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Comment on Weakly dissipative dust-ion acoustic wave modulation [J. Plasma Phys.
82, 905820104 (2016)]

I. Kourakis1 and I. S. Elkamash2,1

1Centre for Plasma Physics, Queen’s University Belfast, BT7 1NN Northern Ireland, UK
2 Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt

(Dated: October 12, 2016)

In a recent article [J. Plasma Phys. 82, 905820104 (2009)], weakly dissipative dust-ion acoustic
wave modulation in dusty plasmas was considered. It is shown in this Comment that the analysis
therein involved severe fallacies, and is in fact based on an erroneous plasma fluid model, which fails
to satisfy an equilibrium conditions, among other shortcomings. The subsequent analysis therefore
is dubious and of limited scientific value.

In a recent article (Alinejad et al 2016) (henceforth to
be referred to as Paper 1 ) an investigation was under-
taken of the mechanism of weakly dissipative dust-ion
acoustic wave modulation in dusty plasmas. It will be
shown in the following that the analysis presented in that
paper contains a number of intrinsic flaws, which renders
the results of doubtful value.

The authors of Paper 1 consider the following fluid
model:
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see Eqs. (2.1-3) in Paper 1. According to their formu-
lation, the variables ni, ui and φ denote the ion num-
ber density, the ion fluid speed and the “electrostatic
wave potential” (sic), respectively, while the electrons
are taken to be Maxwellian, viz. their density reads
ne = µeφ. Note that the right-hand side (RHS) of the
first (continuity) equation involves the parameters νr and
νi, which allegedly represent the “frequency of ion re-
combination on dust particles” and the “plasma ioniza-
tion frequency”, respectively, while the RHS in the sec-
ond (momentum) equation involves the parameter νeffe

which denotes “the effective frequency characterizing a
loss in the ion momentum due to recombination on dust
particles and Coulomb elastic collisions between ions and
dust grains” (quoting the authors in Paper 1). The dust
component is explicitly assumed to be “stationary” (i.e.,
implied to be characterized by constant charge state Zd
and fixed number density nd), and contributes to the
model via the parameter µ = ne0/ni0 = 1− Zdnd0/ni0.

A number of remarks and comments are in row.

Comment 1. Clearly, the total number of the ions is
not conserved within the aforementioned model: this is
reflected by the non-zero RHS in the first (ion continuity)
equation. Physically speaking, it is implied that both
ions and electrons populate the dust grains dynamically,
as suggested by the charging rates νr and νi (defined

above). However, if this was true, the charge state Zd
would -obviously- not remain constant, as implied in the
model, nor would the total electron density (implicitly
assumed to be equal to ne = µ, i.e. constant).

It is evident that the model (along with the accom-
panying parameter definitions) has been inspired from a
number of previous works (Goree et al. 1999; Vladimirov,
Ostrikov & Yu 1999; Cramer & Vladimirov 2001; Popel
et al. 2003), which are explicitly cited in Paper 1. How-
ever, it must be emphasized that the models proposed in
those articles consider a variable dust charge and dust
density, and are thus consistent (in contrast with Pa-
per 1), both physically and mathematically. In particu-
lar, the model employed by Vladimirov, Ostrikov & Yu
(1999) involves variable electron and ion number density
[see eqs. (1) and (3) in the latter reference], but this is
done in conjunction with variable dust number density
and dust charge dynamics [note eqs. (4-5) in the same
reference]. That model may not be applied gratuitously,
if one considers a constant dust charge, stationary dust
grains and inertialess electrons, as it the case in Paper 1.

From a fundamental point of view, it appears that
Alinejad et al (Alinejad et al 2016) have taken into ac-
count the effects of ion recombination on the dust par-
ticles, and that of ionic momentum loss due to recombi-
nation on the dust particles and also due to electrostatic
collisions between ions and dust grains, but they have ne-
glected the effect of dust charging. The frequency scales
characterizing these effects are typically of the same or-
der of magnitude (Mamun & Shukla, 2002), and therefore
these should have been considered on equal footing in the
model. This assumption can therefore not be justified
physically, nor mathematically.

Concluding our first observation, the ion-fluid model
introduced in Paper 1 is of limited validity and of ques-
tionable physical value, as it fails to preserve the ion
number density, entailing a dubious and unclear physical
interpretation of the associated results. Although dust
charging implies precisely a variation of the electron and
ion population density, this is not taking into account
properly through the specific fluid model considered in
Paper 1 (Alinejad et al 2016).
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Comment 2. The authors of Paper 1 consider an equi-
librium state, namely S(0) in their eq. (3.1), which is later
defined as the triad (vector) S(0) = (n(0), u(0), φ(0)) =
(1, 0, 0). This equilibrium state is then used as reference
state, around which the state variables are expanded in
a polynomial series in ε (� 1): cf. Eq. (3.1) in Paper 1.

A crucial point needs to be made at this stage. It is
straightforward to see that the above reference state does
not satisfy the system of fluid equations (1)! To see this,
one may simply substitute for (n(0), u(0), φ(0)) = (1, 0, 0)
into (1), to find that the first of Eqs. (1) yields a non-zero
RHS in this case. This is essentially an algebraic mani-
festation of the physical fact that (as mentioned above)
ion continuity is not preserved through this model.

Interestingly, Alinejad et al overcome the latter issue
(i.e., the lack of equilibrium state in their model) by in-
venting an analytical trick, namely by scaling down the
(fictitious) ion and electron annihilation mechanisms to
order ε2. It turns out that the linear dispersion charac-
teristics of the model, expressed at first and second order
in this perturbation method (Kourakis and Shukla, 2005)
are thus left unaffected by the erroneous physical mecha-
nism introduced (i.e., ion and electron number variation).
As a consequence, expressions (3.3-5) in Paper 1, pro-
viding the dispersion relation, the first-order amplitude
corrections and the group velocity, coincide with earlier
results Kourakis & Shukla (2003, 2004), as the authors
of Paper 1 correctly point out, in corroboration of their
result.

The procedure outlined in Paper 1 is then pursued in
third order, leading to a dissipative nonlinear Schrödinger
equation (NLSE) in the form:

i
∂φ

∂τ
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∂2φ

∂ξ2
+Q|φ|2φ = −iRφ , (2)

where φ is now redefined as the first-order correction to
the electrostatic potential, and ξ and τ are space and time
coordinates, consistently defined in the process (Alinejad
et al, 2016). Not unexpectedly, the (linear) dispersion
coefficient P in the NLSE – see (3.12-33a) in Paper 1 –
is left unaffected by the artificial dissipation mechanism
discussed above. This is simply due to the fact that P
is related to the linear dynamics of the problem. This
brings us to a third important comment.

Comment 3. It is known that the dispersion coeffi-
cient in the NLSE (2) above must satisfy the relation

P = 1
2
d2ω
dk2 . This is an explicit byproduct of the mul-

tiple scale technique adopted in Paper 1; see e.g. in
Kako (1972), Kakutani & Sugimoto (1974) or in Kourakis
& Shukla (2003, 2004, 2005). One is tempted to test
whether this requirement is met, by combining expres-
sions (3.3) and (3.13a) in Paper 1, for ω(k) and P (k),
respectively. It turns out, upon simple substitution and

some straightforward algebra, that this relation is not

satisfied (!), viz., P 6= 1
2
d2ω
dk2 – referring to Eqs. (3.3) and

(3.13a) in Paper 1, specifically. Eq. (3.13a) is therefore
not correct, and the subsequent analysis is presumably
wrong (algebraically speaking, hence physically too).

It should be stated, in passing, that the expression de-
rived for the nonlinearity Q – see (3.13b) in Paper 1 –
should normally coincide with the earlier result in the
“dissipation-free” case (Kourakis & Shukla, 2004). This
is implied, but not rigorously shown not discussed in Pa-
per 1.

By assuming that the RHS of the ion continuity equa-
tion scales as ∼ ε2, the algebraic effect of the artificial
dissipation mechanism thus introduced is “boosted” to
order ε3, and thus naturally appears (and is limited to)
the damping term −iRφ appearing in the RHS of the
NLSE, i.e. (3.12) in Paper 1. This builds up a straight-
forward and somehow “legitimate” algebraic model, with
a rather not surprising outcome (a dissipative NLSE), yet
with dubious physical interpretation, as discussed above.

Comment 4. It can actually be shown that a dissipa-
tive NLSE in the form of (2) above can be obtained by
considering any linear combination of the state variables
(i.e. terms of the form ν1ni, ν2ui etc., adopting an ad
hoc notation here) in the RHS of the evolution equation.
Such a procedure defines an interesting algebraic proce-
dure, in that it introduces a “dissipative fluid model”
which can be analyzed as shown in Paper 1. It remains
to see how realistic, and physically acceptable, this model
is (see our discussion above).

According to the above considerations, one raises the
question of the validity of the results in Paper 1. It may
be argued that, focusing on the formal structure of the
dissipative NLSE (2) above, and ignoring for a minute
the definitions of the coefficients in it, that the analysis of
modulational instability presented in Section 4 of Paper
1 is interesting and valuable per se. A twofold approach
may be adopted here. First of all, a crucial point in
Section 4 of Paper 1 is the derivation of the expression

∆(τ) = −Qφ20exp(−2Rτ) (3)

for the nonlinear frequency shift [see the discussion fol-
lowing (4.1) in Paper 1], assuming an unperturbed ampli-
tude (argument, in the polar representation) φ0 = Arg(φ)
(recall that φ is complex). Formally, this is tantamount
to a transformation of the form Q → Qexp(−2Rτ),
which naturally entails an exponential decay of the crit-
ical wavenumber Kc = (2Q/P )1/2, viz.

Kc = (2Q/P )1/2 → (2Q/P )1/2exp(−Rτ) . (4)

The authors admit that this procedure is adapted from
Xue (2003), who described dust-acoustic wave modula-
tion taking into account dust-charge fluctuations [a dif-
ferent physical problem, nonetheless leading to an equa-
tion formally identical to (2) above]. It can be pointed
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out that the above result, as expressed, say, in relations
(3) and (4) above, is rather trivial, as it follows directly
from a simple transformation of the form

φ → φ′ exp(−Rτ) . (5)

In other words, it may be shown upon simple substitution
of (5) into (2), that (2) becomes:

i
∂φ′

∂τ
+ P

∂2φ′

∂ξ2
+Q′|φ′|2φ′ = 0 , (6)

where Q′ = Qexp(−2Rτ). The analytical findings in
the first part of Sec. 4 in Paper 1, relying on equations
in the form of our Eqs. (3) and (4) above in particu-
lar (for the exponentially decaying nonlinear frequency
shift ∆ and for the wavenumber threshold Kc), thus sim-
ply follow from the above considerations, combined into
the standard definitions for these quantities; see e.g. in
Kourakis & Shukla (2003, 2004, 2005). For instance, the
monochromatic wave solution of the “standard” form of
the NLSE (6) reads φ′ = |φ′| exp(−Q′|φ′|2τ), which im-
mediately yields the frequency shift ∆ = −Q′|φ′|2 =
−Qe−2Rτ |φ′|2, i.e. precisely Eq. (3) above (upon a trivial
change in notation).

It follows that the plots presented in Figs. 2 and 3 in
Paper 1 are founded on the above rationale, while de-
pending on the actual definition of R - which is dubious,
as discussed earlier. Regretfully, the graphical results
presented in Paper 1 are therefore of doubtful value, as
they reply on the (questionable) physical assumptions of
the model, as discussed above.

The above suggests that the modulational instability
related results in (Alinejad et al 2016) (namely, the in-
stability growth and associated critical wavenumber) are
not erroneous, but could have been obtained via a sim-
pler analysis, than the one adopted – in turn based on
Xue (2003).

In conclusion, we have shown that the fluid model pre-
sented in (Alinejad et al 2016) is intrinsically flawed, as
it involves insurmountable errors in its physical inter-
pretation, but also algebraic errors in the perturbative
analysis presented therein. The results are therefore of
no physical value. Admittedly, the modulational stabil-
ity obtained in that article, based on a generic form of

the dissipative NLS equation, is legitimate and perhaps
interesting, but the outcome is rather trivial (as it can
be recovered upon a simple phase-transformation from
the original equation). Still, one is led to questionable
results, once the so called ion-dust and electron-dust col-
lisions are taken into account.
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