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ABSTRACT: 

The knowledge of thermodynamic high-pressure speed of sound in ionic liquids (ILs) is  

a crucial way either to study the nature of the molecular interactions, structure and packing 

effects or to determine other key thermodynamic properties of ILs essential for their 

applications in any chemical and industrial processes. Herein, we report the speed of sound as 

a function temperature at pressures up to 101 MPa in four ultrapure ILs: 1-propyl-3-

methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-butyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide, 1-pentyl-3-methylimidazolium bis[(trifluoromethyl)sulfo 

nyl]imide, and 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, taking into 

consideration their relaxation behavior. Additionally, to further improve the reliability of the 

speed of sound results, the density, isentropic compressibility and isobaric heat capacity as a 

function of temperature and pressure are calculated using an acoustic method.  
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INTRODUCTION 

High-pressure thermodynamic properties of fluids are of considerable interest from a 

fundamental and a practical point of view. Their knowledge helps us to better understand type 

and nature of the molecular interactions, thus enabling the development of adequate models of 

the liquid state. In general, the high-pressure data help in developing technologies that require 

working liquids exposed to changing pressure, e.g. those of fuels, hydraulic fluids, 

refrigerants, cleaning and foaming agents, etc. Furthermore, from a fundamental point of 

view, the speed of sound is one of the key quantities for  the equation of state development.1-3 

The acoustic method, which has found widespread acceptance as a precise tool for the 

determination of thermodynamic properties of compressed liquids, is an excellent alternative 

to the direct determination of the p-ρ-T data of liquids. These data obtained from the 

experimental speeds of sound are not only considered reliable but also versatile because the 

speed of sound can be measured accurately over wide ranges of temperature and pressure.4-6 

As the propagation of sound waves is an adiabatic process, the acoustic method can be used 

for determining the isentropic compressibility of fluids directly. Combining the isentropic 

compressibility along with the isobaric heat capacity, the isothermal compressibility can then 

be calculated. Additionally, the isochoric heat capacity and internal pressure can also be 

determined using isothermal and isentropic compressibility data. Knowledge of these 

thermophysical properties over a sufficiently wide range of temperatures and pressures for 

various ILs could undoubtedly facilitate the correlation of their properties to further evaluate 

their real potential for industrial and large-scale engineering applications. However, the 

interpretation of speed of sound data and their usability for the determination of related 

thermodynamic properties is only possible on the basis of the prior knowledge of the 
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relaxation regions. Observed ultrasound absorption spectra of some  ILs suggest that under 

high-pressure and/or low temperature a dependence of ultrasound velocity on frequency may 

be observed at frequencies of transducers operating in conventional and commercial 

ultrasound devices.7 In that case, the measured values cannot be regarded as the 

thermodynamic speed of sound; thus it is not possible to use the Newton-Laplace equation 

and to determine other thermodynamic properties.  

Up to date, experimental high-pressure speed of sound data were reported in six pure ILs, 

namely the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide,8 1-propyl-3-

methylimidazolium bis[(trifluoromethyl)sulfonyl]imide,9 1-butyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide,10 1-pentyl-3-methylimidazolium bis[(trifluoromethyl) 

sulfonyl]imide,9 1-butyl-3-methylimidazolium hexafluorophosphate,11 and 1-butyl-3-

methylimidazolium tetrafluoroborate11 (abbreviations: [C2C1im][NTf2], [C3C1im][NTf2], 

[C4C1im] [NTf2], [C5C1im][NTf2], [C4C1im][PF6] and [C4C1im][BF4], respectively). The 

speed of sound measurements in [C2C1im][NTf2] were performed in the temperature range 

from 288.15 K to 318.15 K and at pressures from 15 MPa to 101 MPa.8 The speed of sound in 

[C3C1im][NTf2] in the temperature range from 298.15 K to 338.15 K at pressures up to 200 

MPa and in [C5C1im][NTf2] in the temperature range from 288.15 K to 338.15 K at pressures 

up to 200 MPa have been previously reported by Esperança et al.9 Gomes de Azevedo et 

al.10,11 have reported speed of sound data in [C4C1im][NTf2]10 and [C4C1im][PF6]11 at 

temperatures from 283.15 K to 323 K at pressures up to 151 MPa and in [C4C1im][BF4]11 in 

the same temperature range at pressures up to 160 MPa. Additionally, p-ρ-T data of 

[C4C1im][NTf2]12, 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 

[C6C1im][NTf2]13, and 1-butyl-3-methylimidazolium acetate [C4C1im][OAc]14 have also been 

used to calculate the speed of sound as a function of temperature and pressure u (p,T). Speed 

of sound data were also estimated thanks to the p-ρ-T data using the SAFT-BACK equation of 
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state for [C4C1im][NTf2]15,16 and for all ILs for which experimental u (p,T) data were 

available by Maghari et al.15 as well as for [C3C1im][NTf2], [C4C1im][NTf2], [C5C1im][NTf2], 

[C4C1im][PF6].17 As a result of the IUPAC Project 2002-005-1-100, [C6C1im][NTf2] was 

selected as an IUPAC reference sample for the thermodynamic, transport, and phase 

equilibrium properties.18,19 However, the speed of sound under high-pressure was not included 

in this investigation. To the best of our knowledge experimental high-pressure speeds of 

sound in [C6C1im][NTf2] have never been reported in the open literature, to date. The main 

objective of this work is to study the effect of pressure and temperature on the speed of sound 

in 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imides (from 1-propyl- to 1-

hexyl-)  ([CnC1im][NTf2]) taking into consideration their relaxation behavior. To complete the 

speed of sound dataset for the [CnC1im][NTf2] series, high-pressure speed of sound data in 

[C2C1im][NTf2] reported by our group previously,8 were used as no other data are currently 

available in the literature. Our group already highlighted the accuracy of this dataset by 

comparing [C2C1im][NTf2] p-ρ-T data using an indirect acoustic method with experimental p-

ρ-T data from the literature.8 In this work density, isentropic compressibility and isobaric heat 

capacity data as the function of the temperature and pressure were calculated using the 

acoustic method to compare the reliability of our data with literature p-ρ-T and additionally  

p-Cp-T data for [CnC1im][NTf2] series under investigation.  

EXPERIMENTAL 

Chemicals.  

[C3C1im][NTf2], [C4C1im][NTf2], [C5C1im][NTf2], [C6C1im][NTf2] were synthesized and 

purified at the QUILL Centre, Belfast. The liquids were stored under argon, and the water 

content (<200 ppm) was determined by Karl Fischer titration. The halide content was 

undeterminable by Ag[NO3] testing below the limit. Specification of chemicals is presented in 
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Table 1. Details about the synthesis, purification, and storage were presented in a previous 

paper.7 Additionally, we have measured the water content and density of [C6C1im][NTf2] after 

filling the high-pressure system (139 ppm and 1371.79 kg·m-3 at 298.15 K) and after high-

pressure speed of sound measurements (230 ppm and 1371.59 kg·m-3 at 298.15 K).   

Speed of sound measurements. 

The speed of sound under high-pressure was measured at a frequency of 2 MHz by means of 

the pulse-echo-overlap instrument, which was designed and constructed in our laboratory.5,20 

The pressure was measured using a manometer consisting of a strain gauge Hottinger-

Baldwin P3MB, equipped with a Hottinger-Baldwin MC3 signal amplifier, modified in our 

laboratory, and a digital voltmeter Meratronik V 542.1. The pressure was stabilized within 

±0.03 MPa and measured with an uncertainty of less than 0.15%. The temperature was 

measured using an Ertco Hart 850 platinum resistance thermometer (traceable to a NIST 

standard) with an uncertainty of 0.05 K and resolution of  0.001 K.  During the measurements, 

the temperature is stabilized within ±0.01 K by a Haake DC 30 temperature controller.  

Double distilled water, degassed by boiling just before measurements, was used as the 

standard liquid for determining the ultrasonic path length. The specific conductivity of water 

was 1 · 10-4 S · m-1. The values of the speed of sound in water under high-pressure were 

calculated using the IAPWS formulation.21 

The repeatability of the measured speeds of sound was within less than ± 0.04% under high-

pressure. The expanded uncertainty (k=2, level of confidence of 0.95) under high-pressure for 

measured ILs was estimated to be less than 1 m·s-1.8 

Density measurements.  

The density at ambient pressure was measured by means of an Anton Paar vibrating tube 

densimeter (DMA 5000). All measurements were made in the static mode. The effect of the  
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viscosity was also corrected. The densimeter was calibrated with air and double distilled 

water. The water of specific conductivity as above was degassed by boiling just before the 

measurements. Additionally the temperature range adjustment was performed. The density of 

the ILs was measured with an expanded uncertainty (k=2, level of confidence of 0.95) of less 

than 1⋅10-1 kg⋅m-3 and a repeatability of less than ±5⋅10-3  kg⋅m-3. 

RESULTS AND DISCUSSION 

High-pressure speed of sound. 

The speed of sound in each sample was systematically measured at a frequency of 2 MHz as 

the function of the pressure up to 101 MPa; however, each temperature range has been 

carefully selected by taking into account the relaxation process in each investigated IL, 

reported in the previous works7,22  It was found that the [C2C1im][NTf2] shows ultrasound 

velocity dispersion beginning  in the vicinity of 78 MHz at 293.15 K under atmospheric 

pressure,7,22  whereas for the  [C6C1im][NTf2] this phenomena  appears above 28 MHz at the 

same temperature. 7,22    However, with increasing temperature the dispersion region is shifted 

towards higher frequencies (i.e., above 44 MHz at 303.15 K and above 100 MHz at 323.15 

K)7. Because of the close similarity of behavior of ILs and associating molecular liquids in 

relation to ultrasound absorption at atmospheric pressure, the same behavior in relation to 

ultrasound absorption can be supposed under high-pressures.7 Thus, because the ultrasound 

relaxation frequency decreases with increasing pressure in viscous associating molecular 

liquids,23 the same behavior should also be observed in ILs. As a consequence, the dispersion 

region should be shifted towards lower frequencies. Thus, trying to avoid the dispersion 

region during this work, the speed of sound in ultrapure [C6C1im][NTf2] was measured at 

temperatures from 303 K to 323 K at pressures up to 101 MPa. For the same reason the speed 

of sound in [C5C1im][NTf2] was measured at pressures up to 101 MPa at temperatures from 
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298 K to 318 K. To be able to further investigate the effect of the cation alkyl chain length on 

speed of sound in ILs, speeds of sound in [C3C1im][NTf2] and [C4C1im][NTf2] were also 

measured during this work at pressures up to 101 MPa and for temperatures from 293 K to 

318 K and from 293 K to 323 K, respectively. The results of these measurements are listed in 

Table 2.    

The speed of sound data, pressure and temperature were correlated by the equation:  

                                              ( ) ji

i j
ij Tuuapp 0

3

1

2

0
0 −=− ∑∑

= =

,     (1) 

which was suggested by Sun et al.24 

The aij are parameters determined by a least-squares fit u is the speed of 

sound at p > 0.1 MPa, u0 is the speed of sound at atmospheric pressure p0= 0.101325 MPa,  

reported in a previous paper.7  The coefficients aij and the mean deviation of the experimental 

data from the correlation are given in Table 3. The stepwise rejection procedure was used to 

reduce the number of the non-zero coefficients.25 Speeds of sound in [C3C1im][NTf2],  

[C4C1im][NTf2] and [C5C1im][NTf2] have been studied under high-pressure by three different 

laboratories, but all of the sample were synthesized and purified at the QUILL research Centre 

Belfast.  Impurities such as lithium and halide contents were not reported by Esperança et al.9 

and Gomes de Azevedo et al.10, while the water content of our [C3C1im][NTf2] sample is 

lower (41 ppm) than of sample investigated by Esperança et al.9 (<150 ppm). However, the 

water content of our [C4C1im][NTf2] sample (171 ppm) is higher compared to that 

investigated by Gomes de Azevedo et al.10 (<75 ppm). In the case of [C5C1im][NTf2], a water 

content lower than 150 ppm was reported by Esperança et al. 9 while 192 ppm of water was 

detected in our sample during this work. It must be mentioned however, that  previous 

investigations showed that differences in water content of about 80 ppm did not affect the 
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speed of sound.26,27 In case of [C3C1im][NTf2] and [C5C1im][NTf2], the differences between 

our data and the data of Esperança et al.9 increase systematically with pressure, while for 

[C4C1im][NTf2] the differences between our data and the data of Gomes de Azevedo et al.10 

are not regular (Figures 1-3). The maximum deviations between these data are -11.8 m⋅s-1 and 

-12.1 m⋅s-1 at 101 MPa for [C3C1im][NTf2] and [C5C1im][NTf2], respectively. The observed 

deviations have the same magnitude at a given pressure independently on temperature and IL 

structure and are higher than the uncertainties of our data (i.e. 1 m⋅s-1) and those claimed by 

Esperança et al.9 (i.e. 0.05 %). These differences are probably due to the use the reference 

liquids for the calibration and the method of calibration applied by each group. In the case of 

[C4C1im][NTf2], the differences are lower than the uncertainty claimed by Gomes de Azevedo 

et al.10 (i.e. ± 0.2 %), but are higher than those reported in this work (i.e. 1 m⋅s-1), as the 

maximum deviation observed between these two data sets is -2.4 m⋅s-1 at 45.59 MPa and 

303.15 K. In Table 4, the Absolute Average Relative Deviations (AARD), Percent Relative 

Deviations (PRD), and Average Relative Deviations (BIAS) are summarized.  

The calibration method used by Esperança et al.,9 is based on a speed of sound datum for 

benzene that was reported by Sun et al.28  Additionally, Esperança et al.9 made further 

measurements with benzene, toluene, and methanol to analyze the accuracy of their 

calibration and compared the measured speeds of sound with results reported by Sun’s group. 

They estimated “an uncertainty of 0.05 % based on the standard deviations obtained for the 

different fluids.”9 Additionally, Esperança et al. also checked their calibration with 

measurements in acetone. In this work, we decided to examine the internal coherence of 

speeds of sound in benzene under high-pressure as reported in literature28-33 and measured in 

this work (Table S1 of the Supporting Information) by adopting two polynomial equations: 

one proposed by Sun et al.23 (eq.1) and the other suggested by Esperança et al.9 (fitting 

parameters are reported in Tables S2, S3 and S4 of the Supporting Information). In order to 
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enlarge the probability to find a global minimum of the last-squares fits,  repeated calculations 

with a set of random starting values for the parameters have been performed. As the results 

for the parameters depend on the initial values, the global minimum can be found with high 

confidence. If most results coincide, it is very likely that the found minimum is the global 

minimum. Residuals increase systematically with increasing pressure for the data reported by 

Sun et al.28 independent of the fitted polynomial equation (see Figures S1 and S2 in the 

Supporting Information). This is probably the main reasons for the increasing differences 

between our speeds of sound and the data of  Esperança et al.9  at high-pressures. 

The high-pressure acoustic and thermodynamic raw data sets for the IL family  

[CnC1im][NTf2] (n = 2 to 6) are currently the most comprehensive data sets for ionic liquids in 

the literature. This allows us to study the irregular dependence of the speed of sound on alkyl 

chain length. For [CnC1im][NTf2], a minimum of the speed of sound was noticed, but 

differences between the experimental data sets made it impossible to clearly establish the 

substance with the lowest speed of sound. This is related to the fact that very similar speed of 

sound data have been observed in [C4C1im][NTf2], [C5C1im][NTf2], and [C6C1im][NTf2] 

under atmospheric pressure (see Figure 4). For [C2C1im][NTf2] a very good agreement of the 

literature values is observed, the maximum difference between data sets34,35 of the speed of 

sound at 303.15 K is only 0.36 m⋅s-1. Additionally, this minimum of the speed of sound seems 

to shift with pressure towards the IL with a lower number of carbon atoms in the alkyl chain 

attached to the cation ring, such as for [C3C1im][NTf2] at 100 MPa. The observation of a 

minimum of the speed of sound in the series of the [CnC1im][NTf2] may be related to the  dual 

nature of the interactions in these ILs which include, according to MD simulation studies,36-38 

nonpolar-dispersive and ionic domains. Briefly, MD simulations have shown that 1-alkyl-3-

methylimidazolium ILs with side chains above butyl may have continuous polar and non-

polar domains, leading to a microstructure environment driven by the IL alkyl chains. The 
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observed trends in the speed of sound for the [CnC1im][NTf2] series may confirm the 

transition between globular and bicontinuous, sponge-like nanostructures. However, this 

mesoscopic effect has been also reported for several 1-alkyl-3-methylimidazolium-based 

ILs,37,39 which did not exhibit such a speed of sound behavior, i.e. that the speed of sound 

decreases with increasing number of carbon atoms. It may suggest that this nanostructure is 

anion dependent. In this context, the observed minimum value for the speed of sound in the 

case of the [CnC1im][NTf2] series (see Figure 4) might be related to the structure of the 

[NTf2]- anion, as the charge on its surface is more delocalized than other anions like [BF4]-, 

[PF6]-, [Br]- or [OH]-, which results in relatively weaker cation-anion Coulombic interactions, 

thus reducing the likelihood of ion association in solution. With the alkyl chains length on 

[CnC1im][NTf2] also the van der Waals forces increase, which may enhance the cohesive 

energy of the IL.44 This behavior may also be related to the increasing cohesive energy with 

pressure and to the fact that the minimum of the speed of sound could be shifted towards an 

IL with a lower number of carbon atoms in the alkyl chain length in [CnC1im][NTf2]. 

High-pressure density, isentropic compressibility and isobaric heat capacity. 

Using the experimental speeds of sound at high-pressures, determined in this work, together 

with the densities and isobaric heat capacities at atmospheric pressure, p-ρ-T and p-Cp-T data 

were calculated. Comparing them with literature data for high-pressure densities, isentropic 

compressibilities and isobaric heat capacities further evaluates the reliability of our results for 

the speed of sound.  The pressure derivatives of the density and isobaric heat capacity were 

calculated using the following thermodynamic relationships: 
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p

T C
T

up

2

2
1 αρ

+=







∂
∂



11 
 

,             (3) 

where αp is the isobaric thermal expansion coefficient which is calculated from definition 

. The change of liquid density, ρ∆ , caused by the change of pressure 

from 1p  to 2p  at constant temperature T  is obtained by integration of eqs. (2) and (3) over 

the entire pressure range covered by the speed of sound measurements and by using suitable 

initial conditions in the form of ρ(T, p0) and Cp(T, p0) functions at the initial pressure p0, 

where p0 is chosen as the atmospheric pressure: 
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where 12 ppp −=∆ . Thus, to calculate the density at 2p , values of ρ , α  and pC  at 1p  are 

necessary beside the speed of sound as a function of pressure. The approximate relationship 

(4) is sufficiently accurate, provided p∆  is small, because the heat capacity depends rather 

slightly on pressure. Moreover, the first term of the right hand side of eq. 4 is significantly 

larger than the second one, since the latter results from the difference between the isentropic 

and isothermal compressibilities that is rather small. The heat capacity at 2p is given by: 
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12 ααρ ,      (5) 

where )( 1pC p  is the isobaric heat capacity at 1p .  

The expanded uncertainties (k=2, level of confidence of 0.95)  have been estimated to be better 

than U(ρ)=5·10-4ρ  kg·m-3 and U(Cp)=1·10-2Cp J·mol-1·K-1 for the calculated density and 

isobaric molar heat capacity, respectively. The temperature dependence of the density at 

ambient pressure is presented in table 5. Speeds of sound and isobaric heat capacities under 
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atmospheric pressure were taken from our previous works.7,45 Calculated densities and 

isobaric heat capacities at high-pressure are reported in Tables 5 and 6, respectively.  

With the calculated densities and experimental speed of sound data, the isentropic 

compressibilities were calculated by the Newton-Laplace equation ( ) 12 −
= uS ρκ . The 

expanded uncertainty  (k=2, level of confidence of 0.95) of κs  is estimated to be 

U(κs)=1.5·10-3κs TPa-1. The results for the isentropic compressibility are given in  Table 7.  

As reported in Table 4, the calculated densities for [C3C1im][NTf2], [C4C1im][NTf2], 

[C5C1im][NTf2] and [C6C1im][NTf2] at high-pressures are in a very good agreement with 

those obtained experimentally with high-pressure densimeters,9-13,46 while large deviations up 

to -1.53 % from the high-pressure specific volume data obtained using a dilatometer47 are 

observed.  To illustrate our statistical analysis in Table 4, comparisons of thermophysical 

properties determined by the acoustic method as a function of pressure with those determined 

from high-pressure densitometer and dilatometer measurements as well as calculated data 

reported in literature are presented in Figures 5-7 and the maximum deviations are reported in 

the Supporting Information. As can be seen in Figures 5 and 7, the leading systematic error 

contribution to the calculated isentropic compressibility and isobaric heat capacity data arises 

mainly from the uncertainty of the speed of sound data, which becomes more significant at 

high-pressures. According to Table 4 and Figures 5 and 6, the largest deviations between our 

speed of sound data from those calculated using high-pressure experimental densities for 

[C6C1im][NTf2] by Safarov et al.13 and for [C4C1im][NTf2] by Hamidova et al.12 are 

observed. For example, deviations up to -45 m⋅s-1 at 99.55 MPa and 313.15 K and up to -20 

m⋅s-1 at 69.996 MPa and 293.15 K are noticed for [C6C1im][NTf2] and [C4C1im][NTf2], 

respectively, indicating that this procedure is subject to enormous errors, and difficulties in 

assessing the influence of numerical methods on the calculated speeds of sound.  
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SUMMARY 

The speed of sound in four ultrapure ILs, namely [C3C1im][NTf2], [C4C1im][NTf2], 

[C5C1im][NTf2], and [C6C1im][NTf2], has been measured as a function of the temperature and 

at pressures up to 101 MPa. During this work, special attention has been given to select the 

temperature range for each sample by taking into consideration their relaxation region. All 

speed of sound data have been compared with literature data by taking into account 

differences between the purities of each sample, experimental apparatuses used and their 

calibration, as well as, the selected procedure for fitting the data. Furthermore, the reliability 

of the speed of sound data has been evaluated by the calculation of the densities, isobaric heat 

capacities and isentropic compressibilities as the function of temperature and pressure using 

the acoustic method. Excluding data obtained using dilatometer, very good agreement 

between our results and those from the literature was observed confirming the reliability of 

the measured and calculated properties, which may be used to depict a structure-properties 

relationship for selected [CnC1im][NTf2] series as a function of the alkyl chain length on the 

cation. Based on our experimental data and literature data, it appears that the speed of sound 

in the [CnC1im][NTf2] series, with n = 2 to 8, reaches a minimum for n between 4 and 6 at 0.1 

MPa, while this minimum seems to be shifted to a lower alkyl chain length with increasing 

pressure (e.g. n = 3 as observed at 101 MPa). This finding may be related to the dual nature of 

the interactions in these ILs which include nonpolar-dispersive and ionic domains and may be 

used as a proof of the transition between globular and bicontinuous, sponge-like 

nanostructures transition observed by several research groups using MD simulations. Finally, 

it should be noted that measurements of ultrasound relaxation under high-pressures would be 

very useful to clarify the relaxation processes which occur in these ILs, especially for 

verifying the required conditions of their speed of sound data as a source for other 

thermodynamic properties. 
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Supporting Information.  

Speeds of sound in benzene are tabulated in Table S1. Fitting parameters for different 

correlations of the speed of sound in benzene are tabulated in Tables S2-S4. Residuals 

between experimental speeds of sound in benzene and calculated values from the correlations 

are shown in Figures S1-S2. High-pressure density, isentropic compressibility and molar 

isobaric heat capacity for [C3C1im][NTf2], [C4C1im][NTf2], [C5C1im][NTf2], and 

[C6C1im][NTf2] in comparison with the literature values. 

This material is available free of charge via the Internet at http://pubs.acs.org. 
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Table 1. Specification of Chemicals  

Chemical’s 

acronym 

CAS number M 

g⋅mol-1 

mass fraction 

purity % 

Water 

content 

ppma 

Br 

content 

ppmb 

Li 

content 

ppmc 

[C3C1im][NTf2] 216299-72-8 405.34 >99.95 41 <5 26 

[C4C1im][NTf2] 174899-83-3 419.37 >99.95 171 <5 19 

[C5C1im][NTf2] 280779-53-5 433.38 >99.95 192 <5 34 

[C6C1im][NTf2] 382150-50-7 447.42 >99.95 101 <5 23 

 
a Coulometric Karl Fisher titration, TitroLine 7500. b AgNO3 titration. c Inductively Coupled 
Plasma - Optical Emission Spectrometry (ICP-OES), Thermo Scientific iCAP 7200. 
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Table 2. Experimental speeds of sound in [C3C1im][NTf2], [C4C1im][NTf2], 
[C5C1im][NTf2], and [C6C1im][NTf2]a   

T / K p / MPa u / m·s-1 T / K p / MPa u / m·s-1 T / K p / MPa u / m·s-1 T / K p / MPa u / m·s-1 

[C3C1im][NTf2] [C4C1im][NTf2] [C5C1im][NTf2] [C6C1im][NTf2] 

292.90 15.20 1289.9 292.99 15.20 1287.0 298.21 15.20 1277.4 303.06 15.20 1267.6 

292.89 30.39 1333.8 292.99 30.39 1332.4 298.18 30.39 1324.3 303.05 30.39 1316.1 

292.89 45.59 1374.6 292.99 45.59 1374.4 298.17 45.59 1367.9 303.05 45.59 1360.8 

292.90 60.79 1413.0 292.99 60.79 1413.8 298.17 60.79 1408.4 303.05 60.79 1402.3 

292.90 75.99 1449.0 292.99 75.99 1450.7 298.17 75.99 1446.5 303.05 75.99 1441.4 

292.91 91.18 1483.2 292.99 91.18 1485.7 298.16 91.18 1482.5 303.05 91.19 1478.3 

292.91 101.32 1505.2 292.99 101.32 1508.1 298.16 101.32 1505.5 303.05 101.32 1501.8 

298.08 15.20 1278.1 298.16 15.20 1275.8 303.14 15.20 1266.9 308.06 15.20 1257.1 

298.07 30.39 1322.5 298.16 30.39 1321.5 303.14 30.39 1314.3 308.06 30.39 1306.0 

298.07 45.59 1363.8 298.16 45.59 1364.1 303.14 45.59 1358.0 308.05 45.59 1351.0 

298.07 60.79 1402.5 298.16 60.79 1403.7 303.14 60.79 1398.9 308.05 60.79 1393.1 

298.07 75.99 1439.0 298.16 75.99 1441.1 303.14 75.99 1437.3 308.05 75.99 1432.4 

298.06 91.18 1473.5 298.17 91.18 1476.3 303.14 91.18 1473.5 308.05 91.19 1469.5 

298.07 101.32 1495.2 298.17 101.32 1498.5 303.14 101.32 1496.7 308.05 101.32 1493.2 

303.14 15.20 1266.7 303.13 15.20 1265.3 308.11 15.20 1256.5 313.03 15.20 1246.9 

303.14 30.39 1311.8 303.14 30.39 1311.6 308.11 30.39 1304.2 313.03 30.39 1296.2 

303.14 45.59 1353.4 303.14 45.59 1354.2 308.10 45.59 1348.4 313.03 45.59 1341.6 

303.14 60.79 1392.6 303.14 60.79 1394.4 308.10 60.80 1389.7 313.03 60.79 1383.9 

303.13 75.99 1429.4 303.14 75.99 1431.9 308.10 75.99 1428.3 313.02 75.99 1423.5 

303.13 91.18 1464.1 303.14 91.18 1467.3 308.10 91.18 1464.8 313.02 91.19 1460.9 

303.14 101.32 1486.3 303.15 101.32 1490.1 308.10 101.32 1488.1 313.02 101.32 1484.7 

308.15 15.20 1256.3 308.12 15.20 1255.0 313.05 15.20 1246.2 318.00 15.20 1236.5 

308.14 30.39 1301.6 308.13 30.39 1301.6 313.04 30.39 1294.4 318.00 30.39 1286.4 

308.14 45.59 1343.8 308.13 45.59 1344.7 313.03 45.59 1339.0 318.00 45.59 1332.2 

308.13 60.80 1383.1 308.12 60.79 1385.0 313.02 60.80 1380.5 317.99 60.79 1375.0 

308.13 75.99 1420.2 308.14 75.99 1422.9 313.02 75.99 1419.5 317.99 75.99 1414.9 

308.14 91.18 1455.2 308.12 91.18 1458.7 313.03 91.18 1456.2 317.99 91.19 1452.5 

308.12 101.32 1477.6 308.14 101.32 1481.5 313.03 101.32 1479.7 317.99 101.32 1476.4 

313.11 15.20 1246.2 313.09 15.20 1245.0 318.34 15.20 1235.6 323.37 0.10 1169.6 



21 
 

313.11 30.39 1291.7 313.09 30.39 1291.9 318.34 30.39 1284.2 323.35 15.20 1225.8 

313.11 45.59 1334.1 313.08 45.59 1335.4 318.34 45.59 1329.2 323.35 30.39 1276.2 

313.11 60.80 1373.9 313.08 60.79 1376.1 318.34 60.80 1371.1 323.34 45.59 1322.5 

313.10 75.99 1411.3 313.08 75.99 1414.2 318.32 75.99 1410.4 323.34 60.79 1365.4 

313.10 91.18 1446.5 313.08 91.18 1450.2 318.32 91.18 1447.3 323.34 75.99 1405.7 

313.10 101.32 1469.0 313.09 101.32 1473.2 318.32 101.32 1470.9 323.34 91.19 1443.6 

318.30 15.20 1235.6 318.08 15.20 1235.2    323.34 101.32 1467.7 

318.29 30.39 1281.8 318.10 30.39 1282.6       

318.29 45.59 1324.5 318.10 45.59 1326.5       

318.29 60.79 1364.5 318.10 60.79 1367.3       

318.29 75.99 1402.1 318.11 75.99 1405.7       

318.29 91.18 1437.6 318.11 91.18 1441.9       

318.29 101.32 1460.3 318.11 101.32 1464.9       

   323.25 15.20 1224.9       

   323.27 30.39 1272.9       

   323.28 45.59 1317.1       

   323.27 60.80 1358.4       

   323.27 75.99 1396.9       

   323.28 91.18 1433.5       

   323.27 101.32 1456.7       

a The standard uncertainties u at high pressures are up = 0.0015⋅p MPa, uT = 0.05 K, and the 
expanded uncertainty (k=2, level of confidence of 0.95), U,  is U(u) =  1 m⋅s-1 

 

 

 

 

 

 

 

 

 



22 
 

Table 3. Coefficients of equation (1) together with mean deviation (δu) 

 component  a1j / K -j·MPa ·s·m-1 a2j / K -j·MPa ·s2·m-2 a3j / K -j·MPa·s3·m-3 δu / m·s-1 

  j     

 [C3C1im][NTf2] 0 3.66428·10-1 4.66959·10-4 - 0.10 

  1 - - -  

  2 -6.97455·10-7 -2.36179·10-9 1.51466·10-12  

 [C4C1im][NTf2] 0 3.85662·10-1 3.41127·10-4 3.64054·10-8 0.07 

  1 - - -  

  2 -1.09664·10-6 -5.32239·10-10 -  

 [C5C1im][NTf2] 0 3.75240·10-1 4.06025·10-4 4.98655·10-8 0.05 

  1 - -4.22905·10-7 -  

  2 -1.06492·10-6 - -  

 [C6C1im][NTf2] 0 4.96223·10-1 2.91781·10-4 - 0.09 

  1 -7.53305·10-4 - -  

  2 - - -  
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Table 4. Comparison of speeds of sound, densities, and isentropic compressibilities 
obtained in this work with literature data 

IL Absolute Average 
Relative Deviation  

AARD % a 

Percent Relative 
Deviations 
PRD % b 

Average Relative 
Deviation 
BIAS % c 

speed of sound 

[C3C1im][NTf2] d 0.65 -0.81 ÷ -0.35 -0.65 

[C4C1im][NTf2] e 0.08 -0.20 ÷ 0.12 -0.05 

[C4C1im][NTf2] f* 0.90 -0.08 ÷ 1.40 0.89 

[C5C1im][NTf2] d 0.61 -0.81 ÷ -0.31 -0.61 

[C6C1im][NTf2] g* 1.57 -3.07 ÷ 2.23 -0.19 

isentropic compressibility 

[C3C1im][NTf2] d 1.2 0.84 ÷ 1.5 1.2 

[C4C1im][NTf2] e 0.16 -0.15 ÷ 0.32 0.14 

[C5C1im][NTf2] d 1.1 0.85 ÷ 1.5 1.1 

isobaric heat capacity 

[C4C1im][NTf2] e  5.8 3.4 ÷ 7.8 5.8 

[C4C1im][NTf2] f* 0.17 -0.46 ÷ 0.09 -0.14 

[C6C1im][NTf2] g* 3.2 -3.7 ÷ -2.6 -3.2 

density 

 Exp. Acoust. Exp. Acoust. Exp. Acoust. 

[C3C1im][NTf2] d 0.08 0.09 -0.12 ÷ -0.003  -0.004 ÷ 0.24  -0.07 -0.003 

[C4C1im][NTf2] e 0.03 0.05 -0.08 ÷ 0.10 -0.09 ÷ 0.05 -0.02 -0.05 

[C4C1im][NTf2] f 0.06 - -0.08 ÷ -0.03 - -0.06 - 

[C4C1im][NTf2]h 0.05 - 0.03 ÷ 0.08 - 0.05 - 

[C4C1im][NTf2]i 1.03j - -1.53 ÷ -0.05 - -1.03 - 
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[C5C1im][NTf2] d 0.15 0.13 -0.17 ÷ -0.10 -0.17 ÷ -0.04 -0.15 -0.13 

[C6C1im][NTf2] e 0.09 - 0.06 ÷ 0.16  - 0.09 - 

[C6C1im][NTf2] g 0.052 - -0.07 ÷ 0.03 - -0.047 - 

a , b , c ,  

where N is the number of points of the data set considered. y1 – data reported in this work, y2 - data reported by  

d Esperança et al.9, e Gomes de Azevedo et al.10, f Hamidova et al.12, g Safarov et al.13, h Currás et al.46, or                      

i Wojnarowska et al.47, Exp. – measured by means of vibrating tube densimeter or  j dilatometer; Acoust. – 

calculated by the acoustic method, * - calculated from p-ρ-T data 
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Table 5. Densities of [C3C1im][NTf2], [C4C1im][NTf2], [C5C1im][NTf2], and 
[C6C1im][NTf2]  

     ρ/ kg·m-3       

ρ/ kg·m-3 

0.1** 

p /MPa T /K       

 293.15 298.15 303.15 308.15 313.15 318.15 323.15 

[C3C1im][NTf2]          

0.1* 1479.66 1474.70 1469.76 1464.83 1459.93 1455.04  288.15 1484.65 

10 1486.90 1482.07 1477.25 1472.45 1467.67 1462.91  298.15 1474.70 

20 1493.87 1489.14 1484.44 1479.76 1475.09 1470.45  308.15 1464.83 

30 1500.51 1495.89 1491.29 1486.71 1482.16 1477.62  318.15 1455.04 

40 1506.88 1502.36 1497.85 1493.36 1488.90 1484.46  328.15 1445.33 

50 1513.00 1508.56 1504.14 1499.74 1495.36 1491.01  338.15 1435.69 

60 1518.88 1514.52 1510.18 1505.87 1501.57 1497.30  348.15 1426.12 

70 1524.56 1520.27 1516.01 1511.77 1507.55 1503.35  358.15 1416.62 

80 1530.04 1525.83 1521.64 1517.47 1513.31 1509.18  363.15 1411.90 

90 1535.36 1531.21 1527.08 1522.97 1518.89 1514.82    

100 1540.51 1536.42 1532.36 1528.31 1524.28 1520.27    

[C4C1im][NTf2]          

0.1* 1441.13 1436.31 1431.52 1426.74 1421.98 1417.23 1412.50 288.15 1445.96 

10 1448.37 1443.68 1439.00 1434.35 1429.72 1425.10 1420.50 298.15 1436.31 

20 1455.31 1450.73 1446.17 1441.63 1437.11 1432.61 1428.13 308.15 1426.73 

30 1461.94 1457.46 1453.00 1448.56 1444.14 1439.74 1435.36 318.15 1417.23 

40 1468.28 1463.89 1459.52 1455.17 1450.84 1446.54 1442.25 328.15 1407.79 

50 1474.36 1470.05 1465.77 1461.50 1457.26 1453.04 1448.83 338.15 1398.42 

60 1480.21 1475.98 1471.77 1467.59 1463.42 1459.27 1455.15 348.15 1389.12 

70 1485.85 1481.69 1477.56 1473.44 1469.35 1465.27 1461.22 358.15 1379.87 

80 1491.30 1487.21 1483.14 1479.09 1475.06 1471.05 1467.06 363.15 1375.26 

90 1496.57 1492.54 1488.54 1484.55 1480.58 1476.64 1472.71   

100 1501.68 1497.71 1493.76 1489.83 1485.93 1482.04 1478.17   

[C5C1im][NTf2]          

0.1*  1402.17 1397.47 1392.79 1388.13 1383.48  288.15 1411.62 

10  1409.51 1404.94 1400.39 1395.85 1391.33  298.15 1402.16 

20  1416.54 1412.08 1407.64 1403.22 1398.81  308.15 1392.79 
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* calculated from the following polynomials:  
ρ ([C3C1im][NTf2])=1803.199-1.2132∙T+3.7362∙10-4∙T2, δρ= 0.006 kg·m-3 ; 
ρ ([C4C1im][NTf2])=1752.219-1.1584∙T+3.3155∙10-4∙T2, δρ= 0.007 kg·m-3;  

ρ ([C5C1im][NTf2])=1710.627-1.1283∙T+3.1428∙10-4∙T2, δρ= 0.008 kg·m-3;  

ρ ([C6C1im][NTf2])=1674.532-1.1086∙T+3.1157∙10-4∙T2, δρ= 0.01 kg·m-3. 

**experimental data;  the standard uncertainties u at atmospheric pressure are  uT = 0.05 K and  
up0 = 2 kPa,  the expanded uncertainty (k=2, level of confidence of 0.95), U,  is U(ρ) = 1⋅10-1 
kg⋅m-3 

 

 

 

 

 

30  1423.22 1418.87 1414.53 1410.21 1405.91  318.15 1383.47 

40  1429.61 1425.34 1421.10 1416.87 1412.67  328.15 1374.23 

50  1435.73 1431.55 1427.38 1423.24 1419.12  338.15 1365.05 

60  1441.60 1437.50 1433.42 1429.35 1425.31  348.15 1355.92 

70  1447.26 1443.23 1439.22 1435.23 1431.25  358.15 1346.85 

80  1452.72 1448.76 1444.81 1440.89 1436.98  363.15 1342.34 

90  1458.00 1454.10 1450.22 1446.35 1442.51    

100  1463.11 1459.27 1455.45 1451.64 1447.85    

[C6C1im][NTf2]          

0.1*   1367.08 1362.49 1357.91 1353.35 1348.81 288.15 1380.95 

10   1374.53 1370.07 1365.63 1361.20 1356.78 298.15 1371.68 

20   1381.66 1377.31 1372.97 1368.66 1364.36 308.15 1362.48 

30   1388.42 1384.17 1379.94 1375.73 1371.54 318.15 1353.35 

40   1394.87 1390.71 1386.57 1382.45 1378.35 328.15 1344.28 

50   1401.03 1396.96 1392.91 1388.87 1384.86 338.15 1335.28 

60   1406.95 1402.96 1398.98 1395.02 1391.08 348.15 1326.33 

70   1412.65 1408.72 1404.82 1400.93 1397.06 358.15 1317.44 

80   1418.14 1414.28 1410.44 1406.62 1402.81 363.15 1313.01 

90   1423.44 1419.64 1415.86 1412.10 1408.36   

100   1428.57 1424.83 1421.11 1417.40 1413.72   
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Table 6. Calculated molar isobaric heat capacities of [C3C1im][NTf2], [C4C1im][NTf2], 
[C5C1im][NTf2], and [C6C1im][NTf2]  

 Cp/ J·mol-1·K-1       

p /MPa T /K       

 293.15 298.15 303.15 308.15 313.15 318.15 323.15 

[C3C1im][NTf2]        

0.1* 525.7 528.1 530.7 533.3 536.1 539.0  

10 525.4 527.8 530.4 533.0 535.8 538.7  

20 525.2 527.6 530.1 532.8 535.6 538.5  

30 525.0 527.4 530.0 532.6 535.4 538.3  

40 524.8 527.3 529.8 532.5 535.3 538.2  

50 524.7 527.2 529.7 532.4 535.2 538.1  

60 524.6 527.1 529.6 532.3 535.1 538.0  

70 524.6 527.0 529.5 532.2 535.0 537.9  

80 524.5 526.9 529.5 532.1 534.9 537.8  

90 524.4 526.9 529.4 532.1 534.9 537.8  

100 524.4 526.9 529.4 532.0 534.8 537.8  

[C4C1im][NTf2]        

0.1* 560.7 564.0 567.2 570.1 572.9 575.5  578.0 

10 560.4 563.7 566.8 569.8 572.6 575.2 577.7 

20 560.2 563.4 566.6 569.5 572.3 574.9 577.4 

30 560.0 563.2 566.4 569.3 572.1 574.7 577.2 

40 559.8 563.1 566.2 569.2 571.9 574.6 577.0 

50 559.7 563.0 566.1 569.0 571.8 574.5 576.9 

60 559.6 562.9 566.0 569.0 571.7 574.4 576.8 

70 559.5 562.8 565.9 568.9 571.7 574.3 576.8 

80 559.5 562.8 565.9 568.8 571.6 574.3 576.8 

90 559.4 562.7 565.8 568.8 571.6 574.3 576.7 

100 559.4 562.7 565.8 568.8 571.6 574.2 576.7 

[C5C1im][NTf2]        

0.1*  595.5 598.7 602.0 605.3 608.6  
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10  595.1 598.4 601.6 604.9 608.2  

20  594.8 598.1 601.3 604.6 607.9  

30  594.6 597.8 601.1 604.4 607.6  

40  594.4 597.6 600.9 604.2 607.5  

50  594.2 597.5 600.8 604.0 607.3  

60  594.1 597.4 600.7 603.9 607.2  

70  594.0 597.3 600.6 603.8 607.1  

80  593.9 597.2 600.5 603.8 607.0  

90  593.9 597.1 600.4 603.7 607.0  

100  593.8 597.1 600.4 603.6 606.9  

[C6C1im][NTf2]        

0.1*   629.3 632.7 636.2 639.8 643.6 

10   628.7 632.0 635.5 639.2 642.9 

20   628.4 631.7 635.2 638.8 642.6 

30   628.1 631.5 635.0 638.6 642.4 

40   627.9 631.3 634.8 638.4 642.2 

50   627.8 631.1 634.6 638.2 642.0 

60   627.6 631.0 634.5 638.1 641.9 

70   627.5 630.9 634.4 638.0 641.8 

80   627.5 630.8 634.3 637.9 641.7 

90   627.4 630.7 634.2 637.9 641.6 

100   627.3   630.7   634.2 637.8   641.6 

* taken from 45 
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Table 7. Calculated isentropic compressibilities of [C3C1im][NTf2], [C4C1im][NTf2], 
[C5C1im][NTf2], and [C6C1im][NTf2]  

 κS · 1010/ Pa-1      

p /MPa T /K       

 293.15 298.15 303.15 308.15 313.15 318.15 323.15 

[C3C1im][NTf2]        

0.1 4.3842 4.4797 4.5771 4.6762 4.7771 4.8799  

10 4.150 4.237 4.325 4.414 4.505 4.597  

20 3.942 4.021 4.101 4.182 4.264 4.347  

30 3.757 3.829 3.903 3.976 4.051 4.127  

40 3.592 3.659 3.726 3.793 3.862 3.931  

50 3.444 3.505 3.567 3.629 3.692 3.755  

60 3.310 3.366 3.424 3.481 3.539 3.597  

70 3.187 3.240 3.293 3.347 3.400 3.454  

80 3.076 3.125 3.175 3.224 3.274 3.324  

90 2.973 3.019 3.066 3.112 3.159 3.205  

100 2.878 2.922 2.965 3.009 3.053 3.096  

[C4C1im][NTf2]        

0.1 4.5334 4.6318 4.7322 4.8345 4.9387 5.0448 5.1529 

10 4.280 4.368 4.458 4.549 4.641 4.734 4.830 

20 4.058 4.137 4.218 4.299 4.382 4.465 4.550 

30 3.862 3.934 4.008 4.081 4.156 4.231 4.307 

40 3.688 3.755 3.821 3.889 3.957 4.025 4.094 

50 3.532 3.593 3.655 3.717 3.779 3.842 3.905 

60 3.392 3.448 3.505 3.562 3.620 3.677 3.735 

70 3.264 3.316 3.369 3.422 3.475 3.529 3.582 

80 3.147 3.196 3.245 3.295 3.344 3.394 3.443 

90 3.039 3.086 3.132 3.178 3.224 3.270 3.317 

100 2.940 2.984 3.027 3.071 3.114 3.157 3.200 
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[C5C1im][NTf2] 

0.1  4.7423 4.8467 4.9532 5.0618 5.1726  

10  4.466 4.558 4.653 4.749 4.846  

20  4.224 4.307 4.392 4.477 4.564  

30  4.012 4.088 4.164 4.241 4.319  

40  3.825 3.894 3.963 4.033 4.104  

50  3.658 3.721 3.784 3.848 3.913  

60 3.507 3.565 3.624 3.683 3.742  

70 3.370 3.425 3.479 3.533 3.588  

80 3.246 3.297 3.347 3.398 3.448  

90 3.132 3.179 3.227 3.274 3.321  

100 3.027 3.072 3.116 3.160 3.204  

[C6C1im][NTf2]       

0.1  4.9611 5.0713 5.1838 5.2985 5.4155 

10  4.658 4.755 4.853 4.953 5.055 

20  4.395 4.481 4.569 4.657 4.747 

30  4.167 4.244 4.323 4.402 4.482 

40  3.966 4.036 4.107 4.179 4.251 

50  3.787 3.851 3.916 3.982 4.048 

60  3.626 3.686 3.745 3.805 3.866 

70  3.481 3.536 3.591 3.647 3.702 

80  3.349 3.400 3.451 3.503 3.555 

90  3.228 3.275 3.323 3.372 3.420 

100  3.116 3.161 3.206 3.251 3.296 
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Figure 1a. Comparison of the speed of sound in [C3C1im][NTf2] measured in this work (red 

open symbols) with the data of  Esperança et al.9 (black symbols),  , 298.15 K; , 308.15 

K; ▲, 318.15 K;            , calculated from empirical function: .  

 

 

 

Figure 1b. Differences between speeds of sound in [C3C1im][NTf2] reported in this work and 

literature data, , 298.15 K; , 308.15 K; , 318.15 K. 
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Figure 2a. Comparison of the speed of sound in [C4C1im][NTf2] measured in this work (red 

open symbols) with reported by Gomes de Azevedo et al.10 (black symbols),  , 293.15 K; 

, 303.15 K; ▲, 313.15 K; , 323.15 K;             ,  calculated from empirical function: 

. 

 

Figure 2b. Differences between speeds of sound in [C4C1im][NTf2] reported in this work and 

literature data, , 293.15 K; , 303.15 K; , 313.15 K; , 323.15 K.  

 

 

 

 

 

 

 

∑= =
3

0i
i

i pau



33 
 

 

 

Figure 3a. Comparison of the speed of sound in [C5C1im][NTf2] measured in this work (red 

open symbols) with reported by Esperança et al.9 (black symbols),  , 298.15 K; , 308.15 

K; ▲, 318.15 K;            , calculated from empirical function: . 

 

Figure 3b. Differences between speeds of sound in [C5C1im][NTf2] reported in this work and 

literature data, , 298.15 K; , 308.15 K; , 318.15 K. 
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Figure 4. Influence of the chain length in the cation on the speed of sound in [CnC1im][NTf2] 

at 303.15 K at 0.1 MPa: , n = 28,20,34,35; +,  n = 37,40; , n = 47,10,22,41,42; , n = 57;  *,  n =  

67,27,34,43; -,  n = 77; , n = 87 and at 100 MPa: n = 27; n = 3 this work,9; n = 4this work,10; n = 5this 

work,9; n = 6this work.  

 

 

 

Figure 5. Fractional deviations of the speed of sound (black points), densities (blue points) 

and isentropic compressibilities (red points) obtained in this work (y1) from literature data (y2) 

for [C3C1im][NTf2] (9), [C4C1im][NTf2] (10, 12, +46, *
47), [C5C1im][NTf2] (9) at 

298.15 K.  
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Figure 6. Fractional deviations of the speed of sound and density of  [C6C1im][NTf2] obtained 

in this work (y1) and  literature data (y2) at 313.15 K for  speed of sound  (13)  and for 

density (10, 13). 

 

 

Figure 7. Fractional deviations of the isobaric heat capacities obtained in this work (y1) from 

literature data (y2) for [C4C1im][NTf2] ( 10, 12) at 298.15 K and for [C6C1im][NTf2] (13)  

at 313.15 K.  
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