 

antimicrobial peptide gelators means that they have increased potential to be translated for the 

benefit of real patients due to more cost-effective pharmaceutical upscale.   

 

 

Conclusions 

In summary, the results obtained in this study show the therapeutic potential of ultrashort 

Fmoc-peptides in the treatment and prevention of biomaterial related infections. However, as 

demonstrated particularly by the haemolysis results, concerns still exist with regard to the 

true long-term toxicity of the Fmoc-peptide motif. The Fmoc-peptides studied possess 

excellent activity against the most antibiotic resistant biofilm phenotype of bacteria. Their use 

may be superseded by other related ultrashort motifs, for example the naphthalene-peptides, 

which do not share the same level of concern with regard to toxicity as the Fmoc peptides due 

to their use throughout many licensed pharmaceutical formulations including the beta-blocker 

propranolol [4, 27]. However, this work provides an example of broad-spectrum antibacterial 

peptide gelators and is a step forward with regard to their use in biomaterial applications 

(wound dressings, medical implants, prostheses), thereby increasing the available treatment 

options to those involved in managing medical device infections and limiting the increasing 



threat of antimicrobial resistance which is having a increasingly detrimental impact on 

society.   
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Tables  

Table 1. Stepwise formulation of a self-assembling pH-triggered 2% w/v Fmoc-peptide by 

acid titration (500 µL). 

Formulation step Constituent Quantity 

1 Fmoc-peptide 10mg pre-weighed 

2 Deionised H2O 200 µL (in 50 µL aliquots) 

3 1M NaOH 50 µL (in 10 µL aliquots) 

4 Deionised H2O 200 µL (in 50 µL aliquots) 

5 0.5M HCl 20 µL (in 10 µL aliquots) 

6 Deionised H2O to 500 µL 

 

Table 2. Stepwise formulation of a self-assembling pH-triggered 2% w/v Fmoc-peptide by 

GdL induction (2 mL). 

Formulation step Constituent Quantity 

1 Fmoc-peptide 40mg pre-weighed 

2 Deionised H2O 1600 µL (in 200 µL aliquots) 

3 Sonicated 2 minutes (42KHz ± 6%) 

4 1M NaOH 200 µL (in 20 µL aliquots) 

5 Deionised H2O 200 µL (in 50 µL aliquots) 

6 GdL 10 mg 

 

Table 3. Minimum critical gelation concentration (% w/v) for each Fmoc-peptide determined 

via vial inversion assay. 



Fmoc-peptide Predicted partition 

coefficient (Log 

P)a 

Minimum critical 

gelation concentration 

(% w/v) 

Minimum critical 

gelation 

concentration (% 

w/v) 

FmocFF 5.57 1.5 0.5 

FmocFFKK 3.46 1 1 

FmocFFFKK 4.36 1 1 

FmocFFOO 2.45 1 1 

aPredicted from Molinspiration Cheminformatics Software: www.molinspiration.com 
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Figure 1. Chemical structures of carboxylic acid terminated Fmoc-peptides investigated: (a) 
FmocFF, (b) FmocFFKK, (c) FmocFFFKK, (d) FmocFFOO. 

 



 

Figure 2. Gel inversion assay for (a) 1.5% w/v FmocFF (b) 1% w/v FmocFFKK (c) 1% w/v 
FmocFFFKK (d) 1% w/v FmocFFOO for acid titrated hydrogelation. 

 

 

 

 



Figure 3. FTIR spectra displaying amide band of 2% w/v Fmoc-peptides. Key: dotted black 
line: FmocFF, full grey line: FmocFFKK, full black line: FmocFFFKK, broken grey line: 
FmocFFOO. 

 

 

 

Figure 4. Oscillatory frequency sweep 2% w/v Fmoc-peptides. Key: black square: Gʹ 
FmocFF, white square: Gʺ FmocFF, black triangle: Gʹ FmocFFKK, white triangle: Gʺ 
FmocFFKK, black circle: Gʹ FmocFFOO, white circle: Gʺ FmocFFOO. 

 

 

 



 

 

Figure 5. Percentage reduction in viability of S. aureus (ATCC 6538) 24 hour biofilm 
following 24 hour exposure to Fmoc-peptides. Key: FmocFF: black column, FmocFFKK: 
grey column, FmocFFFKK: light grey column, FmocFFOO: white column. ns: no significant 
(P≥0.05), *: P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001 difference between 
percentage reduction in biofilm viability for Fmoc-peptides and the negative control (PBS).       

 

 

 

Figure 6. Percentage reduction in viability of 24 hour E. coli (ATCC 11303) biofilm 
following 24 hour exposure to Fmoc-peptides. Key: FmocFF: black column, FmocFFKK: 
grey column, FmocFFFKK: light grey column, FmocFFOO: white column. ns: no significant 



(P≥0.05), *: P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001 difference between 
percentage reduction in biofilm viability for Fmoc-peptides and the negative control (PBS).       

 

 

 

Figure 7. Percentage haemolysis of equine erythrocytes after 1 hour exposure to varying 
concentrations of Fmoc-peptides. Key: FmocFF: black column, FmocFFKK: grey column, 
FmocFFFKK: light grey column, FmocFFOO: white column. ns: no significant (P≥0.05), *: 
P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001 difference between haemolysis for the 
Fmoc-peptides and the negative control (PBS). 
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Table S1. Mass spectrometry analysis of synthesised Fmoc-peptides. 

Synthesised Peptide  Calculated Exact 

Molecular Mass 

Detected Molecular Mass 

FmocFF 534.22 535 (M+ H+) 

FmocFFKK 790.41 791 (M+ H+) 

FmocFFOO 762.37 764 (M+ 2H+) 

FmocFFFKK 937.47 955 (M+ NH4
+) 

 

 

 

Figure S1. Percentage reduction in viability of 24 hour S. epidermidis (ATCC 35984) biofilm 
following 24 hour exposure to Fmoc-peptides. Key: FmocFF: black column, FmocFFKK: 
grey column, FmocFFFKK: light grey column, FmocFFOO: white column. ns: no significant 



(P≥0.05), *: P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001 difference between 
percentage reduction in biofilm viability for Fmoc-peptide and the negative control (PBS).            

 

 

Figure S2. Percentage reduction in viability of 24 hour P. aeruginosa (PAO1) biofilm 
following 24 hour exposure to Fmoc-peptides. Key: FmocFF: black column, FmocFFKK: 
grey column, FmocFFFKK: light grey column, FmocFFOO: white column. ns: no significant 
(P≥0.05), *: P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001 difference between 
percentage reduction in biofilm viability for Fmoc-peptide and the negative control (PBS). 

  

 

 

 

  


