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Abstract 1 

Arsenic (As) is a pervasive environmental toxin and carcinogenic metalloid. It ranks 2 

at the top of the US priority List of Hazardous Substances and causes worldwide 3 

human health problems. Wetlands, including natural and artificial ecosystems (i.e. 4 

paddy soils) are highly susceptible to As enrichment; acting not only as repositories 5 

for water but a host of other elemental/chemical moieties. While macro-scale 6 

processes (physical and geological) supply As to wetlands, it is the micro-scale 7 

biogeochemistry that regulates the fluxes of As and other trace elements from the 8 

semi-terrestrial to neighboring plant/aquatic/atmospheric compartments. Among these 9 

fine-scale events, microbial mediated As biotransformations contribute most to the 10 

element’s changing forms, acting as the ‘switch’ in defining a wetland as either a 11 

source or sink of As. Much of our understanding of these important microbial 12 

catalyzed reactions follows relatively recent scientific discoveries. Here we document 13 

some of these key advances, with focuses on the implications that wetlands and their 14 

microbial mediated transformation pathways have on the global As cycle, the 15 

chemistries of microbial mediated As oxidation, reduction and methylation, and future 16 

research priorities areas. 17 
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1 Introduction 1 

Arsenic (As) exists in four oxidation states (-III, 0, +III, and +V), and is present in 2 

both inorganic and organic forms. Commonly found in highly auriferous regions, As 3 

also associates with the mineral ores of other metals such as iron, copper, and lead [1]. 4 

Speciation in addition to concentration is fundamental to the understanding of As 5 

toxicity, mobility and fate in the environment [2]. In the biosphere, arsenate (AsV) and 6 

arsenite (AsIII) are the most abundant inorganic As species. Under aerobic conditions, 7 

AsV dominates, is typically strongly absorbed to iron oxy-hydroxide minerals, and 8 

exhibits limited mobility/bioavailability [3]. Conversely, under anaerobis, a shift in As 9 

speciation to the trivalent form means the element is both more toxic and inherently 10 

more labile [3]. 11 

Common organic As species found in our bodies as well as in waters, soils, feeds 12 

and foods include monomethylarsenate (MMAsV), dimethylarsenate (DMAsV), 13 

trimethylarsine oxide (TMAsO), arsenosugars and arsenobetaine (AsB) (Table 1). 14 

They can be introduced into the environment due to microbial mediated 15 

biomethylation [4] and via anthropogenic activities, such as pesticide/fertilizer 16 

applications. Historically, the organic arsenical Roxarsone (2-nitrophenol-4-arsonic 17 

acid), has been added to poultry feeds as a growth promoter, however this has been 18 

largely phased out due to both animal and environmental health concerns [5]. Most, 19 

but not all, of the organic As species are considerably less toxic compared to their 20 

inorganic As counterparts. Typically, they are found with high concentrations in 21 

marine organisms. Arsenosugars constitute the main organo-As species found in algae, 22 
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while in other marine dwellers, from lobsters to white fish, the toxin is packaged as 1 

the inert and very stable/unreactive AsB [6]. In freshwaters and soils/sediments, 2 

generally MMAsV, DMAsV and volatile TMAsO are the most commonly detected 3 

organic As species [7]. 4 

As the interface between terrestrial and aquatic ecosystems, wetlands occupy 5 

between 5.3 and 12.8 million km2 of the earth’s surface [8]. Defined by their 6 

inundation by water and constant transition between wet and dry states, oxygen 7 

availability is typically very heterogeneous resulting in regions of water and sediment 8 

where anaerobism is commonplace [9]. Because of their wide distribution, high 9 

productivity, and rich biodiversity, wetlands have been viewed as having a major 10 

influence on many global biogeochemistries, including the carbon and nitrogen cycles 11 

[10, 11] in addition to impacting on As transfer [2]. 12 

Owing to their depositional characteristics, wetlands are also highly susceptible 13 

to contamination by heavy metals and other toxic trace elements. Macro-scale 14 

processes (physical and geological events), which include anthropogenic activities, 15 

wet, dry deposition, erosion, volcanism, and weathering are essential in determining 16 

As loading in these environments (Figure 1). Even seemingly ‘pristine’ wetland 17 

habitats/ecosystems, with Yellowstone National Park being a prime example [12], can 18 

be ‘naturally’ enriched in As. However, anthropogenic activities such as mining, 19 

smelting, urban waste and wastewater discharges, fertilizer and pesticide use also 20 

contribute significantly to the build-up of As stores in wetland [13]. Often, 21 

disconnected from the surrounding geology, these human induced redistributions of 22 
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As can be the hardest to predict and hence pose perhaps the greatest hazard to human 1 

health. 2 

Despite the importance of macro-scale processes in determining As loading into 3 

wetlands, it is micro-scale biogeochemistry, which includes desorption, dissolution 4 

[14] and microbial mediated AsV reduction, AsIII oxidation and methylation [2] that 5 

mainly regulate the fluxes of As from the semi-terrestrial to either aquatic or 6 

atmospheric compartments (Figure 1). Recent advances in molecular methods have 7 

enabled great leaps in our understanding of microbial mediated As biotransformations. 8 

This review summarizes the role of wetland microbiology within the global As cycle, 9 

and the distribution and behavior of As in water submerged soils and sediments. 10 

Moreover, it provides a detailed overview of the key transformation biochemistries, 11 

ranking the events in order of priority and discussing their interactions within a 12 

chemically complex and heterogeneous localized environment. Finally, an outlook for 13 

future research areas and introduction to emerging new technologies for measuring As 14 

cycling in wetlands is presented. 15 

 16 

2 Distribution and behavior of As in wetlands 17 

2.1 Overview 18 

Wetlands can be broadly classified as either ‘natural’, which includes marine, coastal 19 

zone and inland wetlands, or ‘artificial’ wetlands such as paddy soils. Although, the 20 

true state of most systems is perhaps as a mixture/intermediary of the two. The 21 

definition of what constitutes, as a ‘contaminated sediment’ is similarly quite open to 22 
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interpretation, as the acceptable quality criteria for As in wetland soils varies between 1 

countries (Table 2). For example, the Canadian Council of Ministers of the 2 

Environment (CCME), have set interim quality guidelines (ISQGs) for 3 

marine/estuarine sites at 7.24 mg kg-1 dry weight [15], whereas trigger thresholds in 4 

China are marked slightly higher, so a site is only given contamination status when 5 

concentrations of 20 mg kg-1 are breached [16]. An alternative method to evaluate the 6 

quality of a wetland, is to consider the As concentration in extractable waters. 7 

Recently reported incidences where detected As in overlying surface waters exceeded 8 

the US Environmental Protection Agency’s (EPA) maximum containment level of As 9 

in drinking water (10 µg L-1) are summarized in Table 3. 10 

Perhaps the focal point of As contamination in wetlands, where to date most of 11 

the scientific research attention has been directed lies in southeast Asia [17-21]. Here 12 

the As source originally derived from eroded Himalayan rock, now resides as buried 13 

lens of sediment making up the Bay of Bengal Delta. These near-surface alluvia are 14 

the cause of As release to aquifers, and threaten tens of millions of people consuming 15 

these waters [22]. In samples collected from fifteen selected Bhaluka wetlands in 16 

Bangladesh, the concentration of As in the waters ranged from 7 to 80 µg L-1, with 93% 17 

found exceeding WHO recommended permissible limits [23]. For further information 18 

on the Bangladesh As crisis, refer to reviews by Meharg et al. [24] and Meharg & 19 

Zhao [25]. 20 

Paddy field contamination in the region is also a serious problem, here high soil 21 

As concentrations are linked to the quality of the groundwaters used for irrigation [20]. 22 
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This problem was uncovered in 2003, when seventy-one soils collected from three 1 

districts, revealed a range of As concentrations in soils spanning 3.1 mg kg-1 (baseline) 2 

up to 42.5 mg kg-1 [20]. While a later study by Stroud et al. [26], reported an even 3 

greater variation in total As concentrations in twelve paddy soils from Bangladesh, 4 

again similar baselines of 4 mg kg-1, but this time the inputs of As from irrigation 5 

caused soils to reach 138 mg kg-1. This highlights the ease in which As can 6 

accumulate in agricultural-wetland soils, which then leads to the direct transfer to 7 

food supply chains [20, 27]. 8 

China, meanwhile, is another country that has extensively studied the problem of 9 

As build-up in wetlands [28-31]. Here though the main inputs derive not from 10 

groundwaters, but instead take many different forms/guises. Although, often difficult 11 

to characterize due to the mixing of multiple and varying sources, they do share a 12 

commonality, in that inputs have intensified as the country had modernized. For 13 

example, freshwater and salt marsh sediments in the Yellow river delta, before the 14 

Xiaolangdi reservoir was built, were already As enriched, recording values of 30 mg 15 

kg-1. However, after it was constructed, changes to the sediment flows coupled with 16 

increased human settlement and activity in the area, resulted in further As deposition 17 

taking the concentration up to 45 mg kg-1 [32], equivalent to a 4.5-fold increase from 18 

baseline levels for soils in the Yangtze river delta [33]. 19 

Like Bangladesh, paddy field contamination is also a topic of importance in 20 

China, with numerous studies highlighting this as a prominent issue, see Table 3 21 

[28-31, 34]. However, total As concentrations only tell part of the story. Here As 22 
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species are essential to understand the bioavailability and uptake of As in rice. Based 1 

on soil pore waters collected from Bangladesh and Chinese paddy soils, AsIII is the 2 

dominant species, accounting for 66-100% of the total As [26]. Methylated As species 3 

(DMAsV and MMAsV) are also commonly detected in rice soils [34]. Although the 4 

uptake of organic As into rice is not as rapid as AsIII, once inside roots they quickly 5 

translocate to the above-ground tissues [25]. Volatile TMAsIII has also been recently 6 

detected in field studies of paddy soils from Spain and Bangladesh, albeit only at 7 

trace-concentrations [35]. 8 

Far from just being confined to Asia, the problem of As contamination in 9 

wetlands is a feature on other continents as well. For example, concentrations of total 10 

As in twenty-five surface sediments (0-4 cm) collected from wetlands in 11 

Massachusetts in the U.S., ranged from 20 to 2100 mg kg-1 [36]. In southwest Spain, 12 

the contamination by As in the Guadalquivir marshes, arising from the mine-tailing 13 

spill in Aznalcollar, led to severe wetland soil pollution, with far reaching biological 14 

effects for local wildlife, a subject covered in depth by a number of related 15 

publications (Table 3) [37-39]. 16 

 17 

2.2 Biogeochemistry of As transformation and transport in wetlands 18 

The predominant form of As in soil prior to flooding is AsV. Bound commonly to iron 19 

(oxy)hydroxides, due in equal measure to it’s high affinity for the species and 20 

abundance in most soils, the labiality and subsequently toxicity of AsV is relatively 21 

low [40]. Saturating the system with water causes soil redox potentials to rapidly 22 
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decrease, in response to the depletion of electron acceptors, such as oxygen, nitrate, 1 

manganese oxides and iron oxides/hydroxides. When Eh drops to below -200 mV 2 

porewater AsV concentrations decline as the species is transformed to AsIII [25]. In the 3 

short-term, buffering can occur, because in these highly reducing conditions iron 4 

oxides/hydroxides are solubilized, releasing AsV. However, AsIII development will 5 

dominate overtime [25, 41, 42]. This phenomenon can be further enhanced, by the 6 

direct reduction of soil reservoirs of AsV. Due to AsIII being less strongly bound to soil 7 

particle surfaces than AsV, it partitions more readily into solution phase, increasing the 8 

overall bioavailability of the toxin [40, 43]. 9 

Organic carbon (OC) has also been shown to mobilize As in aquifers in south 10 

Bangladesh [44], while high concentrations of dissolved organic matter (DOM) in soil 11 

porewaters can complete with surface absorbed AsV and AsIII displacing them into 12 

solution [21, 25]. Other important chemistries that control As transport, include the 13 

grouping of interactions that As has with sulfur rich minerals [45]. Under highly 14 

reducing conditions, and in the presence of dissolved sulfide, AsIII can form stable 15 

complexes, for example, orpiment (As2S3) or realgar (As4S4) [36]. Immobilizing As 16 

by controlling redox conditions, to favor As-S precipitation, is a practice used in 17 

constructed wetlands for reducing As bioavailability [46]. However, the sites still 18 

require careful management, as oxidation of the sediment can result in the dissolution 19 

of sulfides and re-mobilization of AsIII back into the environment [47, 48]. 20 

 21 

 22 
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3 Mechanisms of microbial mediated As biotransformation in wetlands 1 

Compared to chemical change, microbial mediated As redox reactions occur far more 2 

rapidly [49]. Study has showed AsV reduction in soils to be significantly suppresses 3 

when γ-irradiated, highlighting the dominant role the microbiota play in this in solum 4 

As transfer step [40]. Microbial activity can be increased/simulated by enhancing the 5 

availability of OC sources, a response that differs between species/communities. This 6 

in turn contributes to different rates and forms of As biotransformation, impacting on 7 

both inorganic and methylated As trends [28]. Indeed, most methylated As species 8 

detected in wetlands are originally derived from microbial mediated As reactions [31, 9 

35], because plants are not efficient at methylating inorganic As [50]. These different 10 

As species with their ranging properties/characteristics define the manner that As is 11 

transferred back and forth from the main land and aquatic stores [51-54]. Some 12 

volatile As is released into the atmosphere, in the form of AsH3, CH3AsH2 (MeAsH2), 13 

(CH3)2AsH (Me2AsH), and (CH3)3As (TMAsIII). However compared to the land and 14 

water exchanges the fluxes are relatively minor [28, 35]. 15 

The evolution of such effective and diverse microbial mediated As 16 

biotransformation systems arose because they protect against As toxicity. The 17 

pathways of how microbes deal with As have been extensively studied in the last 18 

couple of decades, revealing various genes and enzymes responsible for As 19 

biotransformation and its biotransportation out of cells [50, 55-57]. The main systems 20 

used in As biotransformation by microbes in wetlands are further summarized below. 21 

 22 
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3.1 AsIII oxidation in wetlands 1 

Rapid AsIII oxidation in the environment is mediated by metabolic microbial 2 

processes [1, 58], which are catalyzed by AsIII oxidase (Aio). This enzyme is encoded 3 

by aioA and aioB genes for the two subunits AioA (AoxB) and AioB (AoxA) [55, 59]. 4 

Microbial mediated AsIII oxidation is considered as one of the primary As 5 

detoxification mechanisms for microbes because it can oxidize AsIII to the less toxic 6 

AsV [55]. The high abundance of aioA genes in paddy soils under flooding conditions 7 

further suggests the importance of this pathway [31, 60]. AsIII oxidizing bacteria in 8 

paddy soils mainly assign to the following family groupings: Phyllobacteriaceae, 9 

Bradyrhizobiaceae, Methylobacteriaceae, Rhizobiales, Burkholderiales and 10 

Comamonadaceae [60, 61]. 11 

In other types of wetland, for example coastal sediments, a high diversity of 12 

aioA-like genes have also been detected. The most abundant aioA-like genes derived 13 

from Roseobacter litoralis Och 149 [62]. AsIII oxidizing bacteria isolated from natural 14 

and constructed wetlands in the Republic of Korea showed that they were all able to 15 

grow in the presence of high concentrations of AsIII (10 mM). The bacterium 16 

identified as Pseudomonas stutzeri strain GIST-BDAN2 showed an especially high 17 

activity of AsIII oxidation (completely oxidized 1 mM AsIII to AsV within 25-30 h) and 18 

possessed both the aoxB and aoxR genes [63]. Three AsIII oxidizing bacteria including 19 

Agrobacterium tumefaciens, Pseudomonas fluorescens, and Variovorax 20 

paradoxus-like organisms were also isolated from the same Madison River Valley 21 

soils that also supported large populations of AsV reducing bacteria [64]. This 22 
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highlights the close overlay of the microbial catalyzed oxidation and reduction 1 

pathways, and how this dichotomy functions as the principal ‘switch’ which controls 2 

As fate in a specific site or zone within a site. 3 

 4 

3.2 AsV reduction in wetlands 5 

Microbial mediated AsV reduction segregates into two functional schemes, the 6 

respiratory and the detoxification pathway. The respiratory pathway is catalyzed by 7 

the AsV respiratory reductase (ArrA) complex, which consists of a large catalytic 8 

subunit (ArrA) and a small subunit (ArrB) [65-67]. It can mediate anaerobic 9 

dissimilatory AsV reduction and couple this with energy production [68-70]. A more 10 

universal system of AsV detoxification reduction, is catalyzed by the cytoplasmic AsV 11 

reductase (ArsC), which is present in both aerobic and anaerobic microbes [71]. The 12 

arsC gene occurs in the ars operons next to the arsB gene that functions as an AsIII 13 

membrane pump in most bacteria [56], controlling cytoplasmic AsV reduction, and 14 

thereafter AsIII efflux. 15 

In wetland sediments, microbial mediated AsV reduction is considered to be a 16 

crucial mechanism controlling AsV mobilization [72], and contributing factor leading 17 

to As contamination of ground water, as has happened in south and southeast Asia [22, 18 

73]. Due to the anaerobic conditions encountered in wetlands, dissimilatory AsV 19 

respiring bacteria are quite commonplace. The dissimilatory AsV reduction gene arrA 20 

has been detected in various wetlands, including paddy soils [60, 61], coastal 21 

sediments from south China [62], and estuarine sediments from Chesapeake Bay in 22 



13 
 

the U.S. [74]. Zhang et al. [34] revealed that arrA sequences detected in paddy soils 1 

were analogous to those found in Geobacter species, which have been frequently 2 

found in As rich sediments before [72, 75]. Similarly, Geobacter are prominent in 3 

Japanese paddy soil [54]. Observations of Geobacter species OR-1 have revealed that 4 

in addition to As, ferrihydrite is also being used as an electron acceptor, thus 5 

catalyzing the dissolution of As from AsV-absorbed ferrihydrite, by promoting ferrous 6 

iron formation [54]. Moreover, As K-edge X-ray absorption near-edge structure 7 

analysis demonstrated the OR-1 can also reduce soil/solid bound AsV directly. In 8 

addition to Geobacter-related bacteria, other microbiota, such as Shewanella species, 9 

that utilize the coupling/uncoupling of iron and As reduction as a means of acquiring 10 

energy, are also capable of dissimilatory AsV reduction [76, 77]. 11 

Similar to arrA, arsC has also been frequently detected in paddy soils [60, 61] 12 

and coastal sediments [62]. The AsV reducing microbes with the most active 13 

detoxification pathways in paddy soils mostly belonged to typically rhizospheric 14 

bacteria groups, such as Rhizobiales and Pseudomonadales [61]. Study of pure culture 15 

bacteria from Madison River Valley soils revealed five isolates, Agrobacterium 16 

tumefaciens, Flavobacterium sp., Microbacterium sp. and two Arthrobacter sp.-like 17 

organisms capable of rapidly reducing AsV under aerobic conditions, with the later 18 

found to possess new putative arsC genes [64]. Seventeen As-resistant bacteria 19 

isolated from Mandovi and Zuari estuarine water systems revealed arsA (ATPase), 20 

arsB and arsC genes on their plasmid DNA. While, arsC genes were individually 21 

detected in thirteen bacterial isolates, including the genera’s Halomonas and 22 
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Acinetobacter [78]. Using genome sequencing of Bacillus bacterium isolated from 1 

Andean wetlands in northern Chile, the arsC gene function was found as 2 

detoxification AsV reduction [79]. Together with the AsV respiring bacteria, these 3 

detoxification AsV reducing microbes catalyze the reduction of both the soil absorbed 4 

AsV and dissolved AsV in solution into AsIII. 5 

 6 

3.3 AsIII methylation and volatilization in wetlands 7 

Organic As is introduced primarily into the environment via the microbial catalyzed 8 

methylation of AsIII. The AsIII S-adenosylme-thionine methyltransferase (ArsM), 9 

which is responsible for AsIII methylation has recently been found to be common to 10 

many different microbes [12, 80-82]. It is encoded by arsM genes, and catalyzes the 11 

generation of less toxic organic As species, such as MMAsV, DMAsV and TMAO. 12 

The volatile As gas including MeAsH2, Me2AsH and TMAsIII could also be generated 13 

during the biomethylation processes. To date, TMAsIII is the most commonly detected 14 

volatile As species in the natural environment [28, 35] and under in vitro conditions 15 

during pure culture [81-83]. 16 

In microcosm experiments using As contaminated paddy soils, Huang et al. [28] 17 

and Jia et al. [29] found evidence of both microbial mediated AsIII methylation and 18 

volatilization. Recently discovered universal primers for the amplification of arsM 19 

genes have uncovered arsM sequences as being widespread in numerous paddy soils 20 

[29, 61]. Continued investigation reveals these arsM sequences mainly derive from 21 

the phyla Gemmatimonadales, Firmicutes, Actinobacteria, and Proteobacteria and the 22 



15 
 

domain Archaea [61]. By applying a metagenomic approach, Cai et al. [62] also 1 

found arsM genes in coastal sediments, but the dominant bacteria species involved in 2 

AsIII methylation were not identified in this study. Furthermore the ability to 3 

methylate and volatilize AsIII has been discovered in three cyanobacteria species that 4 

are common in paddy soils [82], and a small free-living eukaryote Ostreococcus tauri 5 

found in coastal waters [83]. In general, to the best of our knowledge, the study of 6 

AsIII methylation and volatilization in wetlands is still rather limited, but given the 7 

rapid advance in our understanding of the importance of this aspect of the As 8 

biogeochemical cycle, this is an area that will likely be of increasing interest in the 9 

future. 10 

 11 

3.4 Environmental factors affecting As biotransformation microbes 12 

Various environmental factors affecting the diversity, behavior and metabolism of As 13 

biotransformation microbes have been observed in wetlands. One of the most 14 

important is the As concentration of the soils/sediments with As biotransformation 15 

microbe abundance found to correlate positively with As concentration in paddy soils 16 

[61]. Similarly, arsM gene abundance and the concentration of methylated As in 17 

paddy soil solutions also exhibit a strong positive correlation [29]. The amount and 18 

form of OM in wetlands is also key, for example, several experiments carried out in 19 

microcosms using paddy soils have demonstrated that the amendment of OM 20 

promotes the activity of AsIII oxidizing bacteria [28]. The application of rice straw can 21 

increase the community diversity of AsIII oxidizing bacteria [60], and the activity of 22 
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AsIII methylation microbes in paddy soils [28, 29]. Straw also has an impact on AsV 1 

detoxification reducing microbes, acting to moderately simulate their activity, but 2 

greatly enhance the total abundance of AsV reducers [28]. 3 

The concentration of SO4
2- in paddy soils strongly influences microbial 4 

community compositions, modifying both AsIII oxidation and AsV detoxification 5 

reduction activity. It is postulated that this is due to the possible sharing of microbial 6 

groups of sulfur oxidation and As redox [61]. The microbial community composition 7 

of bacteria/archaea involved in As biotransformations is also particularly sensitive to 8 

iron concentrations. This is reasonable, especially considering that the 9 

absorption-desorption dynamics of iron /oxyhydroxides and AsV influence the 10 

concentration and species of bioavailable As in wetlands [41, 42]. For the microbial 11 

communities carrying out AsIII methylation, it is the available NO3
--N, NH4

+-N, that 12 

appears to be the most sensitive environmental parameter influencing community 13 

composition [61]. Other factors, such as pH, redox potential, alkalinity, temperature 14 

and dissolved oxygen, also contribute and influence As biotransformation microbial 15 

abundance and activity [46]. However, investigation into this topic is still in its 16 

infancy. Much remains to be done to improve our understanding of how we can 17 

optimize the function of microbial mediated As biotransformations by changing the 18 

management of local wetland environments. A significant hurdle, blocking this goal 19 

has been the lack of suitable methods to observe and measure the dynamic 20 

environmental conditions, at scales appropriate to the biota driving the change. 21 

However, with the development of new multi-parameter, visualization tools such as 22 
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diffusive gradients in thin films (DGT)/planar optode sandwich sensors [84, 85] and 1 

advanced radiography and isotope imaging, in situ mapping of As and other key 2 

elements is now possible. Employing these technologies concurrently with 2D 3 

enzyme activity plots (zymography) and microbial imaging, i.e. fluorescence in situ 4 

hybridization (FISH) or oligonucleotides labeled probes with light emitting 5 

chromophores [86], offers further exciting possibilities to unravel the complex 6 

environment-biota interactions impacting on wetland As release. 7 

 8 

4 Concluding remarks and perspectives 9 

Microbes act as the ‘switch’ turning a wetland from an As sink to source through AsV 10 

reduction, AsIII oxidation, AsIII methylation, and As volatilization processes (Figure 1). 11 

AsV reducing bacteria/archea can enhance As mobilization from sediments to water 12 

[54, 75], while AsIII oxidizing microbes act to decrease As mobility and bioavailability 13 

[3]. The two groups of AsV reducers and AsIII oxidizers act in tandem, controlling the 14 

direction/path of the inorganic As cycle. While wetland AsIII methylaters create 15 

organic As species (MMAsV, DMAsV, TMAsIII), they also generate volatile As, 16 

promoting its release into the atmosphere [2]. 17 

Considering the key role wetlands play in delivering essential ecosystems 18 

services and the large area they occupy, the microbial mediated As biotransformations 19 

they host/support remain indispensable components of a ‘safe’ global As 20 

biogeochemical cycle, one that functions in the best interests of humankind. Failure to 21 

live in balance with As’ complex biogeochemistry can have devastating consequences, 22 
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from the release of As from near-surface wetland sediments to underground drinking 1 

water supplies [72], to its transfer into rice plants [41].  2 

Better management of wetland resources for optimized microbial control of As 3 

could potentially yield huge gains in public and environmental health. However more 4 

research is needed to improve our understanding of how to make best use of these 5 

microbial mediated reactions. We recommend research attention is immediately 6 

directed at gaps in our understanding of wetland As cycling, such as microbial 7 

organic-As degradation, as the literature available on this topic is scant. Furthermore, 8 

continued improvements to the technologies available to study in situ, both the 9 

chemistry and biology of the mercurial wetland environment is needed. 10 
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Table 1. Structure of prevalent As species in the environment. 1 

Species Structure of As speciation 
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Table 2. The quality guidelines for As contamination in wetlands from different countries. 

Sediment quality guidelines in various countries Countries Level Arsenic concentration (mg kg-1) References 

Hongkong ISQVs China 
ISQV-low 8.2 

[87] 
ISQV-high 70 

Sediment Quality Criteria China 
Class I 20 

[16] 
Class II 65 

Canadian Environmental Quality Guideline Canada 
ISQGs 7.24 

[15] 
PEL 41.6 

ISQV, interim sediment quality value; ISQGs, interim sediment quality guidelines; PEL: probable effect level.  
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Table 3. Summary of recently detected arsenic contaminated wetlands. 

Wetland types Country Sampling Location As concentration (mg kg-1/ g L-1) References 

Coastal wetlands China Yellow River delta 38 [32] 

45 

Yangtze River delta 10 [33] 

Inland wetlands U.S. Massachusetts 20-2100 [36] 

Spain Guadalquivir 20 [38] 

Fatehpur 72-114 

Paddy soils Bangladesh Dhumrakandi 62-138 [26] 

Paranpur 73-77 

Faridpur 34 

India De Ganga 17  

China Chenzhou 60 [61] 
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Qiyang 79 

Anqing 19 

Jiaxing 20 

Yingtan 16 

Jingzhou 19 

Changde 16 

Jiangmen 25 

Guilin 21 

Guiyang 21 

Zhanjiang 18 

Wetland waters Bangladesh Malahar 60 [23] 
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Figure caption 

Figure 1. Sources of As introduced to wetland, microbial mediated As 

biotransformation in wetland, and genes responsible for AsV respiratory reduction, 

AsV detoxification reduction, AsIII oxidation, and AsIII methylation. 


