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ABSTRACT

A novel surrogate model is proposed in lieu of computational fluid dynamic (CFD) code for

fast nonlinear aerodynamic modeling. First, a nonlinear function is identified on selected

interpolation points defined by discrete empirical interpolation method (DEIM). The flow

field is then reconstructed by a least square approximation of flow modes extracted by proper

orthogonal decomposition (POD). The proposed model is applied in the prediction of limit

cycle oscillation for a plunge/pitch airfoil and a delta wing with linear structural model, results

are validate against a time accurate CFD-FEM code. The results show the model is able to

replicate the aerodynamic forces and flow fields with sufficient accuracy while requiring a

fraction of CFD cost.

.
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NOMENCLATURE

A matrix of snapshots

b, c aerofoil semi-chord and chord, respectively

ci radial basis function artificial neural network neuron i center

CL lift coefficient

CN normal force coefficient

CM pitching moment coefficient

f fluid force acting on structure

H radial basis function design matrix

h plunge coordinate

hi j radial basis function for snapshot i with respect to neuron j

K structure stiffness matrix

M structure mass matrix

M∞ free-stream Mach number

M number of POD basis retained

P interpolation indices matrix

n number of delayed displacements recorded

q dynamic pressure

R vector of fluid and structural equations residuals

ri radial basis function artificial neural network neuron i radius

S diagonal matrix containing singular values

t time

T matrix of POD basis

U∞,U free-stream velocity, velocity vector, respectively

u variable for model reduction process

Vs reduced velocity index

w vector of fluid and structural unknowns

x list of displacements

Greek Symbol

α angle of attack

Φ radial basis function artificial neural network weights vector

ω, κ frequency and reduced frequency, κ = 2ω
U∞c

ϕ phase angle

ρ fluid density

ξξξ structural displacement

1.0 Introduction

Computational fluid dynamics (CFD) has become a critical technique for several engineering

applications, including aerospace, chemical, automotive engineering, among others. Despite

the ever increasing computer power available, high computational cost still prevents state-

of-art CFD to be routinely used in procedures where iterative processes are intrinsic such as

design/optimization, combustion, uncertainty quantification, and more pertinent to this work
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dynamic aeroelasticity. To overcome the need for time-accurate CFD, there has been a con-

tinuous interest in developing efficient and accurate techniques that avoid the penalty of full

blown time-accurate CFD simulations.

In the context of dynamic aeroelasticity, several advances have been made. If the system

Jacobians are available, it is possible to determine the stability of the dynamic system (i.e.

flutter boundary) without resorting to time-domain simulations by eigenvalue analysis (1), in

addition a nonlinear reduced-order model can be built to compute LCOs, by further exploiting

the aeroelastic critical eigenvector (19).

The prediction of LCO can also be achieve by exploiting the periodicity of the CFD-

CSD (Computational Structural Dynamics) system using the so called harmonic-balance

method (21), which solves directly the periodic response directly. The application of the afore-

mentioned methods requires significant modifications to existing codes. To limit any required

modifications, surrogate models based on samples or snapshots from CFD analysis can be

built. Several techniques have been proposed for linear modeling, or only retaining the linear

part of the original CFD system: system identification (ID) or modal superimposition methods

such as Volterria Series (20,2), POD (7,14) and Balanced Proper Orthogonal Decomposition (18,25).

Building a nonlinear ROM poses a more significant challenge and is the subject of much at-

tention within the modeling community. Hence, several nonlinear ROMs have been developed

and applied successfully as nonlinear surrogates, for example: Artificial Neural Network Auto-

Regressive Exogenous (ANN-ARX) (5,31), Kriging-ARX (6),Continuous Time Recurrent Neural

Network (15). The nonlinear models proposed in references (31,6,15) are built using the pitching

angle or structural displacements as input and the aerodynamic force as output, however the

models are not able to provide flow field information, such as pressure. Fagley et al. used POD

and ANN-ARX to investigate the free shear layer transient effects (5). Following the same idea,

Lindhorst et al. employed POD with a Markov-Chain interpolator function and Radial-Basis

Function Artificial Neural Network (RBF-ANN) to model nonlinear aerodynamic flows for

aero-structural calculations, in this approach the input and output were the POD coefficients

of the grid displacement and aerodynamic force distribution (11,12), the authors also suggested

that excessive POD modes may degrade the approximation accuracy. Recently, Yao and Mar-

ques proposed an alternative approach based on a POD/DEIM model reduction technique

able to reconstruct the nonlinear flow field from the structural displacements; (29) the follow-

ing section will summarize this method and investigate its ability to predict LCOs at a reduced

cost.

2.0 Formulation

As discussed in the introduction, the purpose of the ROM is to reduce the effort associated with

high-fidelity unsteady aerodynamic calculations required for aeroelastic predictions. Typical

CFD/CSD solvers exchange information in the form of displacements, velocities and pres-

sures, hence the point of the surrogate model is to provide the surface pressure (or equivalent)

associated with any translations or rotations from the structure. For that purpose, it is possible

to define a nonlinear mapping between inputs and outputs that can replace the discrete full

order CFD/CSD system (26):

Q f (t) = F (ws(t),ws(t − ∆t),ws(t − 2∆t), . . . ,ws(t − n∆t)) (1)
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where Q f represents fluid variables such as pressure or temperature; ws =
[

ξξξ, ξ̇ξξ
]

are the struc-

tural displacement and velocity. The inputs to the nonlinear function F , is the structural

displacement and its delay and the fluid variables are the output. In practice, the surrogate

only approximates F . To build the surrogate, the following steps are required:

1. generate an adequate training trajectory covering the parameter space of interest;

2. collect snapshots along the training trajectory of the full-order model (FOM) response;

3. compute POD modes;

4. apply DEIM to POD modes and determine interpolation points;

5. build RBF-ANN for each interpolation point;

then, using the RBF-ANN and designated interpolation points, it is possible to reconstruct

the whole flow field using the DEIM and to integrate the surface pressure to determine the

aerodynamic loads for the structural solver.

2.1 Time-Domain Fluid-Structural Solver

To obtain the snapshots required to build the ROM, a research CFD-FEM (Finite Element

Model) code is used. The aerodynamic model is based on the Euler equations for fluid flow

and as is typical in computational aeroelasticity a modal structural model is used to represent

the structure. The discretization of the fluid fluxes is obtained using the AUS M+ − up flux

function; (13) a MUSCL scheme together with the Van Albada limiter is employed to achieve

2nd order spatial accuracy in smooth regions (23). The scheme is marched forward in time

using a dual-time-stepping strategy, four-stage Runge-Kutta scheme (27). The structural equa-

tions are transformed into a state-space representation, involving the generalized aerodynamic

forces from the fluid system (22,27). For wing structures, the aerodynamic loads and structural

displacements transfers between the CFD/FEM are obtained through the Infinite Plate Spline

(IPS) method. Transfinite Interpolation is used to deform the CFD mesh and grid velocities

are approximated using finite-differences.

2.2 Proper Orthogonal Decomposition

The use of POD as a means of reducing the complexity of large dynamic systems described

by partial-differential equations extends to several engineering applications. (3) In this work,

the POD modes (also referred to as POD basis) of the CFD system are sought. For a set of

snapshots of the flow field, A = [u1,u2, . . . ,uns
], the POD basis represents an optimal set

of orthogonal vectors that can best approximate the snapshots. The snapshots are obtained

from the time-accurate CFD/CSD solution and are recorded at specified time instances. For

the current applications, only the pressure field is recorded, hence each snapshot is a vector

u ∈ Rnc×1, where nc is the number of cells in the CFD mesh, making A ∈ Rnc×ns . A well known

method to obtain the POD basis of A is to compute its left singular vectors by singular value

decomposition (SVD), however for large systems where ns < nc, then the SVD is applied to

AT A ∈ Rns×ns :

AT A = TSVT (2)

where S = diag
[

λ1, λ2, . . . , λns

]

is the eigenvalue matrix and T,V are the left and right sin-

gular vectors, respectively. The POD basis, TM ∈ Rnc×M , is obtained from Eq. (3) with
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proper truncation according to the energy rank represented by the amplitude of the first M

eigenvalues, SM = diag [λ1, λ2, . . . , λM], where λ1 > λ2 > . . . > λM and M ≪ nc.

TM = AVS
−1/2

M
(3)

2.3 Discrete Empirical Interpolation Method

In this section, the DEIM is reviewed. The application of POD is limited to linear or mildly

nonlinear time or parameter dependent system of partial-differential equations (16). As nonlin-

earities become dominant, its efficiency deteriorates, rendering the use of POD unattractive

for nonlinear aeroelastic problems. In this paper DEIM is used to overcome this limitation. In

essence DEIM approximates a parametric nonlinear function, u(t), by projecting it onto the

subspace spanned by the basis TM as:

u(t) ≈ TMc(t) (4)

where c(t) ∈ RM×1 are the corresponding coefficients. The methodology proposed by Chatu-

rantabut et al. enables selecting M distinct rows or interpolation indices so that the coefficients

c(t) can be solved uniquely as described in (4). The interpolation indices are defined by the ma-

trix P ∈ Rnc×M , where each row contains interpolation indices, which leads to

PT u(t) = PT TMc(t) (5)

Substituting Eq. 5 into Eq. 4, obtain:

u(t) ≈ TM

(

PT TM

)−1
PT û(t) (6)

where û(t) contains the components corresponding to non-zeros indices in P, hence Eq.6

shows that M elements are required to recover the full order vector u(t). For fluid systems, let

u(t) represent the pressure field. As described in Eq. 1, the nonlinear mapping function F can

be constructed at M interpolation points. The full order vector u(t) is reconstructed by Eq. 6.

2.4 Radial Basis Function - Artificial Neural Network

The nonlinear mapping function in Eq. 1 is defined by an RBF-ANN. The input/output is at

user’s discretion according to the specific physical problem at hand. In the present paper, the

input and output are displacements and pressures from the structure and fluid, respectively.

The idea is to construct the RBF-ANN of the pressure at M interpolation points defined by

the DEIM algorithm. The neuron is modeled by RBFs as (17)

hi = e
−
|x(t) − ci|2

ri , i = 1, 2, . . . ,M (7)

where ci and ri are the ith neuron centre and radius, respectively; x is the input, given by

x(t) =
[

ξξξ(t), ξξξ(t − ∆t), . . . , ξξξ(t − n∆t)
]

(8)

In this work even evolving input data is chosen to provide the RBF center ci, due to its sim-

plicity. The radius ri or width is defined as per reference (11):

ri =
1

M

M
∑

j=1

‖c j − ci‖2, i = 1, 2, . . . ,M (9)
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Once ci and ri are identified, the training process can be completed. The mapping relation be-

tween inputs and outputs is obtained by a weighted sum; the function weightsΦ are obtained

using the target flow variables defined by û, at the interpolation points:

û = HΦ (10)

where

û = [u1, u2, . . . , uM]T , Φ = [φ1, φ2, . . . , φM]T (11)

and

H =

























h11 . . . h1M

...
. . .

...

hM1 . . . hMM

























(12)

The weight matrix Φ can be solved as,

Φ = H+û (13)

Φ
+ is the Moore-Penrose pseudo inverse. To avoid possible over fitting and instabilities, a

weight penalty or a regularization parameter ε is introduced that is given by (17):

H+ =
(

HT H + εI
)−1

HT (14)

the parameter ε is a small number, however, it has no optimal value, and is problem dependent.

The two and three dimensional cases presented below also adopt the value ε = 10−7.

3.0 Results

3.1 Two degree-of-freedom aeroelastic system

In this section, the ability of the ROM to predict the impact of aerodynamic nonlinearities, i.e.

shocks, on aeroelastic stability will be investigated by using a pitch/plunge symmetric NACA

64A010 airfoil, as described in reference (21) and shown in Figure 1. The non-dimensional

h

kh

ah xα

k

Figure 1. Diagram of pitch/plunge airfoil system.

form of the governing equations of motion for a two degree-of-freedom aerofoil can be de-

scribed as

Mξ̈ξξ +
1

µV2
s

Kξξξ =
4

πµ
f (15)
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Table 1

Pitch/Plunge Aerofoil Parameters.

Static unbalance, xα = S α/mb 0.25

Radius of gyration about elastic axis, r2
α = Iα/mb2 0.75

Frequency ratio, ωh/ωα 0.5

Mass ratio, µ = m/πρ∞b2 75

where

M =

[

1 xα
xα r2

α

]

, K =





















(

ωh

ωα

)2

0

0 r2
α





















, f =

[

−Cl

2Cm

]

, ξξξ =

















h

b
α

















, Vs =
U∞
ωαb
√
µ

(16)

the structural parameters are given in Table 1, where S α, Iα are the first and second moment

of inertia about the elastic axis, respectively, m is the mass of the airfoil, ωh and ωα are the

plunge and pitch motion frequencies, respectively.

The Mach number and angle of attack are 0.8 and 0◦, respectively. The velocity index,

Vs, is used to set different instability points, i.e. flutter and LCO conditions. The training

trajectory is defined using a single input, Vs, according to

Vs = Vs0

(

1 − δ sin2 (2κt)
)

(17)

To ensure a suitable range of reduced velocities for this case Vs0 = 0.8, δ = 0.15 and κ =

0.015, this results in the range 0.68 ≤ Vs ≤ 0.8, which includes the flutter onset velocity,

Vs = 0.71 (27), and a suitable range of post-critical velocities. The resultant training trajectory

with a relative large plunge perturbation is shown in Figure 2-(a) and the corresponding range

of frequencies of the settled down part of the trajectory is illustrated by the Hilbert-Huang

Transformation (HHT) (9) in Figure 2-(b). The user’s parameters Vs0, δ and κ can be adapted

to generate the required training trajectory, as it will be shown in the subsequent test case.

Snapshots are collected from the training process and the POD modes extracted following

the same procedure described for the forced motion problem. The energy associated with

each eigenvalue decays rapidly, as seen in Figure 3-(a). Thirty POD modes are retained and

the associated DEIM points used for interpolation are given in Figure 3-(b). The first three

POD modes are illustrated in Figure 4. The first mode represents mean flow, the second and

the third are POD modes associated with the shock. The inputs to the RBF-ANN are the

pitching and plunging displacements at the DEIM points using 4 delays. The ability of the

ROM to reconstruct the flow solution is first evaluated by comparing the results for the training

trajectory. For both the degrees-of-freedom and aerofoil loads, the ROM is able to recreate the

CFD output, see Figure 5. The ROM is then used to evaluate the system’s dynamic response

at a series of post-critical Vs values. A case near the limit of the training data parameter range,

Vs = 0.775, is investigated in detail. At this reduced velocity the system develops an LCO

and Figure 6 shows the amplitudes for both plunge and pitch; the ROM systematically under

predicts both amplitudes by a small margin, it also shows a small delay in reaching the final

amplitude of the LCO due to insufficient training points at small amplitudes; the frequency

of the motion is well captured. The computational effort required to build the ROM is

given in Table 2. Once the ROM is built, each calculation above the critical speed requires

approximately 20 seconds.
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3.2 Cropped Delta Wing

To further validate the proposed method, a cropped delta wing model is used; the wing uses a

NACA 65A004 airfoil, the leading edge sweep angle is approximately 16◦ and the semi-span

t

h
, 
α

0 100 200 300 400
­0.6

­0.4

­0.2

0

0.2

0.4

0.6
FOM ­ h
FOM ­ α

t
κ

100 200 300 400

0.06

0.08

0.1

0.12

0.14

(a) Training trajectory from varying Vs (b) HHT of training trajectory

Figure 2. LCO training trajectory.

Mode

E
n

e
rg

y

10 20 30 40 50 60
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­1
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Y
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0 0.2 0.4 0.6 0.8 1

­0.2

­0.1

0

0.1

0.2 DEIM Points

(a) Snapshot matrix eigenvalue decay (b) Location of DEIM points

Figure 3. Snapshot matrix eigenvalue energy and retained DEIM points.
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1
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0
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1

(a) POD Mode 1 (b) POD Mode 2 (c) POD Mode 3

Figure 4. POD modes from pressure flow field.
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Table 2

Computational effort to build ROM.

Model Wall clock [minutes]

Building ROM
Training Data DEIM RBF-ANN

180.5 0.12 9.95

ROM 0.32

is just under 4m. The wing structure is modelled using 2D shell elements and the material

properties are based on the AGARD 445.6 wing (30). Further details of the wing structural

dynamics and aeroelastic characteristics can be found in references (27,29), where it was found

the wing exhibited LCOs at transonic conditions, Mach number of 0.91 and 0◦ angle-of-

attack, due to the motion of the shock located near the trailing edge. As before, the ROM

t

h
, 
α

0 100 200 300 400
­0.6

­0.4

­0.2

0

0.2

0.4

0.6
FOM ­ h
FOM ­ α
ROM ­ h
ROM ­ α

t

C
L
, 
C

M

0 100 200 300 400
­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8
FOM ­ C

L

FOM ­ C
M

ROM ­ C
L

ROM ­ C
M

(a) Training trajectory displacements (b) Training trajectory loads

Figure 5. Training data evaluation.
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t
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o
]
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4
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ROM

(a) Plunge displacement (b) Pitch displacement

Figure 6. LCO time history comparison of CFD and ROM.
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first requires building the training trajectory, which in this case is generated by varying the

dynamic pressure q as

q = q0

(

1 − δ sin2 (2κt)
)

(18)

where q0 = 0.873qsl which is 15% above the flutter onset conditions (q f ) and qsl is the dy-

namic pressure at sea level conditions, the remainder parameters are: δ = 0.15 and κ = 0.01.

The final training trajectory obtained is shown in Figure 7-(a), where the coordinate η corre-

sponds to the displacement of the wing tip’s trailing edge. The HHT results in Figure 7-(b)

reveal the range of frequencies covered, ensuring the frequencies of interest are integrated in

the training process. Following the two-dimensional aeroelastic case, POD modes were ex-

t

η

0 200 400 600 800 1000 1200
­3

­2

­1

0

1

2

3
FOM

t

κ

200 400 600 800 1000 1200
0.04

0.05

0.06

0.07

0.08

(a) Training trajectory from varying q (b) HHT of training trajectory

Figure 7. LCO training trajectory.

tracted and the eigenvalue history is shown in Figure 8. The first three POD modes are shown

in Figure 9(a)-(c), which reveals the first mode to represent the mean flow, the second and the

third modes are associated with the shock-wave. Unlike the previous cases, the third mode

is now asymmetric. A total of 120 DEIM points are used in this case, as shown in Figure

9-(d). The points cluster near the shock wave location, and regions of large pressure gradients.

Again, at each DEIM point the RBF-ANN was identified through the training process. The

input for this case are the modal displacements and eight delays are used to obtain satisfactory

approximation to the full-order model. The ROM is then constructed using 120 POD modes.

The ability of the ROM to replicate the displacement and loads observed in the training tra-

jectory is shown in Figure 10, both frequency and amplitude are well captured by the ROM.

To exercise the ROM at post-critical conditions, the dynamic pressure is set 15% higher than

the flutter condition. As the oscillations develop, during the downwards motion of the wing

the shock at the trailing edge moves rewards and a strong suction peak forms on the wing tip,

during the upwards movement the shock moves forward and eventually vanishes, the suction

peak at the tip moves to the lower surface and the cycle is reversed and restarted. The recon-

structed upper surface pressure field as the wing tip bends downwards is compared against

the FOM and shown in Figure 11, indicating the proposed methodology is not hindered by

the additional complexity of a three-dimensional problem. The LCO mechanism is well pre-

dicted by the ROM as demonstrated by the displacement and lift coefficient comparison given

in Figure 12.
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Figure 8. Snapshot matrix eigenvalue energy decay.

(a) POD mode 1 (b) POD mode 2

(c) POD mode 3 (d) DEIM interpolation points

Figure 9. POD modes from pressure flow field and DEIM interpolation points.

The cost to build and run the ROM is given in Table 3. Each point on the LCO branch

takes about one minute to compute using the ROM. The full-order system, using a time step

∆t = 10−5, requires about three-orders of magnitude more effort to run than the ROM at

Vs = 1.15q f . It is reasonable to expect this cost to increase at conditions near the flutter onset,

where the number of cycles required to reach the limit-cycle tends to increase.
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Table 3

Computational effort to build ROM.

Model Wall clock [minutes]

Building ROM
Training Data DEIM RBF-ANN

1224 0.33 88.33

ROM 1.7

4.0 Conclusions

A novel surrogate model for nonlinear aerodynamic and aeroelastic simulations was demon-

strated for LCO prediction. This approach employs a POD/DEIM model reduction technique

to problems involving moving boundaries, such as LCOs. The POD/DEIM is able to reduce

the full-order aerodynamic system to a very limited number of POD modes and allows recon-

structing the complete flow field using information at key locations on the CFD/CSD interface.

This ability allows it to be used as a surrogate on behalf of the CFD solver. An RBF-ANN is

used to provide a nonlinear mapping between the structure’s displacement and the flow quan-

tity of interest used in the reconstruction of the flow field, at the selected CFD/CSD interface

points.

The method was exercised using a pith/plunge aeroelastic system which exhibited strong

flow nonlinearities in the form of large shock-wave motions. The new ROM was able to cap-

ture the main flow features, aerodynamic forces and structural displacements accurately. To

highlight the ability of the method in more practical applications, further tests were conducted

on a wing geometry, also in the transonic regime. The results obtained further demonstrate the

potential of the method to predict LCO amplitudes and frequencies accurately, well beyond

the system’s bifurcation point.
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Figure 10. Wing training trajectory comparison.
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Figure 11. Upper surface pressure field comparison.
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Figure 12. Wing LCO time history
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