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Abstract: To maintain the pace of development set by Moore’s law, production processes
in semiconductor manufacturing are becoming more and more complex. The development of
efficient and interpretable anomaly detection systems is fundamental to keeping production costs
low. As the dimension of process monitoring data can become extremely high anomaly detection
systems are impacted by the curse of dimensionality, hence dimensionality reduction plays an
important role. Classical dimensionality reduction approaches, such as Principal Component
Analysis, generally involve transformations that seek to maximize the explained variance. In
datasets with several clusters of correlated variables the contributions of isolated variables to
explained variance may be insignificant, with the result that they may not be included in the
reduced data representation. It is then not possible to detect an anomaly if it is only reflected
in such isolated variables. In this paper we present a new dimensionality reduction technique
that takes account of such isolated variables and demonstrate how it can be used to build an
interpretable and robust anomaly detection system for Optical Emission Spectroscopy data.

Keywords: Semiconductors, Fault Detection, Dimensionality Reduction, OC-SVM, OES
Spectrum

1. INTRODUCTION

Semiconductor manufacturing is one of the most rapidly
evolving industries. To remain competitive producers must
continually deliver new devices that are smaller, faster
and/or more energy efficient that previous generations,
while at the same time keeping production costs low. In
this context the ability to detect faults during the produc-
tion process reduces the number of incorrectly processed
wafers and directly translates into improved overall process
yield and throughput (He and Wang (2007)).

As a result, fault or anomaly detection is an active area of
research within the semiconductor manufacturing environ-
ment. Some recent examples are Puggini et al. (2015) and
Mahadevan and Shah (2009) where anomaly detection in
OES time series is performed with unsupervised random
forest and one class support vector machines (OC-SVM)
or Ren and Lv (2014), He and Wang (2007) and Verdier
and Ferreira (2011) where clustering is used to separate
normal and anomaly samples.

Data driven anomaly detection systems can roughly be
divided into three subgroups according to the information
available about the data during the training phase:

• Supervised anomaly detection where samples from
normal and abnormal behaving wafers are available
to train classifiers such as Linear Discriminant Anal-
ysis (LDA), Support Vector Machines (SVM) and k-
nearest neighbours to distinguish between normal and
anomalous samples (Chandola et al. (2009)).

• Semi-supervised anomaly detection where only data
for normal samples is available. Systems can then be
trained to assign an anomaly score to new samples
according to how distant they are from the normal
behaving ones. Several algorithms have been devel-
oped with this aim, including Multivariate Control
Charts (Lowry and Montgomery (1995)), one-class
SVMs (Schölkopf et al. (2001)) and Unsupervised
Random Forests (Shi and Horvath (2006)).

• Unsupervised anomaly detection where no informa-
tion is available about the data (i.e. the data is
unlabeled) but assumptions are made regarding the
frequency and distinctiveness of the anomalies within
the overall dataset. This structure is then revealed
and potential anomalies identified though the appli-
cation of unsupervised clustering techniques such as
DBSCAN (Ester et al. (1996)) and Max Separation
clustering (Flynn and McLoone (2011)).

Optical emission spectroscopy (OES) is increasingly being
used by semiconductor manufacturers for plasma etch
process monitoring due to its ability to track variations
in the chemical composition of a plasma over time. The
OES data is composed of measurements of the light
emitted from the plasma as a function of wavelength
and time. Figure 1 shows a sample spectrum from the
plasma etch process case study which will be introduced
in Section 3. OES has been shown to be an effective wafer
processing monitoring signal (Chen et al. (1996), Puggini
et al. (2014)) and has been employed for applications such
as anomaly detection (Puggini et al. (2015), Yue et al.



(2000)) and etch rate prediction (Puggini and McLoone
(2015), Zeng and Spanos (2009)). OES data is generally
characterized by high dimension, (Prakash et al. (2012))
which poses a problem for anomaly detection algorithms.
Most anomaly detection algorithms are based on a distance
measure and it is known that distance measures become
meaningless in high dimensional spaces due to the so-called
curse of dimensionality (Kriegel et al. (2008)).
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Fig. 1. A typical of OES spectrum from the case study
presented in Section 3

In this paper the focus is on developing an appropriate
data representation and dimensionality reduction tech-
nique for anomaly detection using OES in semiconductor
manufacturing. In particular, a Forward Selection Inde-
pendent Variables (FSIV) algorithm is proposed as an
enhancement to Forward Selection Component Analysis
(FSCA) (Prakash et al. (2012)) that yields better features
for anomaly detection than Principal Component analysis
(PCA) (Jolliffe (2002)) or FSCA when the anomaly oc-
curs in an isolated variable in high dimensional correlated
datasets. The efficacy of FSIV is demonstrated using both
simulated and industrial case studies. In the industrial
case study, a semi-supervised anomaly detection system
is developed using a one-class SVM as the classification
engine.

The remainder of the paper is organised as follows. Section
2 introduces the FSIV algorithm and demonstrates it per-
formance with respect to PCA and FSCA for a simulated
example. Similar results ar then presented in Section 3
for an industrial plasma etch case study. The anomaly
detection classifier is developed in Section 4 and the results
of its application to the industrial case study presented in
Section 5. Finally, conclusions are provided in Section 6.

2. DIMENSIONALITY REDUCTION IN ANOMALY
DETECTION

Dimensionality reduction techniques such as PCA and
FSCA seek to obtain lower dimensional approximations
of datasets from which it is possible to reconstruct the
majority of the information in the original high dimen-
sional datasets, usually defined in terms the percentage
of explained variance. While they are generally very useful
for generating compact representations of highly correlated

datasets, the reduced representations are not guaranteed
to retain sufficient information to detect isolated anoma-
lies. In particular, in datasets with several large clusters of
correlated variables, the contributions of isolated uncorre-
lated variables to explained variance may be insignificant,
with the result that such variables may not be included in
the reduced data representation. It is then not possible to
detect an anomaly if it is only reflected in such isolated
variables.

Mitra et al. (2002) and Flynn and McLoone (2011) have
developed algorithms that perform unsupervised features
selection while at the same time attempting to retain
isolated variables in the data. In these algorithms the
variables are recursively clustered. In the former for each
variable the set of its k-nearest variables is computed
according to a similarity function. The variable which
is closest to its kth neighbour is retained while its k
neighbours are discarded. The process ends when all the
k-neighbours of all the variables are closer than a certain
threshold to their centroid. In the latter centroids for new
clusters are chosen based on how different they are from
the data in existing clusters, and individual clusters are
formed on the basis of exceeding a similarity threshold.
Then when clustering is complete the reduced dataset
representation is defined as the centroids of the clusters.

2.1 FSIV Algorithm

Both Mitra et al. (2002) and Flynn and McLoone (2011)
select features based on a function s(x, y) that measures
the similarity between two variables. In general, instead
of discarding variables that are similar to those already
selected, it is more interesting to know which variables
are not adequately represented by the selected variables.
With this in mind Forward Selection Independent Variable
(FSIV) analysis is proposed as a tool for efficient unsuper-
vised features selection in anomaly detection.

Here the steps required to select K variables with FSCA
(Prakash et al. (2012)) are recalled:

1 Start with the full data X = (x1, . . . , xp) and K the
number of variables to select. Initialize Z0 = ∅ and
k = 0.

2 Scale the data to zero mean.
3 Define Zvk+1 as the matrix Zk with the addition of the

variable xv i.e. Zvk+1 = (Zk, xv)
4 Define Zk+1 as:

argminv ‖ X −Zvk+1(ZTk+1vZ
v
k+1)−1Zvk+1

TX ‖2 (1)

5 Update k = k + 1
6 If k < K return to step 3. Otherwise output ZK , the

set of selected variables.

The FSIV algorithm begins by selecting its first k vari-
ables (z1, . . . , zk) using the FSCA algorithm. This step is
required to ensure the presence of the variables that rep-
resent the largest variation in the data. Then, additional
variables are added in order to model signficant isolated
variations that are not captured by the first k variables.
The process ends when K variables are selected or when
the error εĵ defined according to equations 4 and 5 is
smaller than a given threshold. The FSIV algorithm is thus
defined as follows:



1 Start with the full data X = (x1, . . . , xp) ∈ Rn×p and
set k and a stop criterion.

2 Scale the data such that each variable has zero mean.
3 Select k variables z1, . . . , zk using the FSCA algo-

rithm.
4 Define the matrix Z = (z1, . . . , zk).
5 Compute the linear approximation of X

X̂ = Z(ZTZ)−1ZTX ∈ Rn×k (2)

where
X̂ = (x̂1, . . . , x̂p) (3)

6 For each variable xi in X compute its approximation
error

εi =‖ xi − x̂i ‖22 (4)

where x̂i is the ith column of X̂.
7 Select xĵ the variable with the highest approximation

error where:
ĵ = argmax

i
εi (5)

8 Add xĵ to the Z matrix.
9 Stop if the termination criterion is reached, otherwise

set k = k + 1 and repeat from step 5

The distinguishing feature of FSIV is that a variable is
added to the model if it cannot be adequately recon-
structed by a linear combination of those already selected.
This makes the algorithm more efficient than methods
based on similarity between variables. This follows, for
example, from the fact that lowly correlated variables
may be linearly dependent (Rodgers et al. (1984)). The
following example illustrates the difference in performance
between PCA, FSCA and FSIV.

2.2 Simulated Example

Consider the simulated data X = (x1, . . . , x7) ∈ Rn×7
defined by three groups of variables X1 = {x1, x2, x3},
X2 = {x4, x5, x6} and X3 = {x7}. Each variable has
correlation 0.9 with the others in the same group and
between the variables in X1 and X2 there is a correlation
of 0.4. The variable in X3 is instead isolated and has
only correlation 0.1 with all other variables. Specifically,
X = (x1, . . . , x7) ∼ N(0,Σ) where Σ = {Σi,j} is defined
as:

Σi,j =


1 if i = j
0.9 if i, j ∈ {1, 2, 3} or i, j ∈ {4, 5, 6}
0.4 if i ∈ {1, 2, 3} and j ∈ {4, 5, 6}
0.4 if j ∈ {1, 2, 3} and i ∈ {4, 5, 6}
0.1 if i = 7 or j = 7

An anomaly is then introduced by replacing one of the
samples in x7 with the value 10. Dimensionality reduction
is performed with PCA, FSCA and FIV. In each case only
two variables are selected. In FSIV parameter k is chosen
as k = 1. The two dimensional representations of the data
obtained with the various methods is reported in Figure
2. From the figure it can be observed that only FSIV is
able to isolate the anomaly. In particular, FSCA tends to
select one variable from X1 and one from X2 while FSIV
selects a variable from X1 and x7. The PCA components
instead are obtained as a weighted linear combination of
all the variables. However, the weighting associated with
x7 is insufficient to materially affect the behaviour of

the components, with the result that the anomaly is not
distinguishable from the normal samples.
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Fig. 2. The projection of the data for the simulated
example on the first two variables selected by FSCA
and FSIV, and the first two principal components
obtained with PCA

3. INDUSTRIAL CASE STUDY

To demonstrate the effectiveness of the proposed dimen-
sionality reduction method, the technique is applied to a
sample dataset from an industrial plasma etch chamber.
The dataset consists of Plasma Etch Optical Emission
Spectroscopy (OES) samples.
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Fig. 3. A plasma etching chamber.

OES recordings were taken from the etching chamber
exhaust, as depicted in Fig. 3. By using only OES data for
process monitoring, the proposed dimensionality reduction
and related fault-detection methodology is able to operate
in real-time, thereby reducing the risk of costly faults
propagating during production.

3.1 OES data

Noting that the OES data is naturally parameterized in
terms of the wafer number, the processing time instant and



the measured wavelengths (Yue et al. (2000)), the intensity
of the ith wavelength of the k-th wafer at time t is denoted
as xwki (t).

OES spectra for K = 500 wafers are available, each one
consisting of τ = 165 samples of p = 200 wavelengths. The
OES spectrum for a single wafer wk can be mathematically
represented as a matrix Xk ∈ Rτ×p.

Xk =
{
xwki (t(k−1)τ+j)

}
j=1,...,τ, i=1,...,p

∈ Rτ×p (6)

and the full data is represented by a set S containing the
measurements for each wafer:

S =
{
Xj ∈ Rtτ×p : j = 1, . . . ,K

}
. (7)

For practical purposes it is better to store the data in a
two dimensional matrix. Two possible aggregations are
considered and are denoted as Λ ∈ RτK×p and W ∈
RK×pτ . These will be discussed in sections 3.2 and 3.4,
respectively.

Artificial Fault In order to better show the difference
between FSCA and FSIV an artificial wavelength xwkl (t)
is added to the OES spectrum. xwkl (t) is defined for each
wafer as

xwkl (t) = 285(sin(t) + ε) t ∈ [−π, π] (8)

where ε ∼ N(0, 0.05) and amplitude 285 is selected to give
a signal power that is similar to the other wavelengths. A
fault is then introduced in the final wafer in the dataset
by clamping the lth wavelength to lie between −100 and
100, that is:

xwKl (t) =

{
xwKl (t) if |xwKl (t)| < 100
100 + ε if xwKl (t) > 100
−100 + ε if xwKl (t) < −100

(9)

where ε ∼ N(0, 10). In figure 4 the artificial wavelength
xwkl (t) and a normal wavelength are illustrated for a group
of five wafers. It follows that the faulty wafer can be
classified as anomaly only if the wavelength l is among
the selected ones.
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Fig. 4. The artificial wavelength and a normal wavelength
over 800 time points and 5 wafers.

3.2 The Λ matrix

The data can be aggregated in a Λ ∈ RτK×p matrix. In Λ
each row corresponds to a time scan and each column to a
wavelength. Λ can be obtained by vertically stacking the
matrices in S.

Λ =

 X1

X2

· · ·
XK

 ∈ RKτ×p (10)

The full OES data is then represented as a set of matrices
where each one contains the spectrum for a given wafer.
This format of the data is used to select a subset of relevant
wavelengths. The wavelengths are chosen with the FSIV
and FSCA algorithms.

3.3 Data approximation with FSCA and FSIV

FSCA and FSIV select variables using different criteria.
Figure 5 shows the maximal error εĵ defined according to
equations 4 and 5, as a function of the number compo-
nents selected by FSCA and FSIV, while figure 6 shows
the corresponding explained variance (EV). In total 14
components are selected by both the FSCA and FSIV
algorithms. The first 7 components of the FSIV algorithm
are selected with FSCA, hence it follows that the perfor-
mances of the both methods in terms of both EV and
εĵ are identical for these components. In contrast for the
remaining 7 components we can observe that as expected
the variables selected with FSIV lead to a lower error εĵ ,
while those selected by FSCA yield a larger percentage of
EV . Notably, the lth wavelength is not selected by FSCA
but is selected by FSIV as the 8th component. It can be
observed in Figure 5 that the 8th component is where the
performance of FSCA and FSIV begin to deviate in terms
of the error εĵ .
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Fig. 5. The error εĵ as a function of the number of
components selected with FSCA or FSIV.

3.4 W Matrix

Alternatively the data can be aggregated in order to have
each wafer as an observation. For each wafer all the time
scans of all the wavelengths are stored in a row. This
is equivalent to transforming all the matrices in S into
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vectors and stacking them horizontally. Matrix Xk, the
kth element of S is reshaped as

X̃k = (xwk1 (t1), . . . , xwkp (tτ )) ∈ R1×τp (11)

and the full dataset is represented by combining all the
reshaped matrices in S as:

W =

 X̃1

· · ·
X̃K

 ∈ RK×τp (12)

This data format is particularly useful for comparing
wafers and performing anomaly detection as each row
corresponds to all the data observed for a given wafer.
However, the dimension of the matrix is very large as
it has pτ = 33000 columns. The dimension of the data
can be drastically reduced by selecting only a subset of
the wavelengths from the Λ matrix. If 14 wavelengths are
selected from Λ the number of columns in the W matrix is
reduced to 14τ = 2310 columns. The W matrix is still high
dimensional but now it is small enough for high dimen-
sional anomaly detection algorithms such as Unsupervised
Random Forest and OC-SVM to be efficiently applied.

4. OC-SVM ANOMALY DETECTION

Once a lower dimensional approximation of the W matrix
is obtained it is possible to use it to develop an anomaly
detection system. In plasma etching wafers are normally
processed is batches of 25, called a lot, with the chamber
undergoing a cleaning cycle between each lot. As a con-
sequence of the cleaning step there is a seasoning effect
during the processing of the first few wafers in each lot as
chemicals absorb into the chamber walls, with the result
that the processing of wafers 1, 2, 3 and 4 differ slightly
from the remaining wafers 5 to 25. For the purposes of
evaluating the performance of the different dimensionality
reduction techniques as a per-processing step for anomaly
detection, we will consider wafers 1, 2, 3 and 4 in each lot
as abnormal wafers. In addition, wafer 500 is also defined
as abnormal due to the artificial anomaly introduced in
the lth wavelength.

In order to train and test the anomaly detector the wafers
in W are split into a training set of 300 wafers containing
measurements of only normal behaving wafers and a test
set of 200 wafers containing normal and abnormally be-
having wafers. The OC-SVM algorithm is used to assign
an anomaly score to each wafer.

Given a training dataset X ∈ Rn×p, X ⊂ X where X is a
compact subset of Rp and Φ a map into the dot product
space:

Φ(X) : X → F and Φ(x) ·Φ(y) = k(x, y) ∀x, y ∈ X (13)

the OC-SVM optimization problem is defined as:

min
w∈F,ξ∈Rn,ρ∈R

1

2
‖ w ‖ +

1

vn

n∑
i=1

ξi − ρ (14)

subject to the constraint

(w · Φ(xi)) ≥ ρ− ξi i = 1, . . . , n ξi ≥ 0 (15)

Since the ξ are penalized it is expected that the decision
function

f(x) = sign((w · Φ(x))− ρ) (16)

will be positive for most samples xi, when w and ρ are
optimized. At the same time ‖ w ‖ is small forcing f(x) > 0
only on a small region.

The OC-SVM is trained using only normal behaving
wafers. Then an anomaly score, defined as

s(x) = −(w · Φ(x)) + ρ (17)

is assigned to each sample x in the test set. In other
words the anomaly score is the distance between x and
the estimated support of the normal behaving data.

5. RESULTS

The anomaly score assigned by OC-SVM to each wafer in
the test dataset when using each of the dimensionality re-
duction techniques is given in Figure 7. For completeness,
the results obtained without dimensionality reduction are
also reported. The results show that in general a larger
anomaly score is assigned to the abnormal wafers allowing
them to be identified. The one exception is the artificially
created abnormal wafer, denoted by the star, which is
only correctly identified as an anomaly when FSIV is
used. Even when all the wavelengths are used the artificial
anomaly has a low anomaly score. This may be due to over
fitting caused by the excessive number of variables. The
performance of each method is also summarized in terms
of the Area Under the Curve (AUC) classifier performance
metric in Table 5.1 and again underscores the superiority
of FSIV for this application.

A.W. FSCA FSIV PCA

AUC 0.9564 0.9507 0.9650 0.9527

Table 5.1: The AUC score obtained using OC-SVM when
all the wavelengths are used (A.W.), when a subset of 14
wavelengths is selected with FSCA and FSIV, and when
14 PCA components are employed as inputs.

6. CONCLUSION

This paper considers the problem of feature selection for
anomaly detection with application to OES based semi-
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Fig. 7. Anomaly score assigned to each wafer in the test
set: Black circles denote the anomaly wafers (1− 4 in
each lot), white circles denote the normal wafers, and
the artificial anomaly wafer is represented by a star.

conductor manufacturing process monitoring. FSIV is pro-
posed as a new feature selection method that takes account
of isolated variables in highly correlated high dimension
datasets. FSIV combined with OC-SVM is evaluated using
an industrial case study and shown to outperform FSCA
and PCA for anomly detection. While a good separation is
achieved between normal and abnormal wafers some false
positives are still present. Further research is required to
understand the nature of these false positives.

ACKNOWLEDGEMENTS

The authors would like to thank Intel Ireland for providing
the industrial case study for this research and Maynooth
University for the financial support provided.

REFERENCES

Chandola, V., Banerjee, A., and Kumar, V. (2009).
Anomaly detection: A survey. ACM computing surveys
(CSUR), 41(3), 15.

Chen, R., Huang, H., Spanos, C., and Gatto, M. (1996).
Plasma etch modeling using optical emission spec-
troscopy. Journal of Vacuum Science & Technology A,
14(3), 1901–1906.

Ester, M., Kriegel, H.P., Sander, J., and Xu, X. (1996). A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Kdd, volume 96, 226–
231.

Flynn, B. and McLoone, S. (2011). Max separation clus-
tering for feature extraction from optical emission spec-
troscopy data. Semiconductor Manufacturing, IEEE
Transactions on, 24(4), 480–488.

He, Q.P. and Wang, J. (2007). Fault Detection Us-
ing the k-Nearest Neighbor Rule for Semiconduc-
tor Manufacturing Processes. IEEE Transactions on

Semiconductor Manufacturing, 20(4), 345–354. doi:
10.1109/TSM.2007.907607.

Jolliffe, I. (2002). Principal component analysis. Wiley
Online Library.

Kriegel, H.P., Zimek, A., et al. (2008). Angle-based outlier
detection in high-dimensional data. In Proceedings of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, 444–452. ACM.

Lowry, C.A. and Montgomery, D.C. (1995). A review of
multivariate control charts. IIE transactions, 27(6), 800–
810.

Mahadevan, S. and Shah, S.L. (2009). Fault detection
and diagnosis in process data using one-class support
vector machines. Journal of Process Control, 19(10),
1627–1639. doi:10.1016/j.jprocont.2009.07.011.

Mitra, P., Murthy, C., and Pal, S.K. (2002). Unsupervised
feature selection using feature similarity. IEEE trans-
actions on pattern analysis and machine intelligence,
24(3), 301–312.

Prakash, P., Johnston, A., Honari, B., and McLoone, S.
(2012). Optimal wafer site selection using forward se-
lection component analysis. In Advanced Semiconductor
Manufacturing Conference (ASMC), 2012 23rd Annual
SEMI, 91–96. IEEE.

Puggini, L., Doyle, J., and McLoone, S. (2014). Towards
multi-sensor spectral alignment through post measure-
ment calibration correction.

Puggini, L., Doyle, J., and McLoone, S. (2015). Fault
detection using random forest similarity distance. IFAC-
PapersOnLine, 48(21), 583–588.

Puggini, L. and McLoone, S. (2015). Extreme learning
machines for virtual metrology and etch rate prediction.
In Signals and Systems Conference (ISSC), 2015 26th
Irish, 1–6. IEEE.

Ren, L. and Lv, W. (2014). Fault Detection via Sparse
Representation for Semiconductor Manufacturing Pro-
cesses. IEEE Transactions on Semiconductor Manufac-
turing, 27(2), 252–259. doi:10.1109/TSM.2014.2302011.

Rodgers, J.L., Nicewander, W.A., and Toothaker, L.
(1984). Linearly independent, orthogonal, and uncorre-
lated variables. The American Statistician, 38(2), 133–
134.

Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J.,
and Williamson, R.C. (2001). Estimating the support
of a high-dimensional distribution. Neural computation,
13(7), 1443–1471.

Shi, T. and Horvath, S. (2006). Unsupervised learning with
random forest predictors. Journal of Computational and
Graphical Statistics, 15(1).

Verdier, G. and Ferreira, A. (2011). Adaptive Mahalanobis
Distance and k-Nearest Neighbor Rule for Fault Detec-
tion in Semiconductor Manufacturing. IEEE Transac-
tions on Semiconductor Manufacturing, 24(1), 59–68.
doi:10.1109/TSM.2010.2065531.

Yue, H.H., Qin, S.J., Markle, R.J., Nauert, C., and Gatto,
M. (2000). Fault detection of plasma etchers using
optical emission spectra. Semiconductor Manufacturing,
IEEE Transactions on, 13(3), 374–385.

Zeng, D. and Spanos, C.J. (2009). Virtual metrology
modeling for plasma etch operations. Semiconductor
Manufacturing, IEEE Transactions on, 22(4), 419–431.


