
HPTA: High-Performance Text Analytics

Vandierendonck, H., Murphy, K., Arif, M., & Nikolopoulos, D. S. (2017). HPTA: High-Performance Text Analytics.
In Proceedings of tge IEEE International Conference on Big Data (pp. 416-423).  IEEE . DOI:
10.1109/BigData.2016.7840632

Published in:
Proceedings of tge IEEE International Conference on Big Data

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 IEEE.  Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74406833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/hpta-highperformance-text-analytics(9d6fbd2e-187e-46b8-b78a-0a114f5d8ac7).html


HPTA: A Library for High-Performance Text Analytics

Hans Vandierendonck, Karen Murphy, Mahwish Arif, Dimitrios S. Nikolopoulos
School of Electrical Engineering, Electronics and Computer Science

Queen’s University Belfast
Email: {h.vandierendonck,k.l.murphy,m.arif,d.nikolopoulos}@qub.ac.uk

May 14, 2016

Abstract

One of the main targets of data analytics is unstructured data, which primarily involves
textual data. High-performance processing of textual data is non-trivial. We present the
HPTA library for high-performance text analytics. The library helps programmers to map
textual data to a dense numeric representation, which can be handled more efficiently.
HPTA encapsulates three performance optimizations: (i) efficient memory management
for textual data, (ii) parallel computation on associative data structures that map text to
values and (iii) optimization of the type of associative data structure depending on the
program context. We demonstrate that HPTA outperforms popular frameworks for text
analytics such as scikit-learn and Spark.

1 Introduction

Text analytics are an important class of data analytics, differentiated from analytics in general
by assigning meaning to textual data. Rumor has it that 80% of all big data is unstructured,
hence textual in nature. This is however hard to confirm [7]. There is quantitative support
for a 31% stake of textual data [7, 27], which is nonetheless a substantial fraction of data
analytics.

Analyzing data at high speed is immensely important given that data volumes are consis-
tently growing. The dominant approach to scaling up analytics capabilities consists of using
increasing numbers of servers. Single-thread performance, i.e., the time it takes an individual
server to process its part of the work, is generally neglected. This approach is not scalable in
the long term due to operational costs of the high number of components involved and the
diminishing returns that result from scaling up to high degrees of parallelism. In contrast, im-
proving the performance of analytics can reduce operational costs even in the face of growing
data volumes.

The data analytics literature generally pays little attention to single-thread performance.
There is a good motivation for this: single-thread code is typically written by data analysts
and it is not desirable to require high-performance computing expertise from data analysts.
In contrast, performance-critical code is encapsulated in libraries and frameworks, although
the performance of these is under scrutiny [11,20–22,29]. However, to the best of our knowl-
edge, there exist no frameworks, nor good practice, for manipulating textual data at high
speed for general algorithms. The goal of this work is to fill this gap in the literature and

1



provide guidelines for achieving high-performance text analytics. Moreover, we present HPTA,
a library that implements these guidelines in a reusable way.

This paper presents three guidelines towards high-performance text analytics:
Memory management: text analytics will deal with a large number of text fragments.
These fragments are often short, e.g., words in a natural language. Traditional memory
management, involving independent allocation of each fragment, is not scalable due to the
performance overhead of fine-grain dynamic memory management and the resulting fragmen-
tation. Nonetheless, popular systems such as Hadoop [9] and Spark [32] follow this approach.
We investigate techniques to circumvent this problem and experimentally characterize their
effectiveness.
Parallelism in associative data structures: associative data structures track the com-
puted values for each text fragment. It is well known that the choice of associative data
structure, e.g., hash table versus map, affects performance. Data analytics frameworks have
settled on lists of key-value pairs as the main associative data structure [9, 40]. Few would
argue that this is optimal in single-threaded applications, yet it seems to work well for parallel
execution, in particular for data partitioning and reduction. In contrast, frameworks that use
more complex data structures are restricted to single-threaded execution [10, 23]. We argue
that parallel execution is possible using any associative container and we present methods for
partitioning and reduction. Experimental validation shows that the use of appropriate data
structures outperforms the list-based representation.
Moving data is faster: We demonstrate that different phases in text analytics applications
utilize the data structures in different ways. As such, phases require different data structures,
which leads to the counter-intuitive result that moving the data to different data structures
during the computation reduces execution time, even though data volumes are large.

The remainder of this paper is organized as follows. Section 2 discusses related work on
text analytics and relevant high-performance computing techniques. Section 3 describes the
computation of term frequency-inverse document frequency (TF-IDF) as a guiding example.
Section 4 presents our performance optimization guidelines and their implementation in the
HPTA library. Section 5 shows the experimental evaluation of the guidelines. Section 6
concludes the paper.

2 Related Work

Research into high-performance text analytics often involves acceleration using Graphics Pro-
cessing Units (GPUs). Erra et al [4] present a GPU implementation of an approximate
streaming version of TF-IDF. The TF-IDF metric is approximated by counting occurrences
of a pre-set number of terms only in order to meet the memory limitations of GPUs. They
use the C++ Thrust library that simplifies the development of CUDA code.

Zhang et al [41, 42] study document clustering on clusters of computers equipped with
GPUs. They use the Term Frequency-Inverse Corpus Frequency (TF-ICF) algorithm [26].
TF-ICF approximates the IDF scores using document relevance metrics that are pre-calculated
over a reference corpus. They pre-compute TF-ICF scores on the CPU and accelerate a flock
clustering algorithm on the GPU. They demonstrate a 10x speedup when using 16 high-end
NVIDIA GPUs compared to executing on a single desktop.

Szaszy et al accelerate document stream clustering where they assume that a stream of

2



documents needs to be continuously clustered [34]. They use sparse matrix-vector multiply
(SpMV) techniques to compute the similarity between the TF-IDF of a document and the
reference clusters. The SpMV calculation is performed on the GPU. They do not study the
issue of text parsing and assume that a document is converted to TF-IDF form prior to
entering their system.

Each of the above works investigates acceleration of document clustering and focuses on
the numeric clustering algorithm rather than the processing of textual data.

Suffix arrays are a representation of documents that facilitate counting the frequency of
terms [18]. A suffix array consists of every suffix of a document, i.e., a sub-string starting at
a position in the text and extending to the end of the document. These suffixes are sorted
alphabetically. Linear-time traversal or binary search of the suffix array can efficiently retrieve
the frequency of individual terms and of n-grams.

Suffix arrays can be constructed in linear time [14]. Combined with a linear-time scan
to count term frequencies, suffix arrays promise a linear-time computation of TF-IDF scores.
We have experimented with suffix arrays. However, the algorithm we tried [14] is much slower
than the solutions we propose in this work. The reason is that, although it is a linear time
algorithm, it performs redundant work. The algorithm needs to sort all suffixes, including
those starting at arbitrary character positions within terms. The number of suffixes sorted is
thus at least an order of magnitude larger than the number of terms. Moreover, the number
of terms is typically several orders of magnitude larger than the number of unique terms in a
document, leading to further redundant work. As such, these algorithms are efficient only in
those cases where all suffixes are required.

Kulla et al demonstrated that the DC3 linear-time suffix array construction algorithm [14]
can be efficiently parallelized, leading to significant performance gains [17].

Yamamoto and Church propose an algorithm building on suffix arrays that identifies
clusters of related terms [39]. Their algorithm does not cluster TF-IDF scores using generic
algorithms such as K-means cluster analysis. Instead, they analyze the longest common
prefixes of groups of suffixes. They identify clusters of interest as groups of suffixes that have
the same term frequency and document frequency.

An important component of this work is concerned with parallel operation on associa-
tive data structures. Several works have investigated scalable parallel data structures. The
Standard Template Adaptive Parallel Library (STAPL) [25, 36] distributes data structures
across a cluster by partitioning the key space. Accesses to data structures are transparently
forwarded to the appropriate machine. The Parallel Standard Template Library (PSTL) [13]
is a similar, older project. The parallel-STL approach has limited scalability in comparison to
this work as it aims to parallelize individual operations on associative data structures. This
work, in contrast, is concerned only with parallel iteration.

PDQCollections [38] processes associative data structures in a map-reduce-like model. The
authors consider functions on the data such that the data may be split (e.g., by key range),
operated on independently and then merged as in a reduction operation. PDQCollections is
more akin to the approach taken in this work due to the reduction of associative data sets. An
important distinction is that our approach is not specific nor limited to map-reduce programs.

3



Table 1: Common operations on associative containers.
Operation Description

insert(c, k, v) insert value v for key k in collection c

modify(c, k, f, v) modify collection c to store value v0 for key k as v0 = f(v0, v) or insert
v if key k absent

lookup(c, k) lookup what value is stored for key k in collection c

iterate-seq(c, k, v) retrieve the next stored key-value pair

iterate-par(c, k, v) as iterate-seq(k, v) but can be used as iterator in a parallel for-loop

merge(cl, cr, f, g) merge collection cr into cl by storing the value f(vl, vr) if (k, vl) ∈ cl and
(k, vr) ∈ cr for a key k, or by inserting (k, g(vr)) for (k, vr) ∈ cr.

sort-by-key(c) sort all entries of collection c by key

sort-by-value(c) sort all entries of collection c by value

3 Text Analytics: TF-IDF Case Study

To simplify the exposition, we will study term frequency-inverse document frequency (TF-
IDF) [28] as a guiding example of text analytics. While the TF-IDF operation is simple
enough to understand in detail, it exposes important reoccurring properties of text analytics
operations. Before we present the example, we define the operations on associative containers
that we will use.

3.1 Operations on Associative Containers

Associative containers present a typical set of operations that relate to their key function:
associating a value to a key taking from a sparsely used range of values. As such, the simple
operations are insert, to insert a value for a key; lookup, to lookup the value stored for a key;
and modify, to modify the value stored for a key. The modify operation moreover stores a
key-value pair in case the key was absent. Specifics of the function are provided in Table 1.

Associative containers moreover provide means to iterate over all of their contents. The
iterate-seq operation allows to iterate over all key-value pairs in a sequential (single-threaded)
piece of code. Some containers guarantee to access their contents in a specific order. E.g., a
tree-based hash map typically stores its contents using a user-specified less-than comparator.
Its elements are thus iterated in increasing order. In our case, this means terms are iterated
through in alphabetic order. Other containers, e.g., a hash table, do not provide this func-
tionality. Regardless of sorting guarantees, we assume that multiple traversal over the same
container instance traverse the key-value pairs in the same order.

The iterate-par operation allows the same from a parallel loop. Not all containers allow
easy parallel access. Typically array-like containers do, while tree-based containers do not.1

Text analytics require a few complex operations that manipulate containers as a whole,
rather than providing access to individual elements. The merge operation merges the contents
of one container into the other. This is useful to combine the information from multiple
containers. E.g., we use the merge operation to compute the document frequency from per-
document term frequency containers. Finally, the sort operations sort the contents of the

1We follow C++ terminology and assume that containers with a random access iterator provide the iterate-
seq and the iterate-par operation, while others only support the iterate-seq operation [3].

4



container. Sorting can be done either by key, which is the natural way to store the contents
for some container types, or sorting can be done by value. Sorting is not supported by all
containers.

3.2 TF-IDF

TF-IDF assigns a weight to each term-document combination. The weights reflect the impor-
tance of the term within the document and across the set of documents.

Figure 1 shows a pseudo-code for TF-IDF. This code uses a number of associative con-
tainers that store information on each encountered term. Firstly, the code uses an associative
container per input file to store the term frequency within that document. I.e., the con-
tainer associates every term (key) to its frequency of occurrence (value). Secondly, a single
associative container is used to calculate the document frequency across the collection. This
container stores two integer values for each term encountered in each of the documents: the
number of documents where the term occurs (document frequency) and a unique sequence
number that is determined only when all files have been read. The latter number is important
for sorting the output data alphabetically.

The algorithm has three distinct phases. In the first phase (term count phase), all docu-
ments are read and the per-document term frequency is determined. Moreover, all terms from
all documents are added to the document frequency container and the document frequency
is updated. The containers are mostly updated during the term count phase. The access
pattern consists thus of random accesses.

The second phase of the algorithm assigns a unique ID to each term. This is helpful to
build the TF-IDF matrix, i.e., to index it by numeric ID rather than by string. Assigning IDs
is however also critical in order to produce an alphabetically sorted output.

The third phase computes the TF-IDF scores and stores them in a matrix. Although the
pseudo-code depicts a dense matrix, a sparse matrix is used as non-stop-words typically occur
in only a fraction of the documents. The matrix is built up by rows, where rows can be easily
constructed in parallel. Each row corresponds to a document and is constructed by iterating
over all elements of the corresponding per-document term frequency container. Each term
in this container is looked up in the term frequency container to obtain the corresponding
document frequency.

3.3 Discussion

3.3.1 Memory Management

TF-IDF constructs a bag-of-words model for a set of documents. It extracts individual words
from the documents and retains one copy of each unique word. As such, the final set of words
is significantly smaller than the sum of document sizes.

A typical implementation in Hadoop or Spark would allocate memory for every word
separately as it is obtained from the tokenizer. These words will then be added to the
associative container that counts occurrences of the words. When the text fragment is already
present, the new copy will be discarded. As such, some words are discarded quickly, others
are retained for a longer period of time.

The problem arises as natural language words are typically short, there are many words in
large documents and the words have varying lengths and lifetimes. This poses issues for the

5



1 procedure TFIDF(documents[0..n−1]) {
2 // term frequency per document
3 associative container ( string −> int) term freq[n ];
4 // document freq. and ID
5 associative container ( string −> (int,int)) doc freq ;
6 parallel for ( i : 0.. n−1) {
7 // Calculate term frequency in i−th document
8 parallel for (term : documents[i])
9 modify(term freq[ i ], term,+,1)

10 // Update document frequencies for term in i−th document
11 // Increment counter for each term ignoring term frequency
12 // Value of ID is irrelevant at this time
13 merge(doc freq, term freq [ i ],
14 f=(k,(dfl , idl ), tfr )−>(k,(dfl+1,idl )),
15 g=(k,tfr)−>(k,(1,0)))
16 }
17 // Assign unique IDs to each term. The terms can be optionally
18 // sorted alphabetically . Sorting here affects the order of
19 // terms in the TF−IDF matrix and output.
20 // Store IDs in second element of value pair in doc freq .
21 sort−by−key(doc freq)
22 ID = 0;
23 parallel for (term : doc freq) {
24 modify(doc freq ,term,f=((tf , old ID ), ID)−>(tf,ID))
25 ID += 1
26 }
27 // Construct TF−IDF (sparse) matrix
28 parallel for ( i : 0.. n−1) {
29 for ((term, tf ) : term freq [ i ]) {
30 // Calculate TF−IDF score for term in i−th document
31 (df , id) := lookup(doc freq ,term)
32 tfidf [ i , id ] := tf ∗ log((df+1)/(n+1))
33 }
34 }
35 return tfidf
36 }

Figure 1: Code structure for term frequency–inverse document frequency calculation for a
collection of documents. The operations on associative containers are defined in Table 1.

efficiency of memory management, such as time spent in (de-)allocation or garbage collection
and fragmentation of memory [15].

3.3.2 Parallelism

There is abundant parallelism in TF-IDF. In fact, all of the loops in Figure 1 can be executed
in parallel. Some loops are trivial to parallelize, while others require more work. For instance,
the loop at Line 8 can be parallelized by dividing the document in large chunks, split at a
word boundary [24]. Distinct associative containers are computed for each chunk. These are
reduced in pairs using a tree reduction at the end of the loop. Moreover, the loop at Line 23
can be parallelized using a prefix sum [1].

Loops may be more or less difficult to parallelize depending on the data structures involved.

6



E.g., parallel iteration over an array-based list can be trivially achieved by splitting the index
range. Iterating over the elements of a hash table in parallel is also possible but needs to
tie in with the bucket structure of the hash table. On the other hand, parallel iteration
over self-organizing data structures such as splay trees [31] is incompatible with the ongoing
re-balancing.

3.3.3 Containers

The TF-IDF operator code is heavily dependent on accesses to the containers in order to
accumulate and retrieve term frequencies and document frequencies. Our work builds on the
observation that execution time is determined by the characteristics of the container. We
strive to optimize the performance of text analytics in general and TF-IDF in particular by
selecting the most appropriate type of container for each phase of the algorithm.

4 Optimization of Text Analytics

We have identified optimization opportunities that are applicable to text analytics operations
in general, and to TF/IDF specifically. These optimizations are implemented in the HPTA
library. We will experimentally demonstrate their impact in Section 5.

4.1 Memory Management

Text analytics operate on a large collection of text fragments. A common goal is to map
these text fragments into a numeric multi-dimensional space [28], but until that mapping is
achieved, text analytics operations process individual text fragments. The text fragments can
be created and represented in multiple ways:

Text fragments are individually allocated as they are read in or discovered. Memory
allocators typically round allocated memory sizes up to frequently occurring sizes. This will
incur significant internal fragmentation as text fragments have highly varying lengths. Alter-
natively, systems using garbage collection will incur significant garbage collection overheads
when all text fragments are separately allocated. The garbage collector must analyze these
objects upon each collection pass, adding to the overhead of garbage collection [33]. However,
it can be expected that large groups of text fragments have equal life-times in text analytics
applications.

The input files are retained integrally. A fast solution results when reading in input
files integrally into working memory [24], e.g., using mmap on UNIX-based systems. This
avoids separate memory allocations for each fragment in the input. However, it will result
in large memory overhead and bad memory locality. In particular, when terms repeat many
times in the same document, each repetition of the word will be held in memory while a
bag-of-words model requires that only one copy of each word is stored. This is the case, e.g.,
in the TF-IDF example. More importantly, retaining full input files requires that sufficient
main memory is available.

Region-based memory allocators aim to maximize performance by eradicating inter-
nal fragmentation and by efficiently de-allocating a large number of items in bulk [6, 12, 33].
Region-based memory allocation is effective when individually allocated items go out of scope

7



at the same time, implying that their memory can be reclaimed at the same time. Region-
based memory management is more sophisticated than retaining all input files in memory,
but results in similar performance benefits.

Region-based memory management is generally provided using application-specific code [6,
12]. Language support has been proposed [8,30] but is not widely available. As such, we have
selected a library implementation.

4.1.1 HPTA Implementation

HPTA implements a word bank, which is a data structure that implements region-based mem-
ory allocation of strings. The word bank consists of a list of large chunks of memory that
are allocated using the system-supplied memory allocator. Words that are added to the word
bank are allocated at the end of the last chunk using a simple bump-pointer allocation tech-
nique. When all memory in the last chunk has been used, or the next string is too long to
fit in the chunk, a new chunk is appended to the list. The chunk size can be tuned by the
programmer.

The word bank has the advantage that it limits the run-time overhead and fragmentation
of the system memory allocator. Moreover, all words contained in it can be de-allocated
quickly. In general, using larger chunk sizes results in less system overhead. A downside of
the word bank is that individual strings cannot be removed or de-allocated. This is a known
limitation of region-based memory management [6, 8, 12]. We believe that this limitation is
however not important for text analytics as remove operations are rare in this area. They are
also not included in Table 1. If, however, a significant number of strings needs to be removed,
it is viable to copy over the remaining strings to a new word bank and discard the old one,
much like a copying garbage collector works.

HPTA furthermore couples each associative data structure with a word bank. As such, the
associative data structure and its word bank are created and destroyed together. The main
advantage of this approach is that it is safe to store pointers to strings in the associative data
structure where the pointers point into the word bank. The validity of the pointers follows
trivially from this setup.

In some applications it is advantageous to share a text corpus between multiple associa-
tive data structures. HPTA supports this by allowing word banks to share memory chunks.
Memory reclamation is controlled by adding reference counters to the memory chunks. As
such, the chunks are de-allocated when all word banks that contain it are destroyed.

4.2 Reference Associative Containers

A myriad associative containers have been proposed in the literature, each making specific
trade-offs in the time complexity of various operations, in average-case vs. worst-case time
complexity, in memory efficiency, in raw performance, etc. The goal of this work is not to
identify the best possible container for text analytics or for TF-IDF. Rather, we aim (i) to
demonstrate that text analytics are extremely sensitive to the properties of the containers,

2Time complexity is O(n) if key is new due to moving elements in the array.
3Assumes usage of the C++’11 insertion hint indicating that the element is inserted in the immediate

neighborhood of an iterator. The iterator is assumed to be the position where the previous element was
inserted.

8



Table 2: Time complexity of operations on associative containers assuming the container holds
n elements.

Operation Time Complexity

List Sorted List Hash Table Map

insert(k, v) O(n) O(n) O(1) O(log n)

modify(k, f, v) O(n) O(log n)2 O(1) O(log n)

lookup(k) O(n) O(log n) O(1) O(log n)

iterate-seq(k, v) O(1) O(1) O(1) O(1)

iterate-par(k, v) O(1) O(1) n/a n/a

merge(cl, cr, f, g) O(nlnr) O(nl + nr) O(nr) O(nl + nr)
3

sort-by-key(c) O(n log n) O(1) n/a O(1)

sort-by-value(c) O(n log n) O(n log n) n/a n/a

(ii) identify the opportunity for moving data from one container type to another during an
algorithm and (iii) to set out guidelines how to select container types depending on the
algorithm.

In the following we consider four different classes of associative containers. These corre-
spond to the basic classes: lists of key-value pairs, sorted lists of key-value pairs, hash tables
and hash maps. These are different enough to warrant their study. Other data structures
would show similar properties to one of these four classes.

Table 2 shows the average-case time complexity of the common operations performed on
associative containers for these 4 data structures. In the case of lists of key-value pairs, we
assume that the data is stored in an array-based data structure for reasons of efficiency. For
sorted lists of key-value pairs we assume that value lookup uses a binary search algorithm [16].
The time complexity of the hash table is based on the unordered map described in the C++
standard [3], while the map is based on the C++ map, which always stores its elements in
sorted order.

Time complexity alone does not determine performance. Containers with worse time
complexity may outperform containers with better time complexity in specific circumstances,
e.g., when the container holds few elements. Data analytics, however, are anticipated to
execute over large data sets. As such, time complexity is a good first-order approximation of
performance. Our experiments confirm that performance can be explained by the qualitative
properties of the containers. Performance measurements were required only to break ties
between containers with the same time complexity.

Table 2 shows that a hash table provides best time complexity on a range of operations.
However, it is not possible to sort the contents of a hash table. In order to do that, it is
necessary to move the data to a different container, either a list of key-value pairs or a map.
However, once the data has been moved over, all operations have higher time complexity. It
is now more expensive to access the data. Hence, a careful trade-off is necessary to decide on
conversions.

For completeness, we show the assumed time complexity in Table 3. It is also possible
to merge containers of different types. Table 4 shows the time complexity of such merge
operations.

4Assumes usage again of the C++’11 insertion hint. If absent, time complexity is O(n logn).

9



Table 3: Conversion cost of associative containers holding n elements.
Source Target Container

List Sorted List Hash Table Map

List – O(n log n) O(n) O(n log n)

Sorted List O(1) – O(n) O(n)4

Hash Table O(n) O(n log n) – O(n log n)

Map O(n) O(n) O(n) –

Table 4: Cost of merging associative containers of different types.
Right (m) Left Argument (n)

List Sorted List Hash Table Map

List O(mn) O(mn) O(m) O(m log n)

Sorted List O(mn) O(m + n) O(m) O(m)

Hash Table O(mn) O(mn) O(m) O(m log n)

Map O(mn) O(m + n) O(m) O(m)

4.3 Container Selection

As indicated above, containers must be selected with care, but when done right, there is
opportunity for switching containers. In this Section we outline our methodology to select
containers. Referring back to the TF-IDF algorithm (Figure 1), we observe that each container
is used in different ways throughout the algorithm. The per-document term catalogs are used
in line 15 only with the modify operation. At lines 9 and 29, the catalogs are traversed
sequentially, either in a merge operation or using iterate-seq during the construction of the
TF-IDF matrix. The modify operation is clearly most efficient on a hash table (Table 2).
Iteration over all elements has O(1) time complexity for lists and the hash table. Detailed
measurement has shown however that iteration through an array-based list is more efficient
than through a hash table. As such, we consider that there is opportunity to change the
container type for the term catalogs prior to line 15.

Similarly, we analyze the usage of the document frequency container. This container is
updated using merge at line 15. The merge operation is most efficient when the left-hand-
side argument (doc freq) is a hash table (Table 4). In fact, the hash table is the only
data structure where the time complexity of merge is independent of the size of doc freq. At
line 21, however, the document frequency container must be sorted by key, which is impossible
with a hash table. A change in container is thus necessary due to the functionality. At line 23,
the document frequency container is traversed, preferably in parallel. This is most efficient
with a list-based data structure. The subsequent modification is, however, O(1) in all cases
as modify can be performed through a pointer into the container. Finally, at line 31, a lookup
of the document frequency is performed, which is again more efficient with a hash table. We
have thus identified four code regions accessing the document frequency container. Each code
region has a distinct preference for the container type, which can be distinct from that of the
preceding code region.

Note that data structure conversions are a non-obvious choice when working with poten-
tially large data sets. In fact, the leading data analytics platforms have designed their parallel

10



execution exclusively around lists: Hadoop [9] operates exclusively on key-value lists while
Spark [32] is organized around resilient distributed data sets (RDDs), which, like our key-
value lists, are essentially arrays. Other data structures are second-class citizens: one cannot
parallelize operations across their contents and they do not allow data flow optimizations as
RDDs do.

4.4 Parallelization

Parallelism occurs naturally in data analytics due to the possibility to traverse data sets
in parallel. We claim that the data structure storing the data set is largely irrelevant to
traverse it in parallel. While it is clear that an array-based list can be traversed in parallel,
so too can any iterable collection. In the worst case, parallel traversal may require additional
computation in order to get each parallel thread started. Concretely, for data structures
providing a C++ random access iterator, such as arrays, we divide the iteration range among
the threads. Each thread can jump directly to the appropriate position due to the random
access nature of the iterator. For data structures that provide a C++ input iterator, we can
divide the iteration range similarly on the basis of the number of elements to iterate over.
However, finding the appropriate starting point requires repeated increments of the iterator
to traverse from the beginning of the collection to the desired point. This can be done, e.g.,
using std::advance() in C++, which is a linear-time operation for input iterators.

Apart from traversing data sets in parallel, we also need to construct associative data
structures in parallel. One approach is to use concurrent or parallel data structures where
multiple threads can insert or modify elements [13,36]. This approach potentially has limited
scalability due to the need to synchronize threads when accessing the shared data structure.
The approach chosen in this work is to construct private data structures within each thread
and to merge these data structures in pairs as threads complete. We demonstrate that this
approach results in a high degree of scalability.

5 Experimental Evaluation

We analyze the performance of the proposed optimizations to TF-IDF experimentally on a
quad-socket 2.6GHz Intel Xeon E7-4860 v2, totaling 48 threads. The operating system is
CentOS 6.5 with the Intel C compiler version 14.0.1. We have implemented HPTA in C++
and parallelized key operations using Cilk [5], using Intel Cilkplus. We implemented TF-IDF
using the associative data structures and memory management techniques of HPTA. Reported
results are averaged over 10 executions.

We evaluate our optimizations using 4 data sets (Table 5). The data sets are collected
from the public domain and have varying sizes. The “artificial” data set has the unique
feature that it spends all it time computing term frequencies and negligible time computing
document frequencies and TF-IDF scores. This will be helpful in performance analysis.

The evaluation below focuses on the TF-IDF algorithm for words. We have also evaluated
the effectiveness of the optimizations when calculating TF-IDF for 3-grams. The results are
qualitatively the same. As such we present results only for single-word terms (1-grams).

11



Table 5: Characterization of input data sets.
Data set Description Size Files Unique

words

Various “Classic3” and “Classic4” data sets
(CISI, CRAN, MED and ACM) and
Reuters press releases (Reuters-21578)

62.8 MB 23 K 192 K

NSF Abstracts NSF research award abstracts 1990–
2003 [37]

311 MB 101 K 268 K

Gutenberg A selection of e-books from Project
Gutenberg, covering multiple lan-
guages

20.00 GB 52,361 259 M

Artificial Phoenix++ [35] word count data set.
4th and 5th file repeat 3rd file 4 times,
respectively 8 times

1.33 GB 5 144 K

0.0	  
0.5	  
1.0	  
1.5	  
2.0	  
2.5	  
3.0	  
3.5	  
4.0	  
4.5	  
5.0	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

Various	  

region-‐based	  
in-‐memory	  data	  
malloc	  

0.0	  
0.5	  
1.0	  
1.5	  
2.0	  
2.5	  
3.0	  
3.5	  
4.0	  
4.5	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

NSF	  Abstracts	  

region-‐based	  
in-‐memory	  data	  
malloc	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

Gutenberg	  
region-‐based	  
in-‐memory	  data	  
malloc	  

0	  
2	  
4	  
6	  
8	  

10	  
12	  
14	  
16	  
18	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

Ar2ficial	  

region-‐based	  
in-‐memory	  data	  
malloc	  

Figure 2: Parallel speedup dependent on the memory management policy. Speedups are
normalized against region-based memory management.

5.1 Memory Management

The memory management policy has an important impact on the performance of text an-
alytics. Figure 2 shows parallel speedup using the system memory allocator, region-based
memory management and retaining all input files in-memory. All associative data structures

12



0.0	  

0.2	  

0.4	  

0.6	  

0.8	  

1.0	  

1.2	  

1.4	  

1.6	  

Various	   NSF	  Abstracts	   Gutenberg	   Ar;ficial	  

Re
la
%v

e	  
Ex
ec
u%

on
	  T
im

e	  

region-‐based	  

in-‐memory	  data	  

malloc	  

Figure 3: Relative execution time for three
memory management policies. Execution
times are normalized against region-based
memory management. Lower is better.

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  

ha
sh
	  o
nl
y	  

m
ap
	  o
nl
y	  

m
os
tly

	  li
st
	  

ha
sh
	  o
nl
y	  

m
ap
	  o
nl
y	  

m
os
tly

	  li
st
	  

ha
sh
	  o
nl
y	  

m
ap
	  o
nl
y	  

m
os
tly

	  li
st
	  

ha
sh
	  o
nl
y	  

m
ap
	  o
nl
y	  

m
os
tly

	  li
st
	  

Various	   NSF	  Abstracts	   Gutenberg	   ArBficial	  

Re
la
%v

e	  
Ex
ec
u%

on
	  T
im

e	   TF-‐IDF	  
term	  freq	  

Figure 4: Execution time when storing the
term frequency data in a hash table, a key-
value list or a map, normalized to the hash
table case.

are hash tables in this experiment. Note that parallel speedups range from 4× to 24× and
correlate strongly to the data set size.

The system allocator has the lowest performance across the board. It is known that
memory-locality-aware and NUMA-aware memory allocators provide higher performance [19],
so the performance of per-word memory allocation could be improved on. However, this is
not the only issue. Analyzing the single-thread execution time (Figure 3) demonstrates that
per-word memory allocation also incurs overhead due to extra work performed.

Keeping all input files in-memory avoids memory allocation as each word can point directly
to the input file buffer. This technique is used in the Phoenix work [24, 35]. It is generally
faster than the region-based memory allocator for the smaller input files when executing
sequentially (Figure 3). For the largest input, it is however slower than the region-based
allocator. Moreover, this technique scales not as good with an increasing thread count. This
is due to an increased memory footprint, which results in worse locality than the region-based
allocator. We consider only the region-based allocator in the remainder of this paper.

5.2 Exploration of Container Types

We analyze performance assuming only one data structure is used throughout the computa-
tion. Figure 4 shows the execution time normalized to using a hash table. Results shown
correspond to single-threaded execution. The parallel execution supports the same conclu-
sions. We omit the execution times for the sorting stage as this is marginal or not applicable
in the case of the hash table.

We conclude that using key-value lists throughout the computation provides really poor
performance, up to 20x slower for the NSF Abstracts data set. Note that we used a hash
table for computing term frequencies. Otherwise performance would be significantly worse.
This is interesting to note as the key-value list abstraction is fundamental to the operation of
Hadoop [9] and lies at the heart of Spark’s RDDs [32].

The main performance bottleneck in our list-based implementation is the merge operation,
which has time complexity O(m + n) to merge collections of n and m elements. Note that
merge is called once per document and that the size of the target container is continuously
growing throughout execution. Assume for the sake of argument that d documents contain
m unique words each, then the time complexity of merge is O(d2m). A Hadoop-like sorting

13



0.0	  
0.2	  
0.4	  
0.6	  
0.8	  
1.0	  
1.2	  
1.4	  
1.6	  

hash	   list	   map	   hash	   list	   map	   hash	   list	   map	   hash	   list	   map	  

Various	   NSF	  Abstracts	   Gutenberg	   Ar?ficial	  

Re
la
%v

e	  
Ex
ec
u%

on
	  T
im

e	   TF-‐IDF	  

term	  freq	  

Figure 5: Execution time when retaining the
term frequency data in a hash table, or when
converting it to a key-value list or a map,
normalized to the hash table case. Document
frequencies are stored in a hash table.

0.0	  

0.5	  

1.0	  

1.5	  

2.0	  

2.5	  

n/
a+
ha
sh
+h

as
h	  

n/
a+
lis
t+
ha
sh
	  

lis
t+
lis
t+
lis
t	  

lis
t+
lis
t+
ha
sh
	  

n/
a+
ha
sh
+h

as
h	  

n/
a+
lis
t+
ha
sh
	  

lis
t+
lis
t+
lis
t	  

lis
t+
lis
t+
ha
sh
	  

n/
a+
ha
sh
+h

as
h	  

n/
a+
lis
t+
ha
sh
	  

lis
t+
lis
t+
lis
t	  

lis
t+
lis
t+
ha
sh
	  

n/
a+
ha
sh
+h

as
h	  

n/
a+
lis
t+
ha
sh
	  

lis
t+
lis
t+
lis
t	  

lis
t+
lis
t+
ha
sh
	  

Various	   NSF	  Abstracts	   Gutenberg	   Ar=ficial	  

Re
la
%v

e	  
Ex
ec
u%

on
	  T
im

e	   TF-‐IDF	  

assign	  IDs	  

term	  freq	  

Figure 6: Execution times. Format:
sort+iterate+lookup, where sort is the con-
tainer used to sort words, iterate is the con-
tainer type iterated during term catalog and
lookup is the container type used for docu-
ment frequency lookup. The remaining op-
erations are performed on hash tables.

solution could perform better with a time complexity of O(dm log dm), assuming a list of dm
words is first constructed by concatenation and subsequently sorted.

5.3 Unsorted Output

We will first consider the case where the corpus need not be sorted alphabetically. In this
case, the sorting step can be omitted and document frequencies can be stored in a hash table
throughout the algorithm. We have however observed that execution time can be reduced
by converting the term frequency container to a sorted list. Term frequencies are stored in a
hash table during construction (Lines 8– 9, Figure 1) and converted to a list prior to Line 13.
Figure 5 shows performance when using a hash table, a key-value list or a map for the merge
and iterate-seq operations. Converting the data to key-value list is worthwhile as it is much
faster to iterate through a list vs. a hash table. Overall execution time is reduced by up to
19% for the “Various” data set. The “Artificial” data set is slowed down marginally (< 1%)
as the conversion takes time and does not lead to significant gains due to the low number of
documents.

5.4 Sorted Output

If the output should be alphabetically sorted, it is necessary to assign numeric IDs to terms in
alphabetically increasing order. This requires a conversion of document frequencies to a sorted
container which, in practical terms, implies a sorted key-value list (results with a map are
invariable worse). The TF-IDF phase performs lookups on the document frequencies. These
can be performed either using binary search on the list, or on a hash table provided the data
is converted back to a hash table. Figure 6 shows these options. The first bar corresponds to
using only hash tables. The second bar corresponds to converting term frequencies to a list,
the best case for unsorted output. The third bar shows execution time performing lookups
using binary search on a sorted key-value list. This is unacceptably slow. The fourth bar

14



0	  

1	  

2	  

3	  

4	  

5	  

6	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

Various	  

hash	  only	  

best	  w/o	  sort	  

best	  w/	  sort	  
0	  

1	  

2	  

3	  

4	  

5	  

6	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

NSF	  Abstracts	  

hash	  only	  

best	  w/o	  sort	  

best	  w/	  sort	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

Gutenberg	  

hash	  only	  

best	  w/o	  sort	  

best	  w/	  sort	  

0	  
2	  
4	  
6	  
8	  

10	  
12	  
14	  
16	  
18	  
20	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

Ar2ficial	  

hash	  only	  

best	  w/o	  sort	  

best	  w/	  sort	  

Figure 7: Parallel scalability of TF-IDF normalized against using a hash table for lookup-
intensive code regions and a list for iteration-intensive code regions.

shows that converting the document frequencies back to a hash table for fast lookup results in
performance competitive with that of the unsorted case, and often out-performs the solution
with only hash tables. Yet, the output is alphabetically sorted.

5.5 Parallel Scalability

Using lists rather than hash tables has additional advantages for parallel execution as it
is easier and more efficient to parallelize accesses to (array-based) lists. The best version
without sorted output achieves higher scalability than the hash table-only version (Figure 7).
This furthermore depends on the data set: data sets with few files (Gutenberg and artificial)
observe less benefit from converting the term frequencies to lists.

The best algorithm for sorted output can achieve better scalability than the hash table-
only version when the number of files is large. It performs poorly on the Gutenberg data set
as the number of unique words is very large, which implies more time is spent sorting the
corpus.

5.6 Comparison Against Other Systems

We compare the execution time of HPTA with other systems, namely Phoenix++ [35], SciKit-
Learn [23] and Spark [32].

Phoenix++ [35] is a shared memory runtime system for map-reduce workloads. We have

15



0	  

1	  

2	  

3	  

4	  

5	  

6	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

Various	   HPTA	  

Phoenix++	  

0	  

1	  

2	  

3	  

4	  

5	  

6	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

NSF	  Abstracts	  

HPTA	  

Phoenix++	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

Gutenberg	  

HPTA	  

Phoenix++	  

0	  
2	  
4	  
6	  
8	  

10	  
12	  
14	  
16	  
18	  
20	  

0	   6	   12	   18	   24	   30	   36	   42	   48	  

Sp
ee
du

p	  

Number	  of	  threads	  

Ar2ficial	  

HPTA	  

Phoenix++	  

Figure 8: Parallel scalability of TF-IDF comparing the optimized solution against a map/re-
duce solution using Phoenix++.

Table 6: TF/IDF execution time (seconds) with HPTA, SciKit-Learn and Spark MLlib. T1

shows single-thread execution time; T48 is execution time for 48 threads.

HPTA SKLearn Spark

Data set T1 T1 T1 T48 T1/T48

Various 1.8 13.4 281.2 207.3 1.4

NSF Abstracts 7.5 44.5 1154.9 888.3 1.3

Gutenberg 385.7 4448.0 1960.5 1211.9 1.6

Artificial 16.2 267.6 GC overhead limit reached

implemented TF-IDF in Phoenix++ with two map/reduce rounds: one for the word count
and one to merge dictionaries and calculate TF/IDF scores. Each document is parsed by one
map task, so there is no parallel processing of large files. On the other hand, the map task uses
a hash table to store the per-document dictionary. Execution times of HPTA and Phoenix++
are shown in Figure 8. The Phoenix++ code has limited scalability compared to HPTA. This
is in part due to explicit serialization and traversal of key-value pairs. Performance on the
“Artificial” workload is limited as the word count phase handles each document in a sequential
manner.

We also compare against SciKit-Learn, which has only a single-threaded implementa-
tion [2]. SciKit-Learn builds on the high-performance NumPy library. Nonetheless, HPTA

16



is one order of magnitude faster than SciKit-Learn (Table 6). This is because SciKit-Learn
is prone to the limitations addressed by HPTA. Moreover, we observe that performance of
SciKit-Learn breaks down for the largest, 20 GB, data set.

We furthermore compare to Spark MLlib. Table 6, columns 4–6, show that Spark, ex-
ecuting on the 48-core node, has limited scalability. More importantly, the single-threaded
execution time of Spark is extremely high. Even though Spark has been built for scale-out
scenarios, it remains important to pay attention to single-thread performance [20].

Results for the “Artificial” benchmark are missing as Spark crashed with an exception
due to spending too much time in garbage collection.

6 Conclusion

Text analytics are an important type of data analytics. We address the unexplored issue
of manipulating text fragments at high speed, which is orthogonal to achieving speed-up by
scaling-out analytics processing. The goal of this work is to formulate guidelines for optimiz-
ing text analytics and to demonstrate that they can be implemented in a reusable library.
We have identified three performance optimizations: (i) region-based memory management,
(ii) selection of associative data structures and (iii) transferring between associative data
structures throughout the computation. We note that these optimizations are not imple-
mented in leading data analytics platforms such as Hadoop and Spark. Our experimental
evaluation however shows significant performance improvements, up to 5× for region-based
memory management, up to 20× for data structure optimization and up to 19% for changing
data structures during the computation.

Acknowledgement

This work is supported by the European Community’s Seventh Framework Programme (FP7/2007-
2013) under the ASAP project, grant agreement no. 619706, and by the United Kingdom
EPSRC under grant agreement EP/L027402/1.

References

[1] G. E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University, Nov. 1990.

[2] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,
and G. Varoquaux. API design for machine learning software: experiences from the
scikit-learn project. In Proceedings of the ECML/PKDD Workshop: Languages for Data
Mining and Machine Learning, page 15, Sept. 2013.

[3] International standard ISO/IEC 14882:2014(E) programming language C++, 2014.

[4] U. Erra, S. Senatore, F. Minnella, and G. Caggianese. Approximate TFIDF based on
topic extraction from massive message stream using the GPU. Information Sciences,
292:143 – 161, 2015.

17



[5] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5 multi-
threaded language. In PLDI ’98: Proceedings of the 1998 ACM SIGPLAN conference on
Programming language design and implementation, pages 212–223, 1998.

[6] D. Gay and A. Aiken. Language support for regions. In Proceedings of the ACM SIG-
PLAN 2001 Conference on Programming Language Design and Implementation, PLDI
’01, pages 70–80, New York, NY, USA, 2001. ACM.

[7] S. Grimes. Unstructured data and the 80 percent rule. http://breakthroughanalysis.
com/2008/08/01/unstructured-data-and-the-80-percent-rule/, Aug. 2008.

[8] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based
memory management in Cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation, PLDI ’02, pages 282–293, New
York, NY, USA, 2002. ACM.

[9] Apache hadoop. http://hadoop.apache.org, 2016.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
WEKA data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18, Nov.
2009.

[11] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin. An experimental
comparison of Pregel-like graph processing systems. Proc. VLDB Endow., 7(12):1047–
1058, Aug. 2014.

[12] H. Inoue, H. Komatsu, and T. Nakatani. A study of memory management for web-
based applications on multicore processors. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’09, pages 386–
396, New York, NY, USA, 2009. ACM.

[13] E. Johnson and D. Gannon. HPC++: Experiments with the parallel standard template
library. In Proceedings of the 11th International Conference on Supercomputing, ICS ’97,
pages 124–131, New York, NY, USA, 1997. ACM.

[14] J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. J.
ACM, 53(6):918–936, Nov. 2006.

[15] D. E. Knuth. The Art of Computer Programming Volume 1: Fundamental Algorithms.
Addison Wesley, 1997.

[16] D. E. Knuth. The Art of Computer Programming Volume 3: Sorting and Searching.
Addison Wesley, 1998.

[17] F. Kulla and P. Sanders. Scalable parallel suffix array construction. Parallel Comput.,
33(9):605–612, Sept. 2007.

[18] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. In
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’90, pages 319–327, Philadelphia, PA, USA, 1990. Society for Industrial and Applied
Mathematics.

18



[19] Y. Mao, R. Morris, and F. Kaashoek. Optimizing MapReduce for multicore architectures.
Technical Report MIT-CSAIL-TR-2010-020, MIT Computer Science and Artificial Intel-
ligence Laboratory, 2010.

[20] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what COST? In 15th Work-
shop on Hot Topics in Operating Systems (HotOS XV), Kartause Ittingen, Switzerland,
May 2015. USENIX Association.

[21] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun. Making sense
of performance in data analytics frameworks. In Proc. of the 12th USENIX Conf. on
Networked Systems Design and Implementation, NSDI’15, pages 293–307, 2015.

[22] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stone-
braker. A comparison of approaches to large-scale data analysis. In Proc. of the 2009
ACM SIGMOD Intl. Conf. on Management of Data, SIGMOD ’09, pages 165–178, 2009.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in python. J.
Mach. Learn. Res., 12:2825–2830, Nov. 2011.

[24] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor systems. In Proceedings of the 2007 IEEE
13th International Symposium on High Performance Computer Architecture, HPCA ’07,
pages 13–24, Washington, DC, USA, 2007. IEEE Computer Society.

[25] L. Rauchwerger, F. Arzu, and K. Ouchi. Standard templates adaptive parallel library
(STAPL). In LCR ’98: Selected Papers from the 4th International Workshop on Lan-
guages, Compilers, and Run-Time Systems for Scalable Computers, pages 402–409, 1998.

[26] J. W. Reed, Y. Jiao, T. E. Potok, B. A. Klump, M. T. Elmore, and A. R. Hurson. TF-ICF:
A new term weighting scheme for clustering dynamic data streams. In 5th International
Conference on Machine Learning and Applications (ICMLA’06), pages 258–263, Dec
2006.

[27] P. Russom. BI search and text analytics. new additions to the BI technology stack.
http://download.101com.com/pub/tdwi/Files/TDWI_RRQ207_lo.pdf, 2007.

[28] G. Salton and M. J. McGill, editors. Introduction to Modern Information Retrieval.
Mcgraw-Hill, 1983.

[29] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A. Hassaan, S. Sengupta,
Z. Yin, and P. Dubey. Navigating the maze of graph analytics frameworks using massive
graph datasets. In Proc. of the 2014 ACM SIGMOD Intl. Conf. on Management of Data,
SIGMOD ’14, pages 979–990, 2014.

[30] D. Shabalin and M. Odersky. Region-based off-heap memory for Scala. Technical
report, École Polytechnique Fédérale de Lausanne, Feb. 2015. Available as https:

//infoscience.epfl.ch/record/213469/files/Regions\%20report.pdf.

19



[31] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652–
686, July 1985.

[32] Apache spark. http://spark.apache.org, 2016.

[33] C. Stancu, C. Wimmer, S. Brunthaler, P. Larsen, and M. Franz. Safe and efficient hybrid
memory management for Java. In Proceedings of the 2015 International Symposium on
Memory Management, ISMM ’15, pages 81–92, New York, NY, USA, 2015. ACM.

[34] M. J. Szaszy and H. Samet. Document stream clustering using GPUs. Available at
http://wwwold.cs.umd.edu/Grad/scholarlypapers/papers/Szaszy.pdf, 2013.

[35] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: Modular mapreduce for shared-
memory systems. In Proceedings of the Second International Workshop on MapReduce
and Its Applications, MapReduce ’11, pages 9–16, New York, NY, USA, 2011. ACM.

[36] G. Tanase, C. Raman, M. Bianco, N. M. Amato, and L. Rauchwerger. Languages and
compilers for parallel computing. chapter Associative Parallel Containers in STAPL,
pages 156–171. Springer-Verlag, Berlin, Heidelberg, 2008.

[37] NSF research awards abstracts 1990–2003. archive.ics.uci.edu/ml/

machine-learning-databases/nsfabs-mld/nsfawards.html, Nov. 2003. Consulted:
February 2016.

[38] M. Varshney and V. Goudar. PDQCollections: A data-parallel programming model and
library for associative containers. Technical Report 130004, Computer Science Depart-
ment, Universtiy of California, Los Angeles, Apr. 2013.

[39] M. Yamamoto and K. W. Church. Using suffix arrays to compute term frequency and
document frequency for all substrings in a corpus. Comput. Linguist., 27(1):1–30, Mar.
2001.

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA,
2012. USENIX Association.

[41] Y. Zhang, F. Mueller, X. Cui, and T. Potok. Large-scale multi-dimensional document
clustering on GPU clusters. In Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, pages 1–10, April 2010.

[42] Y. Zhang, F. Mueller, X. Cui, and T. Potok. Data-intensive document clustering on
graphics processing unit (GPU) clusters. J. Parallel Distrib. Comput., 71(2):211–224,
Feb. 2011.

20


