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Abstract 

The goal of an optimal manufacturing process is to maximize product performance while minimizing cost, time, and waste. A critical 
component of this optimization is the appropriate selection of process parameters. While central physical concepts often serve as a starting 
point, specific parameter selection is frequently done manually, based on operator skill, experience, and intuition. As a result, process 
optimization is often iterative, non-repeatable, and lacking in traceability.  Further, there is no fundamental insight gained into the relationship 
between process parameter selection and critical process outputs. This paper explores the use of visual analytics as an enabler for 
manufacturing process decision making. An emerging science, visual analytics couples analytical reasoning with the substantial capability of 
the human brain to rapidly internalize and understand data that is presented visually. Through the use of interactive interfaces, visual analytics 
provides a mechanism through which the operator, engineer, and decision-maker can cooperate in real-time with both simulation, experimental, 
and operational data, facilitating trade studies, what-if analysis, and providing crucial insight into correlations and relationships that drive 
process optimization. As an exemplar, the concept of visual analytics is applied to the simulation of a notional high pressure die casting 
process, with the goal of gaining insight into those parameters that contribute to high scrap rates, particularly air entrapment.  
 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of the “9th International Conference on Digital Enterprise Technology - DET 
2016.  
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1. Introduction 

High pressure die casting (HPDC) is the dominant means 
of producing aluminium alloy castings for the automotive 
industry. Traditionally, it was primarily used for casting 
engine components but as the requirements to reduce cost and 
weight have increased and sustainability demands full 
recyclability, HPDC is now also being used to cast complex 
car body components such as sub-frames, suspension 
components and even the structural framework for car doors.  
Across the industry, the complexity of castings is tending to 
increase with finer detail applied to minimise unnecessary 
material.  This of course increases the difficulty for the HPDC 
industry to manufacture consistent castings. 

 

1.1. The High Pressure Die Casting Process 

In essence the high pressure die casting process is quite 
simple.  Molten metal, in this case aluminium alloy, is lifted in 
a crucible attached to a robotic manipulator from a holding 
furnace and is decanted from the crucible into a shot tube 
through a hole in the top; at this point the metal only fills the 
lower half of the shot tube (Fig. 1a).  A piston in the shot tube 
pushes the metal forward towards the die at moderate velocity 
(typically below ½ m/s) causing the level to rise until the tube 
is completely full (Fig. 1b); during this phase a vacuum is 
applied to the die to reduce the possibility of entrained air 
being trapped in the casting.  This achieved, the piston 
velocity increases twentyfold, filling the die with metal in 
approximately one tenth of a second (Fig. 1c).  The die being 
liquid cooled causes the liquid metal in contact with its surface 
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to chill and over a few seconds the casting will solidify.  
When the metal is completely solid, the die halves open 
allowing a robotic manipulator to grab the casting as ejector 
pins push it away from the fixed die (Fig. 1d).  With this 
completed the die closes and the process can begin again, with 
the whole cycle takes less than 2 minutes for large parts. 

Ideally when castings are produced they should all be 
perfect.  Realistically, there will always be some scrap 
castings manufactured; perhaps one or two percent is 
acceptable.  Unfortunately, with some complex parts this can 
rise to as much as 10% and even higher.  Of course the scrap 
is recycled, although each time metal is remelted energy is 
consumed and a small amount of the aluminium will be lost as 
it oxidises to form dross.  In addition the cost of running the 
casting machine is lost and the factory’s casting capacity is 
reduced. 

Although the casting process is in essence simple, there are 
hundreds of parameters that affect the process, resulting in 
unacceptable scrap rates that further lead to loss of revenue 
and a decrease in factory casting capacity.  Traditionally, all of 
the parameters are manually adjusted to produce good castings 
based on the experience of the die casting engineer. 
Experience will have determined boundaries for many 
parameters to allow good castings for most of the time.  
However, this manual process if often untraceable, 
unrepeatable, and notably does not add overall insight into the 
effect of the parameters themselves on the outcome. This 
paper aims to address the early phase of a project to analyse 
the consequences of parametric variability in a production 
environment with the objective of making the manufacturing 
process as robust as possible and consequently reducing the 
level of scrap produced for complex automotive engine 
castings, such as a cylinder block. 
 

1.2. Current Die Casting Optimization 

 
     Substantial research has been done on the optimization 

of the high pressure die casting process. Taguchi’s method 
has been applied by some scholars [1-3] to the die-casting 
process in order to establish the optimal combination of 
design parameters. Their study focused on investigation of 
effects of various die casting control parameters, including the 
die temperature, injection velocity, and cooling time on the 
defects in the castings. While other researchers used design of 
experiments techniques [4-7] for experimentation, the data 
was further analysed to optimise defects like shrinkage, gas 
porosity and cold shuts.  

     Soft computing techniques such as artificial neural 
networks and genetic algorithms were used by various 
researchers to map the complex relationship between process 
conditions and quality indexes [1, 8-11]. Unlike traditional 
hard computing, the essence of soft computing is that it is 
aimed at accommodating the universal inaccuracy of the real 
world. Thus, the principle of soft computing is to exploit the 
tolerance for imprecision, uncertainty, and partial truth to 
achieve robustness, low solution cost, and better rapport with 
reality[12].  

In other research, computational fluid dynamics software 
packages such as Meltflow and ProCAST were used to 
simulate, verify experimental results and optimize casting 
design/process by using qualitative parameters [11, 13, 14]. 
For analysis of defects, computer aided casting simulation 
techniques can be efficient and accurate. The quality and yield 
of the casting can be efficiently improved by computer 
assisted casting simulation technique in shortest possible time 
and without carrying out the actual trials on foundry shop 
floor. However, optimization for casting integrity requires a 
quantitative casting integrity assessment technique, which 
allows the modelling and quantification of defects [15]. 
Krimpenis et al., have rightly stated that although die-casting 
parameters have been studied by various researchers, a unified 
method that can optimize all process parameters 
simultaneously regarding one criterion or a combination of 
criteria is still at its infancy [11]. Die-casting is a typical 
multidisciplinary system involving many disciplines such as 
hydrodynamics, heat transfer and elastic-plastic mechanics 
and their coupled relations are intricate. Moreover there are 
many inherent uncertainties. Yourui et al, [16] proposed a 
reliability-based multidisciplinary optimization (RBMDO) 
model and concluded that the application of RBMDO 
procedure is suited to optimize the multidisciplinary system 
like die-casting with epistemic uncertainty. 
     All of the above research and optimization strategies rely 
on finding a single, optimum setting of parameters to 
maximize results and minimize defects for a specific die 
casting circumstance. The key difference to using a visual 
analytics approach to explore the same data set is the inherent 
understanding and insight into the behavior of the process that 
is gained by the analyst. This insight is then translated into 
parameter strategies that are applicable across a wide variety 
of process circumstances.  

 

Fig. 1. Typical high pressure die casting process. 
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2. Visual Analytics 

The September 11, 2001 terrorist attacks on the United 
States posed a significant data challenge. Government 
agencies and emergency responders were forced to assess, 
analyse, and react in real time to a massive amount of diverse, 
complex, and rapidly changing data [17]. In response to this 
serious issue, the newly established US Department of 
Homeland Security (DHS) put forth a series of goals and 
objectives that led to the identification of key enablers in 
various scientific fields and disciplines that would aid its 
mission of safeguarding the American people [18]. The 
emerging field of visual analytics was identified as one such 
enabler, and in 2004, the DHS chartered the National 
Visualization and Analysis Center (NVAC) to deliver ‘a 
national and international resource providing strategic 
leadership and coordination for visual analytics technology 
and tools’ [19]. A key deliverable of the NVAC was the 
development of a research agenda for visual analytics. The 
resulting document, Illuminating the Path: the R&D agenda 
for visual analytics [20], was published in 2005 and has 
become the definitive resource for the emerging scientific 
discipline of visual analytics. 

2.1 Defining Visual Analytics 

     Visual analytics is defined as ‘the science of analytical 
reasoning facilitated by interactive visual interfaces’ [20]. In 
its most fundamental form, analytical reasoning is understood 
to be a process by which something is studied in order to 
identify its fundamental characteristics as well as gain insight 
into any principal relationships. Visual analytics is considered 
a hybrid science that leverages the extraordinary human 
eye/brain capability to rapidly recognize and analyse patterns 
and features, including anomalies, in extremely complex 
visual data [21]. When coupled with analytical reasoning, this 
visual capability allows vast amounts of information to be 
rapidly internalized and understood. Thus, visual analytics 
couples ‘the art of human intuition and the science of 
mathematical deduction directly to perceive patterns and 
derive knowledge and insight from them’ [22].  A key feature 
of visual analytics is human interaction. Data is not presented 
statically, but rather tools and environments are developed 
that allow the user to interact directly with the data, 
manipulating variables in real time and assessing the resulting 
responses. This interaction not only increases understanding 
of the information, it facilitates superior judgements with 
minimal time investment. Another key advantage to using a 
visual analytics paradigm is the ability to graphically 
characterize the variability of input parameters, providing the 
user with a significant improvement in their understanding of 
how changes to input variables quantitatively and 
qualitatively affect the results.  

     It is important to distinguish the difference between the 
science of visual analytics and the process of data mining 
coupled with a visual output. Data mining can be defined as 
‘the process of exploring abstract data in the search for 
valuable and unexpected patterns’ [23]. Although automated 
data mining can be efficient, data mining algorithms are often 

biased towards finding a particular outcome [24]. Likewise, 
even innovative visualization techniques in isolation are rarely 
sufficient to produce insight into a complex data set [25]. 
Teoh et al [26] thus argues that visual analytics is the 
preferred method compared to algorithmic data mining, 
particularly when the intent is to explore and understand a 
particular data set with no preconceived notions of expected 
outcome. 

2.1. Visual Analytics as Applied to High Pressure Die Casting 

The overall goal of a wider body of funded research is to 
identify and propose strategies to minimize scrap rates for a 
large high pressure die casting company. As an initial step, 
preliminary visual analytics studies were conducted on a high 
fidelity die casting simulation in order to gain insight into the 
behavior and effect of key process parameters. It is this 
portion of the overall research that is reported here.  

3. Results 

3.1. Defining the Model 

It was decided that the initial exploration of parameters 
would be conducted by creating a simulation model of a 
typical die casting part, and using the data created via the 
model to explore parameter effects on defects. A 3-cylinder 
engine block was chosen as a representative die casting part 
for modelling. MAGMA5, developed and supplied by 
Giessereitechnologie GmbH, was the simulation software 
used to create the model. MAGMA5 is used world-wide by 
foundries, casting buyers and designers, especially for the 
optimization of cast components in automotive and heavy 
industry applications, and is considered the global industry 
standard for the simulation of casting processes. Fig. 2 shows 
the model of the part created with MAGMA5, and illustrates 
the four key areas of interest for evaluation. 

Initially, four process parameters were chosen for 
exploration: switch over position (distance moved when the 
piston velocity increases from first phase to second phase 
velocity in the shot tube), the first phase velocity, the second 
phase velocity, and the biscuit thickness.  Surrogate models of 
the simulation were created utilising a central composite 
design and analysis of variance (ANOVA) was used to verify 
the model statistical accuracy. The primary responses of 
interest were the air entrapment in each of the evaluation 
areas. 

 

 

Fig. 2.  Die Cast Model of 3 Cylinder Engine Block and Evaluation Areas 
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3.2. Visualization of Effect of Evaluation Area 

Initial visualizations of the resulting models clearly 
indicate a complex behavior, even when considering the fairly 
small set of process parameters of interest. Fig. 3 plots the 
switch over position (referred to in the plots as ‘acceleration 
phase-start’) against second phase velocity and maximum air 
entrapment in the first evaluation area. The brighter green  
contours indicate areas of minimum entrapment. This is in 
contrast to Fig. 4, which  shows a more benevolent behavior 
and which favors a different combination of process 
parameters in the nearby second evaluation area. Similarly, 
Fig. 5, of evaluation area 3, shows a quite different behavior 
from that in Fig. 3 and 4, yet physically the evaluation areas 
are quite close together.  These results, shown statically here, 
are even more readily identifiable when the user manipulates 
the data interactively. Now that a behavior of interest has been 
identified, the user may go back and investigate potential 
reasons for the behavior, which will increase understanding of 
the behavior, potentially leading to new insights. 
 

 

 

 

3.3. Visualization of Effect of Second Phase Velocity 

Figures 6 a-c show air entrapment as a function of switch 
over position and first phase velocity, for different values of 
second phase velocity. As the second phase velocity is 
progressed from 3.67 m/s in Fig. 6(a) to 3.92 m/s in Fig. 6(c), 
the surface shape of the response changes markedly.  The 
lighter green areas show the preferred region (lower air 
entrapment), with the darker red regions indicating areas of 
increased air entrapment. Looking at Fig. 6(a), there is a clear 
region of preferred minimal air entrapment (values less than 
10). However, this area is quite small and can only occur with 
very specific combinations of acceleration start phase and first 
phase velocity.  Also, most combinations of these same 
parameters produce large and unacceptable areas of air 
entrapment. As second phase velocity is increased, Fig. 6(b), 
it can be seen that the area of lowest air entrapment does 
increase slightly for a broader range of parameters, yet  any 
combination of parameters still produce  significantly less air 
entrapment overall than at lower values of second phase 
velocity.  This is indicative of a more robust set of parameter 
settings. Further increases in second phase velocity, however, 
result again in increased areas of large air entrapment, but this 
time the combination of parameters that produce smaller 
values of air entrapment are exactly opposite, at the other end 
of the parameter ranges, than at lower second phase velocity 
values. Although somewhat difficult to convey statically, this 
trend becomes very clear and intuitive when viewed 
interactively. While a traditional optimization process may 
identify the specific combination of parameters that would 
produce the optimal lowest value of air entrapment, in reality 
it may be quite difficult to set and hold such a specific 
combination of parameters. It is much more likely that 
variability and tolerances in machine settings, as well as 
operator capability, would result in potentially off-optimum 
settings. If an understanding of the shape and sensitivity of the 
relationship surface is developed through the use of visual 
interaction and analytical reasoning, combinations of settings 
that produce consistently robust results, even if off-optimum, 
may be preferred.  

 
 

Fig. 3. Maximum air entrapment  in evaluation area 1 as a function 
of acceleration phase and second phase velocity 

 

 

Fig. 4.  Maximum air entrapment in evaluation area 2 as a function 
of accleration phase and second phase velocity 

 

Fig. 5. Maximum air entrapment in evaluation area 3 as a function of 
acceleration phase and second phase velocity 
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3.4. Visualization of the Design Space 

Finally, Fig. 7 shows how a dynamic trade space can be 
created to lend insight into areas of feasible design, as well as 
characterizing the effect of process parameters. Fig. 7(a) plots 
contours of maximum air entrapment for each of the four 
evaluation areas. In this example, values of 40 or less are 
considered acceptable for each area. (The dynamic 
environment, however, allows for the changing of these 
values in order to further explore the design space.) Returning 
to Fig 7(a), it is seen that only a small design space exists that 
allows simultaneous achievement of acceptable air 
entrapment for all of the evaluation areas. There are therefore 
limited combinations of first phase velocity and acceleration 
phase that correspond to the open design space for a given 
second phase velocity. Fig 7(b) then shows how the plot 
changes as the second phase velocity is increased. It is 
important to note that the resulting design space is now not 
continuous, particularly across the first phase velocity. If a 
continuous range of first phase velocity was therefore 
proposed (in this example, between  0.15 and 0.287), then 
minimizing air entrapment in evaluation area 4 must be 
sacrificed. Continuing to increase the second phase velocity to 
its maximum value used in the study results in Fig 7(c).  Now 
it can be seen the original design space has closed up, and a 
new design space, corresponding to a different range of 
process parameters, has opened up. Interactive exploration 
using plots of this sort not only provide insight into the 
complex behavior of the data, they allow for the establishment 
of rules of good practice, as well as identifying the sensitivity 
of off-optimal solutions. 

 

 

 

Fig.  6(a)-Air entrapment in evaluation area 1 with a second phase 
velocity of 3.67 m/s 

 

Fig.  6(b)-Air entrapment in evaluation area 1 as second phase 
velocity is further increased 

 

Fig.  6(c)-Air entrapment in evaluation area 1 with a second phase 
velocity of 3.92 m/s 

 

 

Fig. 7(a). Feasible design space at low values of second phase velocity 
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3.5. Conclusions 

This paper introduces visual analytics as an enabler for 
process parameter optimization for high pressure die casting. 
Unlike pure mathematical optimization, the intent of visual 
analytics is to allow the user to interact with large data sets, 
thereby gaining insight into complex behavior, and allowing 
optimization to occur through consideration of parameter 
settings that may provide robust, rather than single point, 
optimization.  
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Fig. 7(b). Changes in feasible design space as second phase velocity is 

 

Fig. 7(c). Changing design space for maximum second phase velocity 


