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ABSTRACT 

Red meat consumption has been associated with negative health effects. A study to identify 

biomarkers of meat consumption was undertaken using serum samples collected from 

combining high resolution mass spectrometry (UPLC-QTof-MS) and chemometrics. Using 

orthogonal partial last-squares discriminant analysis (OPLS-DA), multivariate models were 

created for both modes of acquisition (ESI-/ESI+) and red meat intake classes (YES/NO). In 

the serum samples, a total 3280 and 3225 ions of interest were detected in positive and 

negative modes, respectively. Of these, 62 were found to be significantly different (p<0.05) 

between the two groups. Glycerophospholipids as well as other family lipids, such as 

lysophospholipids or sphingomyelin, were found significantly (p<0.05) different between yes 

and no red meat intake groups. This study has shown metabolomics fingerprints have the 

capability to identify potential biomarkers of red meat consumption, as well as possible 

health risk factors (e.g., key metabolic families related to the risk of development type 2 

diabetes).  

 

Keywords: Red meat consumption, biomarkers analysis, UPLC-QTof-MS, metabolomics, 

lipids, health risk factors, Diabetes 
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1. Introduction 

Meat consumption is an important contributor to dietary protein in omnivorous populations, 

and therefore has a potential impact on a range of nutritional and health outcomes. In many 

western countries, and increasingly worldwide, a typical lifestyle is characterized by a diet 

high in fat, calories and red meat, and low in fruits, vegetables and fiber. An increasing 

number of epidemiological studies have associated red and processed meat consumption with 

the development of the major chronic diseases of the Western world; diabetes, coronary 

disease and colon cancer (IARC 2015, Cross et al., 2007; Giovannucci et al., 1994; Kelemen, 

Kushi, Jacobs, & Cerhan, 2005; Kontogianni et al., 2008, Song et al., 2004). Constituents of 

red meat that have been proposed to be responsible for these associations, include the fat 

content, fatty acid composition and the possible formation of carcinogenic compounds, such 

as heterocyclic amines (HCAs), by cooking meat at high temperatures (Bingham et al., 2002). 

Although there are many studies documenting these associations, the results generated have 

not always been consistent and there are several methodological issues which limit the 

strength of their findings. In the same way as risks to human health from excessive red meat 

consumption may result, there are many health benefits of consuming red meat based on its 

nutritional composition. Red meat intake has most often been assessed using food frequency 

questionnaires, diet records or measurements of others parameters, although this is unspecific 

(Roberts et al., 1991, Leiba et al., 2005). These assessment methods have also been used 

extensively for studies on different kinds of meat (red vs. white), and on the influence of 

cooking methods. Several attempts have been made to find reliable markers of meat intake. 

Such markers would ideally reflect specific compounds in meat that distinguishes its intake 

from other foods and food groups. The development of robust food biomarkers will help in 
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better classifying an individual’s dietary intake and, in turn, will improve the assessment of 

the relationship between diet, health and chronic disease (Heinzmann et al., 2010). In recent 

years there has been an increased interest in applying metabolomics for the discovery of 

biomarkers of dietary intake. Recent proteomic studies have shown that short chain fatty 

acids (such as butyrate) generated from microbial digestion of dietary fiber may have 

important protective functions against gut cancers (Tan et al., 2006). Any alteration of the 

physiological status can disrupt homeostasis, resulting in perturbations of the levels of 

endogenous biochemicals that are involved in key metabolic processes in the cells and tissues 

of an organism (Nicholson & Wilson, 2003). To maintain homeostasis, and to adjust for the 

changes in tissue biochemistry, the composition of the body will be altered accordingly and 

lead to different and dynamic “metabotypes” that may not be observable from gross 

examination of the phenotype. Thus, monitoring perturbations in biofluid composition 

specifically due to diet preferences may yield valuable information regarding underlying 

molecular mechanisms. The quantitative measurement of the dynamic multiparametric 

metabolic response of living systems to pathophysiological stimuli or genetic modification is 

termed metabonomics (Nicholson et al., 1999) and largely relies on chemometric analysis of 

high resolution spectral data (e.g., NMR or Q-Tof-MS). 

The combination of high resolution liquid chromatography-quadrupole time-of-flight-mass 

spectrometry (UPLC-QTof-MS) and chemometrics has not been previously applied for 

biochemically profiling serum samples in relation to red meat intake levels. The aim of this 

investigation was to assess the relative analytical power and potential usefulness of UPLC-

QTof-MS for studying the polar metabolite fingerprint present due to different levels of red 

meat intake and to identify potential biomarkers (metabolites) of consumption. 
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2. Materials and methods 

2.1. Serum samples 

Serum samples were obtained from the research project FoodCAP funded by the 

World Cancer Research Fund (Grant ID 2010/255). As part of this project, a randomized 

dietary intervention study was conducted.  Initially, participants were screened for habitual 

meat intake, via completion of a 7 day food diary.  Participants were recruited via poster and 

email advertisement and through word-of-mouth, they were given full study information and 

screened for eligibility. Those under 18 years were excluded as were smokers, due to 

potential exposure to polycyclic aromatic hydrocarbons. Eligible participants provided 

written informed consent. They received a 7-day food diary and detailed instructions on how 

to record their dietary intake. Participants were asked to record their dietary intake for seven 

consecutive days and to return within two days of completing their diary.  Those in the top 

33% of habitual meat intake were re-contacted and re-consented to take part in six week 

dietary intervention study. They were randomly allocated (using www.randomisation.com) to 

(i) remove all meat from their diet (high red meat intake (HRMI) group), or (ii) continue with 

their usual diet (control group), for 6 weeks. Each participant in the HRMI group was advised 

how to lower their meat for the intervention period. Participants were given personalized 

advice to achieve this and were instructed to employ food substitutions, with due recognition 

to the individuals’ usual dietary habits and personal food likes and dislikes. Where 

appropriate, participants were provided with a choice of meat free meals (commercially 

available branded products) to assist them in complying with the intervention. Participants 

were asked to complete a second food diary mid-way through intervention as a record of 

actual food consumption during intervention. Where issues of compliance arose, they were 
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addressed at this mid-way point. The control group continued to consume their usual diet. 

They provided blood samples and completed questionnaires as for HRMI group participants. 

2.2. Blood collection 

Participants were instructed to fast (water only allowed) for at least 12 h prior to 

attending each study visit at baseline (t0), after three weeks (t1) and after six weeks (t2). 

Participants provided a 50 ml blood sample, collected in anticoagulant plasma tubes and 

serum tubes, by staff trained in venepuncture. Serum tubes were allowed to coagulate at room 

temperature for approximately 1 h, while plasma tubes were refrigerated. Serum and plasma 

were obtained by centrifugation, and were aliquoted and stored at -80°C.  Each completed 

food diary was reviewed at the time of collection with a researcher to ensure correct 

completion. Analysis of food diaries (examining food intake and also through analysis of 

nutrient intake using the dietary analysis program WISP v3.0 (Tinuviel, UK), confirmed 

compliance with the dietary intervention.  A total of 31 participants completed the 

intervention. 

This study was conducted according to the guidelines laid down in the declaration of 

Helsinki and all procedures involving human subjects were approved by the School of 

Medicine, Dentistry and Biomedical Sciences Research Ethics Committee of Queen’s 

University, Belfast.  

2.3. Sample extraction 

Extracted serum samples for metabolomics analysis (polar metabolites) were obtained 

using a minimal sample preparation method. Briefly, for each intervention sample a 100 µl 

aliquot of serum was transferred into a 2 ml sterile Eppendorf tube then 400 µl of ice cold 

methanol were added. The samples were mixed (5 sec) in a vortex, and then centrifuged for 
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15 min at 16,000 g at 4oC. The supernatant layer was transferred to another 2 ml Eppendorf 

tube and vacuum dried overnight. Dry extract were then reconstituted into 100 µl of milli-Q 

water, transferred in to a 2 ml Spin-X Centrifuge tube filter (Corning Incorporated, Corning, 

NY 14831, USA) and centrifuged for 15 min at 16,000 g at 4
o
C. Filtered extract were then 

transferred to a 2 ml Square Collection Plate (Water, Milford, MA, USA) for UPLC-QTof-

MS analysis.  

2.4. UPLC-QTof-MS analysis 

30 samples were analyzed (in triplicate, n= 90), from t0, t1 and t2 (high red meat intake 

n=48, no red meat intake n= 45). A UPLC I-Class system (Waters Acquity, Milford, MA, 

USA) was used for chromatographic purposes, coupled to a mass spectrometer (Waters Xevo 

G2S QTof mass spectrometer (Manchester, UK) equipped with an ESI (electrospray 

ionization source) with lock-spray interface for accurate mass correction in real time. The 

source temperature and cone gas flow were set at 120°C and 50 l/h, respectively. Meanwhile, 

desolvation temperature and gas flow were set up at 450°C, and 850 l/h, respectively. The 

capillary voltage was set at 1.0 kV and 1.5 kV in ESI+ and ESI-, respectively with a cone 

voltage of 30 V operating in both mode. Leucine Enkephalin (2 ng.µl
-1

) in methanol/water 

with 0.1% formic acid (1:1, v/v) was used as a lock mass solution, which was infused into the 

MS with a flow rate of 5 µl.min
-1

. Mass spectra data were acquired in continuum mode using 

MS
E
 function (in low energy: 4eV and high energy: ramp from 20-35 eV) over the range m/z 

50–1200 range with a scan time of 0.08s. A 5.0 µl of the sample was injected onto an Acquity 

UPLC HSS T3 column (2.1 x 100 mm, 1.8 µm, Waters, Milford,USA) mounted with a guard 

column (HSS T3 VanGuard Pre-column, 2.1 mm x 5 mm, 1.8 µm, Waters, Milford, MA, 

USA). The column oven and the sample manager temperatures were 45°Cand 10°C, 

respectively. The elution buffers were A (water with 0.1% formic acid) and B (methanol with 
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0.1% formic acid), with a flow rate of 0.4 ml.min-1. The elution gradient (A:B, v/v) was: 2 

min at 99:1 isocratic, followed by a linear gradient from 99:1 to 15:85 over 4 min then a 

linear change from 15:85 to 10:90 over 3 min and finally a linear gradient from 10:90 to 1:99 

over 7 min. After a 2 min period at 1:99, initial composition 99:1 was restored and held for 2 

min before the next injection. Samples were injected in triplicate in negative (ESI-) and 

positive (ESI+) ionization. For chromatographic performance (i.e., reproducibility of 

retention times and peak intensities) 10 pooled samples were injected prior to the analysis and 

every 10 target samples another small set of pooled samples (5) were injected from beginning 

to end of the run
 
(Oresic et al., 2011). 

2.5. Data analysis 

The generated spectra data was handled using Progenesis QI v2.0 Software (Waters, 

Newcastle, UK), this is a specific software package for metabolomics analysis that permit to 

accurately treat high resolution LC-MS spectral data. This software assisted in the validation 

of LC-MS approaches and identification of features within the spectral data. Using 

Progenesis QI the spectral data were aligned to a chosen pooled sample, adduct ions were 

deconvoluted and ion abundance above the threshold level performed. All ions detected were 

selected against the Lipid Blast database, Chemspider and Progenesis Metascope spectral 

libraries which provide identifications for 15-30% of the assigned ions. The analyzed data 

was exported to Simca 14 (Umetrics, Umea, Sweden) for multivariate analysis. Data quality 

was evaluated in terms of reproducibility using an approach utilize in others works by Spagou 

et al., 2011. As a quality control estimate all the spectral data were mean centered, pareto 

scaled and analyzed with principal components analysis (PCA). For both ESI+ and ESI− 

acquisition modes, the data were divided into high red meat intake and no red meat intake 

prior to analysis using orthogonal projection to latent structures-discriminant analysis (OPLS-
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DA). Red meat intake was analyzed for two different levels of consumption (yes and no) at 

different times during the intervention study, the initial baseline samples (to) and the post 

intervention samples at 6 weeks (t2). Statistical analysis approach was performed following 

the proposed minimum reporting standards for data analysis in metabolomics by Goodacre et 

al., 2007.  More details about statistical models used can be found in the Supporting 

Information material and in an earlier work by Graham et al., 2013. In each of the models 

(n=2), all of the test set observations were correctly assigned to exposure levels (yes and no) 

groups 100% of the time for both ESI+ and ESI− (available in Figures S1 and S2, Supporting 

Information). Target ions which were different between groups (high and no red meat intake) 

were analyzed using a two tailed student t-test. The top 100 compounds responsible for the 

fluctuation in the discriminant model were picked from the variable importance plot (VIP) in 

the two cases, and subjected to univariate analysis (the same procedure were applied for the 

initial intervention samples , t0 in order to compare similar ions (i.e., compounds of interest) 

in both groups).  

 

3. Results and discussion 

3.1. Characteristics of the population studied 

The average age of participants was 30.5 years in both men (n=16) and women 

(n=14). About 6% were obese (BMI≥30 kg/m
2
). The group for red meat intake comprised of 

14 individuals and the control group had 16 individuals. No significant differences (p>0.05) 

were found between groups for BMI (18.16 kg/m
2 

and 18.07 kg/m
2 

and age 30.2 years and 

31.1 years, respectively).  

3.2. Red meat intake models of exposure  
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3.2.1. Models of Exposure at the end of the study (t2) 

Figure 1A shows a chromatogram acquired in ESI- for a target serum sample and the 

corresponding pool serum sample (pink and green line, respectively). Orthogonal partial 

least-squares discriminant analysis (OPLS-DA) was used to develop a model enabled to 

differentiate between no red meat intake (blue) and high red meat intake (red), in serum 

samples (n=75). Figure 1B shows the score plot with the results of the model building, with 

one component and eight orthogonal projections which demonstrate the highest load of 

variation between the two groups (R2 (cum) = 97%; Q2 = 86%; root mean squared error for 

validation (RMSEV) = 18%. Figure 1C displays the loading plots correlated to the scores plot 

in Figure 1B (reveals the compounds that are the reason for the variation between the two 

samples groups). Featured in blue (no red meat intake, n = 15) and red (high red meat intake, 

n = 15) were the ions which shows significant differences between sample groups. The S-plot 

in Figure 1D reveals the proportional importance of each molecule in discriminate sample 

groups. Peak height and colour point out relative significance of the candidate molecules. 

Table 1 shows the retention times, exact masses, percentage increment and their significance 

values (p<0.05). Figures 2A and 2B show the proportional abundance of all the ions (ESI-) of 

concern within the two sample groups (yes vs no red meat intake, respectively), including the 

standard error of the mean (error bars). 

In Figure 3A a chromatogram acquired in positive mode of the sample and the corresponding 

pool serum sample (pink and green line, respectively) is shown. The same scheme was 

applied for data analysis as in the former described negative mode acquisition, and 3225 ions 

were detected by Progenesis QI. The OLPS-DA scores model shown in Figure 3B (n=83), 

was built with one component and eight orthogonal projections to elucidate the maximum 

amount of variation within the two sample groups (R2 (cum) = 94%; Q2 (cum) = 89%; 

RMSEV= 17%). Figure 3C shows the loading plots in accordance to the compounds that are 



  

11 

 

accountable for the variation between the two samples groups. Displayed in blue (high red 

meat intake, n = 15) were the ions which showed significant differences between groups, no 

significant differences in compounds were observed for no red meat intake. Figure 3D shows 

the significance and relative importance of the ions found in Fig.3C. Table 2 remarks the 

retention times, masses, percentage of increase between sample groups, and their significance 

values (only ions with p<0.05 are shown) of the ions. Figure 4A shows the relative 

abundance of all the ions (ESI+) of interest between the two sample groups (high red meat 

intake), including the standard error of the mean (error bars). Models of exposure at the 

beginning of the study (t0) can be found in the SI material. 

3.3. Biomarker identification 

Progenesis QI provided 3075 possible identifications for the 3400 ions found to be present in 

the target samples extracts (t2 post intervention samples). Nevertheless only a small number 

of these features were presumed identified using Progenesis QI, with only 32 (ESI+) and 30 

(ESI-) being in the top 100 metabolites emphasize by the VIP (Variable Importance Plot). 

The tentatively identified compounds which may be candidates for probable metabolite 

biomarkers of red meat intake, need to be interpreted with a degree of caution as the 

identification is not 100% accurate. We followed the recommendations for standard 

metabolite identification established by the Chemical Analysis Working Group (CAWG) of 

the Metabolomics Standard Initiative by Sumner et al. 2007. Therefore we describe our 

identified compounds as putatively annotated compounds (type 2) or putatively characterized 

compound class (type 3). In addition, for a specific m/z more than one possible compound 

can be listed as a possible candidate. Further research is required to compare the fractionation 

patterns and retention times of the potential identified compounds against reference standards 

using UPLC-MS/MS. Within the tentatively identified compounds, we were able to reveal 
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important lipids families (e.g. Glycerophospholipids), and within this class: 

Glycerophosphocholines (GP01) and Glycerophosphoethanolamines (GP02), and sub-

classes: Monoacylglycero-phosphocholines (GP0105) and 1Z-

alkenylglycerophosphoethanolamines (GP0207), as well other important lipid families, such 

as Lysophospholipids, Phosphatidylcholine or Sphingomyelin, were identified and found 

significantly different between groups, some were upregulated  and others down regulated 

(p<0.05) (Figures 2A, 2B, 4, S5, S6 and S7). Glycerophosphocholines have previously been 

associated with a “meat factor” which is reported to enhance non-heme iron absorption 

(Armah et al., 2008), this compound could be used as a positive biomarker of red meat intake. 

For the VIP plot, 32 compounds were significantly different (p<0.05) in the ESI+, for the 

high red meat intake group, surprisingly no compounds were significantly different in the ‘no 

red meat' intake group. For the VIP plot, 15 compounds were significantly different (p<0.05) 

in the ESI-, between the high red meat intake group vs the no red meat intake group and 15 

compounds between the no red meat intake and the high red meat intake group. For the 62 

compounds, which were significantly different from high vs no exposure, 18 were positively 

“identified”. Table S1 shows the presumptive identifications of these 18 compounds. 

Three compounds (m/z 464.3140- PE(P-18:0/0:0); m/z 724.5279- PE(P-16:0/20:3) and m/z 

726.5447- PE(18:1(9Z)/18:1(9Z)) which are related to the Glycerophosphoethanolamines 

(GP02) specific to the 1Z-alkenylglycerophosphoethanolamines (GP0207) (ID level type 2 or 

type 3, Table S1), were found for ESI- mode in high red meat intake, these compounds have 

two different origins (endogenous and food) and have been linked  to have a cell signaling, 

energy source/storage function, as well as being components of cell membranes 

(www.hmbd.ca). Other compounds identified as being significantly higher in the red meat 

intake group were Sphingomyelin d18:C18:0, (m/z 775.5959) and Phosphatidylserine 18:0-

18:1, (m/z 786.5647) (ID level type 3, Table S1). Sphingomyelin altered levels have been 
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shown to be markers of a number of different metabolic syndromes (e.g., obesity, insulin 

resistance of fatty liver disease) (Hanamatsu et al., 2014).  Phosphatidylserines have different 

biological functions in the human body, such as cell signaling membrane component and 

energy storage (www.hmbd.ca). 

Seven compounds (m/z 517.3173- PC(18:3/0:0); m/z 519.3321- PC(18:2/0:0); m/z 545.3487- 

PC(20:3/0:0); m/z 729.5316-GPCho(6:0/26:2); m/z 743.5481- GPCho(16:0/17:2); m/z 

782.5708- GPCho(14:0/22:4) and m/z 799.6692), all belonging to the Glycerophospholipids 

class (GP01) and Monoacylglycero-phosphocholines sub-class (GP0105) were found in ESI+ 

mode in the high red meat intake group (ID level type 2 or type 3, Table S1). This family of 

compounds has been previously reported as potential biomarkers of red meat consumption 

and was related to a higher risk of type 2 diabetes (Wittenbecher et al., 2015). Within the 

presumptive 18 identified compounds in Table S1 (ID level type 2 or type 3), 16 were up-

regulated in the HRMI group compared to the control. 

This is the first study that combines high resolution UPLS-QTof-MS and chemometrics to 

biochemically profile the polar metabolome in human serum samples in an effort to evaluate 

diet preferences (red meat intake yes or not). By acquiring MS data in negative and positive 

modes, two separate metabolomics models were developed which can clearly and 

unambiguously distinguished high vs low levels of contaminant exposure. The predictive 

accuracy of the models were excellent with a range of Q2= 77 - 93% and RMSEV, 12 - 18%. 

The predictability of the model could be increased if a larger number of samples are 

measured. Data acquired in positive mode assigned a total of 3076 polar compounds while 

data acquired in negative mode assigned 3121 polar compounds. It has been possible to 

assess the variable importance of a number of ions which were highlighted by their respective 

colours in the S-line-plot. The S-plot allowed the visual determination of the ions of interest 

most responsible for separating the two study groups (high vs no red meat intake). It was then 
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possible to statistically analyze each of the ions of interest and verify (by means of a t-test) 

that these candidates were significantly different in each level of exposure (Table 1 and 2).  

In order to search for possible metabolite correlations between the initial (t0) and the final 

intervention samples after the six weeks study (t2), the VIP plot ions (100) for ESI-/ESI+ and 

red meat intake groups were investigated. For the 400 ions analyzed only 38 ions were 

significantly different within both study groups (figure S5, S6 and S7, SI material). An 

additional comparison of these ions within t2 and t0 samples, shows that only 8 of these ions 

were also significantly different between the two groups analyzed for the last samples of the 

intervention study (t2). The tentative identification of these compounds can be found in Table 

S2. A number of other observational studies have used metabolomic (NMR spectroscopy) 

analysis of serum or urine samples to examine associations with  red meat intake (Stella et al., 

2006; Bertram et al., 2007a, 2007b), showing some similarities in results for biomarkers 

identified (e.g., Glycerophospholipids), these support the findings of the present study. 

Within the assigned compounds in both modes, 62 compounds showed significant differences 

(p<0.05), in the ESI+ mode, 32 compounds were found for the high red meat intake group, 

but surprisingly none were significantly different (between groups) in the no red meat intake 

group (Table 1 and 2, only show the top 15 of each group (high red meat and no red meat 

intake) and for both acquisition modes, 45 ions in total). For the ESI- mode 15 compounds 

were significantly different (p<0.05) for the high red meat intake group and 15 compounds 

for the no red meat intake, encompassed important lipid families (e.g. 

Glycerophosphoethanolamines (GP02) or Glycerophospholipids (GP01)). This demonstrates 

the strength of this method for tracking biochemical changes in serum samples in response to 

dietary change. We were able to positively identify (as putative annotated compounds type 2 

or putative characterized compound classes type 3) important lipids classes, such as 

Glycerophosphocholines (GP01) and Glycerophosphoethanolamines (GP02), 
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Lysophospholipids, Phosphatidylcholine, Sphingomyelin or Monoacylglycero-

phosphocholines, which are involved in lipid metabolism (cell signaling, fuel storage/source 

or membrane function/component).  

4. Conclusions 

In the present study an effect of changing red meat intake on the levels of a range of different 

lipids families was found and these, or at least a number of them, have the potential to be 

used as positive biomarkers of red meat consumption (i.e., Glycerophosphocholines (GP01). 

The data generated shows that red meat consumption contributed to a rather different 

metabolic fingerprint among the study population. A deregulated lipidomic profile, through 

the enrichment (up-regulated) of lipid metabolites that contain 16 or more carbons atoms in 

the fatty acid residues in which one fatty acid was contained (lysophospoatidylcholines and 

sphingomyelin) or 34 or more carbon atoms in which 2 fatty acids were contained (diacyl 

phosphatidylcholines and acyl-alkyl phosphatidylcholines) is plausibly related to the high 

proportion of even-numbered long-chained fatty acids contained in red meats (Williams, 

2007). Several studies have related altered lipid metabolism to the pathogenesis of type 2 

diabetes, among them a challenged mitochondrial metabolism, altered cellular signaling 

processes at the membrane, and modulation of gene expression (Ye, 2013; Amati, 2012). 

Thus, using the data in Table S2, we proposed a ratio of compounds as a possible biomarker 

index of red meat intake. We used the sum of three compounds (a lysophosphatidylcholine, 

LysoPC(18:2(9Z,12Z)), a sphingomyelin SM(d18:1/16:0) and a diacyl phosphatidylcholine 

PC(20:4(5Z,8Z,11Z,14Z)/16:0) at the beginning of the study (t0) and at the end of the study 

(t2). The ratios for the “biomarker index” was 0.97 for the t0 samples and 1.23 for the t2 

samples, this result is in agreement (an increasing ratio towards the end of the study) with 

what was expected, i.e. a higher metabolomic difference between both groups over the 
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experiment time. Thus, serum levels of multiple lipids can subtly reflect the status of a 

metabolic system in response to a change in food group intake, in this case red meat 

consumption (e.g., through the id compounds and the “biomarker ratio”) as well as possible 

health risk factors (e.g., key metabolic families related to the risk of development diabetes 2 

type).  
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Table 1. Molecules of interest as identified in the S-Line Plot (ESI-), for the significance to 

the Model+  

            negative mode acquisition      

 higher in high red meat intake             higher in no red meat intake     

 
no 

 

Rt mass % increase p-value n0 Rt mass % increase p-value 

1 5.33 255.0877 270.1 5.8 x 10-04 1 4.16 171.0116 625.34 2.6 x 10-09 

2 5.17 1012.4874 349.9 8.5 x 10-04 2 5.60 385.1690 208.3 0.005 

3 6.41 367.1585 154.5 7.4 x 10-03 3 5.71 462.1766 307.5 1.9 x 10-05 
4 6.86 369.1734 160.1 0.01 4 6.75 624.3390 180.4 0.009 

5 6.87 397.2054 141.1 0.01 5 6.97 481.3521 188.3 0.00021 
6 7.10 448.3060 51.5 0.004 6 7.02 567.3163 429.3 1.2 x 10-06 

7 8.61 479.3344 121.9 0.001 7 7.32 471.2425 24.2 0.02 
8 8.63 437.2899 133.3 0.004 8 7.33 621.3271 1605.2 0.0005 

9 9.22 327.2325 137.7 0.03 9 7.50 392.2923 302.5 0.007 
10   9.71  464.3140      137.7 0.001 10 7.57 391.2847 351.7 0.007 
11 14.95 485.2724       121.6 0.01 11 7.60 481.3521 154.6 0.0008 

12 15.69 775.5959       122.1 0.003 12 9.35 595.2888 70.8 0.006 
13 15.91 786.5647       124.3 0.004 13 14.20 824.5444 67.8 0.01 

14 16.08 724.5279       132.2 0.03 14 15.36 738.5071 78.1 0.02 
15 17.01 726.5447       146.3 0.0008 15 15.62 764.5234 63.4 0.005 
+
Accompanying are the respective results from the Student’s t-test carried out for the high red meat intake level compared to 

low red meat intake. The results correspond to the S-line plot in Figure 1 which are numbered accordingly. 

 

Table 2. Molecules of interest as identified in the S-Line Plot (ESI+), for the significance to 

the Model
+
 

 

+
Accompanying are the respective results from the Student’s t-test carried out for the high red meat intake levels compared 

to low red meat intake. The results correspond to the S-line plot in Figure 3 which are numbered accordingly.  

 

             positive mode acquisition      

                                                                higher in high red meat intake 

n0 Rt mass % increase p-value n0 Rt mass % increase p-value 

1 7.55 517.3173 165.9 0.0005 9 13.30 674.5371    134.2 0.0003 

2 7.73 240.6845 149.9 0.0008 10 13.66 700.5527    129.9 0.0003 
3 7.74 1039.6697 212.7 0.0002 11 13.94 689.5601    128.1 0.001 

4 7.91 519.3321 144.8 0.001 12 14.23 729.5316    141.9 0.002 

5 7.97 1015.6722 144.2 0.009 13 14.83 743.54810    130.8 0.0006 

6   8.25 545.3487    141.3 0.004 14 14.97 782.5708    139.2 0.001 
7 12.00 646.5051    148.9 0.001 15 17.79 799.6692    123.7 0.001 
8 12.36 673.5283    151.8 0.00003      
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Figure captions 

Figure 1. (A) UPLC ESI- chromatogram of the polar extract of a serum sample. (B) The 

scores plot displaying the separation between the two sample groups (no red meat intake = 

blue; high red meat intake = red). Explained variance (R2) was 97%, predictive ability (Q2) 

was 86%, and root-mean-square error of validation (RMSEV) was 18%. (C) The loadings 

plots which correspond to the scores in B. Indicated in blue (n = 15) and red (n = 15) are 

metabolites which significantly differ between groups (higher in no red meat intake and high 

in high red meat intake, respectively). These are further emphasized by the S-line-plot (D) 

and their relative variable importance to the model. 

Figure 2. Graphical representation of the mean relative abundances of the molecules found to 

be significantly different between sample groups acquired in negative mode for high red meat 

intake and no red meat intake. (A) shows which ions are at higher levels in high red meat 

intake samples compared to no red meat intake; (B) exhibits those ions higher in no red meat 

intake samples than in high red meat intake. Numbered columns relate to the ions labeled in 

Table 1. 

Figure 3. (A) UPLC ESI+ chromatogram of the polar extract of a serum sample. (B) The 

scores plot displaying the separation between the two sample groups (no red meat intake = 

red; high red meat intake = blue). Explained variance (R2) was 94%, predictive ability (Q2) 

was 89%, and root-mean-square error of validation (RMSEV) was 17%. (C) The loadings 

plots which correspond to the scores in B. Indicated in blue (n = 15) are metabolites which 
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are metabolites which significantly differ between groups (higher in high red meat intake, no 

significant ions were found for no red meat intake group). These are further emphasized by 

the S-line-plot (D) and their relative variable importance to the model 

Figure 4. Graphical representation of the mean relative abundances of the molecules found to 

be significantly different between sample groups acquired in positive mode for high red meat 

intake. (exhibit those ions higher in high red meat intake group samples than in no red meat 

intake), no significant different ions were found in the no red meat intake group). Numbered 

columns relate to the ions labeled in Table 2 for both levels of red meat intake. 
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Highlights 

 

 

• An intervention study was undertaken in health participants with a high red meat 

intake and no red meat intake for six weeks. 

• Utilization of high resolution mass spectrometry (liquid chromatography-quadrupole 

time-of-light-mass spectrometry, UPLC-QTof-MS) and chemometrics for biomarkers 

identification. 

• Identification of possible biomarkers of red meat consumption were found between 

groups. 

• Positive identification of Type 2 Diabetes biomarkers were found in the high  red 

meat intake group. 

 


