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Network Connectivity under Node Failure

Pascal Billand� Christophe Bravardy Sitharama S. Iyengarz
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Abstract

We examine a non-cooperative model of network formation where players may stop func-
tioning. We identify conditions under which Nash and e¢ cient networks will remain connected
after the loss of k nodes by introducing the notion of k-Node Super Connectivity.
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1 Introduction

In this paper, we focus on a model of network formation where players (also called nodes) in the
network can fail with a certain exogenous probability. Examples of networks being a¤ected by node
failure abound in the real world. Consider for instance, the social and economic networks in a region
hit by a natural calamity like a hurricane, or a business network where some �rms exit the industry.
This can also occur in a network of servers or a sensor network either due to mechanical failure or
a malicious attack. Connectivity in the network is important in all these examples, suggesting that
strategic agents will have an incentive to create multiple paths between themselves.
The literature on strategic reliability in economics has mostly focused on the possibility of links
failures. The model incorporating reliability in networks was introduced in a paper by Bala and
Goyal (2000) where all links are allowed to fail with a given exogenous probability. The authors then
proceed to provide a partial characterization of Nash and e¢ cient networks in this context. Subse-
quently, Haller and Sarangi (2005) and Billand, Bravard and Sarangi (2011) allow for heterogeneity
in the link failure probabilities and values that can be obtained from other players respectively.
While full characterization of the equilibrium networks is again shown to be elusive, both papers
provide an �anything goes�result which shows that with only a bit of heterogeneity (two di¤erent

�Université de Lyon, St Etienne, France. (Email: pascal.billand@univ-st-etienne.fr)
yGAEL, Univ. Grenoble-Alpes, France. (Email: christophe.bravard@upmf-grenoble.fr)
zFlorida International University, FL, USA. (Email: iyengar@cis.�u.edu)
xQueen�s University Belfast j Management School, United Kingdom
{Corresponding author: Rajnish Kumar, Queen�s University Belfast j Management School, 185 Stranmillis Road,

Belfast, BT9 5EE, United Kingdom (Email: rajnish.kumar@qub.ac.uk, Phone: +44 (0)28 9097 5424, Fax: +44 (0)28
9097 4201)

kVirginia Tech, VA, USA; DIW Berlin, Germany (Email: ssarangi@vt.edu)

1



parameter values) any essential network can be supported as a Nash equilibrium. In a slightly
di¤erent framework, De Jaegher and Hoyer (2016) study a game between a network designer and a
network disruptor and �nd the equilibrium network architectures for di¤erent levels of link costs.
These types of game have also been studied by Dziubiński and Goyal (2013), Goyal and Vigier
(2014) and Haller (2016). Note that in these models the attacker typically removes links or nodes.
Ours is the �rst paper to study node failure when agents form links in a decentralized way � a
phenomenon quite di¤erent from link failure. Under link failure, as well as under node failure,
agents can create alternate paths by forming costly links with other agents. However, the logic for
creating alternate paths is quite di¤erent. Consider Figure 1.
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Figure 1: Node failure vs link failure: An illustration

In Figure 1, player 1 has formed a link with player 2 and player 2 has formed links with players
3 and 4. In this �gure, under link failure, the formation of an additional link by player 1 with
player 3 can allow player 1 to access the resources of players 2, 3 and 4, in situation where the link
between 1 and 2 fails. By contrast, under node failure, this additional link can never allow player 1
to get access to the resources of players 2 and 4 when player 2 fails; it can only allow access to the
resources of player 3. Moreover, under node failure, in Figure 1, player 1�s payo¤ will not change
if players 3 and 4 add a link between themselves. However, this link will improve her expected
payo¤ under link failure. Finally, under node failure, player 1 also needs to take into account her
own survival probability while computing her payo¤s before adding a costly link. Thus, ensuring
connectivity in the two di¤erent models may require di¤erent strategies.
Our focus in this note is on connectivity in the network. To study this we introduce the notion of
k-Node Superconnectivity which checks whether a network is still connected after the deletion of
any k nodes. Using this de�nition, we then identify su¢ cient conditions for both Nash and e¢ cient
networks.

2 Preliminaries

Graph-theoretic concepts. A (simple directed) network g is a pair of sets (N;E) where N is
a set of nodes and E � N �N is a set of links with (i; i) 62 E for all i 2 N . We denote by (i; j) 2 E
the link from i to j. Let G be the set of all (simple directed) networks whose set of vertices is N .
A chain in g between node j and node i 6= j, is an alternating sequence of distinct nodes i0; i1; ::; im
such that i0 = i; im = j; and an alternating sequence of distinct links such that for k = 0; :::;m� 1,
(ik; ik+1) 2 E or (ik+1; ik) 2 E. A network g is connected if there is a chain in g between all
nodes i; j 2 N . A subnetwork gN

0
= (N 0; E0) induced by N 0 � N consists of a set of nodes N 0

2



and a set of links E0 � N 0 � N 0 such that (i; j) 2 E0 if and only if (i; j) 2 E for every pair
(i; j) 2 N 0 � N 0. Let S(g) be the set of all subnetworks of g induced by all subsets N 0 � N .
Note that for each subset N 0 � N there is a unique subnetwork of g which belongs to S(g). A
component gN

0
of g is a connected (induced) subnetwork of g such that for all N 00 � N with

N 00 � N 0, gN
00
is not connected. Finally, a network g 2 G is essential if (i; j) 2 E implies (j; i) 62 E.

We now present two de�nitions that will play an important role in our analysis. A set of nodes
N 0 � N in a connected network g is critical if gNnN

0
is not connected. A network is k-Node

Super Connected (k-NSC) if no set of k nodes or less is critical. To avoid triviality, we set
k < n� 2.

Players and strategies. The set of players is identi�ed with the set of nodes N = f1; : : : ; ng, n �
3. For each player i 2 N , a pure strategy is a vector gi = (gi;1; :::; gi;i�1; 0; gi;i+1; :::; gi;n) 2 f0; 1gn.
Here gi;j = 1 means that player i forms a link with player j, whereas gi;j = 0 means that i does
not form this link. Let g�i = (g1; : : : ; gi�1; gi+1; : : : ; gn) be the pro�le of strategies of all players
except i. We focus only on pure strategies. The set of all pure strategies of player i is denoted by
Gi, with Gi = f0; 1gNnfig. The joint strategy space is denoted by G = G1� : : :�Gn. Note that there
is a one-to-one correspondence between G and G the set of simple directed networks with vertex
set N . Hence with a slight abuse of notation, we identify the strategy pro�le (g1; : : : ; gn) 2 G with
the network g = (N;E) where gi;j = 1 if and only if (i; j) 2 E.

Payo¤. Player i incurs a cost c > 0 for each link she forms. We consider the two-way �ow
of information model, where both the agents involved in a link can access the resources (or
information) of the other agent regardless of which agent initiates the link. Moreover, player i
obtains resources from player j if there exists a chain between i and j. We denote by Ni(g) =
fj 2 N : j 6= i; there exists a chain in g between i and jg the set of players whom i can access or
�observe" in network g.
In our context, players may stay put (i.e. node failure occurs) or appear (i.e. node failure does not
occur). It follows that the network formed by the players can be di¤erent from the actual network
observed. Hence we introduce the notion of realization to capture the e¤ects of this assumption.
Formally, a realization of g, gN

0 2 S(g), is a subnetwork of g where all players in N 0 are functioning
and all players in N nN 0 are not functioning. Following the strategic reliability literature, assume
the probability of node failure to be identical and independent, where the survival probability of
every node is given by p 2 (0; 1). Given g, the probability of subnetwork gN 0

being realized is:

�(gN
0
) = pjN

0j(1� p)n�jN
0j:

Note that for g;h 2 G we have �(gN
0
) = �(hN

0
) for all N 0 2 2N . This property is important for

establishing Proposition 2.
We now de�ne the function Bi(g) as the expected bene�t of player i in network g. Summing over
all possible realizations of the network we get:

Bi(g) = V
X

N 022N
�(gN

0
)jNi(g0)j; (1)

where V is the value of information that i gets from an agent with whom he is connected to directly
or indirectly. Wlog we set V = 1. Using equation ( 1) we de�ne i0s expected payo¤, that takes into
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account both costs and bene�ts as:

ui(g) = Bi(g)� c
X
j2N

gi;j (2)

Nash networks. With a slight abuse of notation, we identify the pair (gi; g�i) with the network
g. A strategy gi is a best response of player i to g�i if

ui(gi; g�i) � ui(g0i; g�i); for all g0i 2 Gi:

Let BRi(g�i) denote the set of player i
0s best responses to g�i. A network g is a Nash network

if gi 2 BRi(g�i) for each i 2 N . Note that if g is a Nash network, then it must be essential. This
follows from the fact that each link is costly while information �ow is two-way and independent of
which player invests in forming the link.

E¢ cient Networks. A network g is e¢ cient if

g 2 argmax
g02G

X
i2N

Bi(g
0)� c

X
i2N

X
j2N

gi;j :

Network g may be considered as the social planner�s objective.

3 Results

We start by exploring the impact of node failure on connectivity in the network. In all the following
results we will assume that the payo¤s are given by equation 2. Our �rst result shows that non-
empty Nash networks are connected.

Proposition 1 A Nash network is either empty, or connected.

Proof. Consider a Nash network g that is neither empty nor connected. Then there exist three
players, say i; j and j0 such that i and j lie in a component gN1 with gi;j = 1; and j0 lies in a
di¤erent component gN2 . Let g�i be identical to the network g except that any links between i and
other players are deleted and let g�ij be identical to the network g except that the link between i
and j is deleted. Moreover, let h�i be identical to the network g�i except that a link from i to j is
added. Let b1 be the marginal expected bene�t of i associated with the link she has formed with j
in g�ij . Since g is a Nash network b1 � c.
The marginal expected bene�t obtained by i due to her link with j in g�i is b2 = p2(1 +P
`2Nj(g�i)

Q`g�i(p)), where Q
`
g�i(p) is a polynomial function showing the probability that player

j will obtain the resources of other players ` (assuming that j is alive) in the network g�i.
We now compare b2 and b1. Let �` be the probability that there is a chain between i and ` in g

�ij ,
and let q` be the probability that there is a chain between i and ` in h

�i. The probability that
there is a chain between i and ` in g is �0` � �` + q`. Since the probability that there is a chain
between i and ` in g�i is zero, the increase in the probability that there is a chain between i and `
is higher when a link from i to j is added in the network g�i than when a link from i to j is added
in the network g�ij . It follows that b2 � b1.
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We now compare the marginal expected bene�ts that player j0 obtains if she forms a link with j
in g and the marginal expected bene�ts that payer i obtains when she forms a link with j in g�i.
The marginal expected bene�t to j0 of forming a link with j in g is b3 = b2+ p3 > b2 � b1 � c since
p > 0. Therefore j0 improves her payo¤ if she forms a link with player j. Hence g is not Nash, a
contradiction.
Note that an equilibrium network can be empty. This will be the case for situations where building
links is very costly and is true whether or not we account for node failure. Indeed, if p < c, then
the expected bene�ts associated with a link in the empty network is lower than the cost of this
link. Moreover, it is worth noting that a Nash network is connected when p > c. The key thing
to be noted here is that this connectivity result in equilibrium is obtained under decentralized de-
cision making when heterogeneity on probabilities is introduced.1 Note that it is easy to obtain
su¢ cient conditions under which certain common architectures will be Nash networks in our model.

First, let us de�ne some speci�c networks. A network g is called a star if there is a vertex is ,
such that for all j 6= is;maxfgis;j ; gj;isg = 1 and for all k =2 fis; jg; gk;j = 0: Moreover a star, where
gj;is = 0 for all j 6= is is a Center Sponsored Star (CSS), a star where gis;j = 0 for all j 6= is; is a
Periphery Sponsored Star (PSS), other stars are called mixed stars. A network g is complete if
maxfgi;j ; gj;ig = 1 for any i; j 2 N , j 6= i.
If p2 > c and p2(1 � p) < c, then all types of stars are Nash networks. If p2 + p3(n � 2) > c and
p2(1�p) < c, then a PSS is a Nash Network. If p2(1�p)n�2 > c; then a Nash network is a complete
network. The complete characterization of the set of Nash networks is di¢ cult under node failure.
Having established the basis for connectivity, we now dig deeper into the level of connectivity. As
one would suspect, due to possibility of node failure, the agents will form backup paths whenever
it is worth doing so. In other words, equilibrium networks will have more links than a minimally
connected graph. Hence using the notion of node superconnectivity introduced earlier, our next
proposition provides su¢ cient conditions for Nash and e¢ cient networks.

Proposition 2 (i) If p2(1� p)k > c, then a Nash network is k-NSC. (ii) If p2(1� p)k > c=2, then
an e¢ cient network is k-NSC.

Proof. First, we prove part (i). Suppose that p2(1 � p)k > c. To introduce a contradiction, let g
be a Nash network that is not k-NSC. Since g is not k-NSC, there exists a set of players K � N ,
with jKj = k, which is critical. So there are two distinct players i; j 2 N nK that are unconnected
in any subnetwork of g where all players in K fail and i and j are functioning. Note that i and j
have no link in g.
Let N1 � 2N be the set of subsets of players that contain both players i and j, and do not contain
any player in K. The probability that a realization, where all players in K fail and both players i
and j are active, is given by

P
N 02N1

�(gN
0
) = p2(1� p)k.

We denote by h the network identical to g except that a link from i to j is added in g. The marginal
bene�t obtained by i when she forms a link with j in g is �i(h; g) = Bi(h)�Bi(g), with Bi(h) =P

N 0NnN1
�(hN

0
)jNi(hN

0
)j +

P
N 02N1

�(hN
0
)jNi(hN

0
)j and Bi(g) =

P
N 0NnN1

�(gN
0
)jNi(gN

0
)j+

1A simple continuity argument on cost and bene�ts can be used for this. See for instance Haller and Sarangi
(2005).
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P
N 02N1

�(gN
0
)jNi(gN

0
)j. We have:

�i(h; g) =
P

N 0NnN1
�(hN

0
)jNi(hN

0
)j+

P
N 02N1

�(hN
0
)jNi(hN

0
)j

�
P

N 0NnN1
�(gN

0
)jNi(gN

0
)j �

P
N 02N1

�(gN
0
)jNi(gN

0
)j

=
P

N 0NnN1
�(hN

0
)(jNi(hN

0
)j � jNi(gN

0
)j)

+
P

N 02N1
�(hN

0
)(jNi(hN

0
)j � jNi(gN

0
)j):

The second equality follows from the fact that �(gN
0
) = �(hN

0
). Note that, jNi(hN

0
)j�jNi(gN

0
)j �

1 for all N 0 2 N1 and
P

N 02N1
�(hN

0
) = p2(1 � p)k. Hence the second term is bounded below by

p2(1� p)k. The �rst term is non negative. Consequently, the marginal bene�t obtained by i when
she forms a link with j is �i(h; g) � p2(1 � p)k > c. It follows that player i has an incentive to
form the link with j and g cannot be a Nash network, a contradiction.

Second, we prove part (ii). Suppose p2(1�p)k > c=2; and let g be an e¢ cient network in which a set
K of players is critical, with jKj = k. So there are two distinct players i; j 2 N nK that are uncon-
nected in any subnetwork of g where all players in K fail and i and j are active. Again, let h be the
network identical to g except that a link from i to j is added. Using the same argument as in the
proof of part (i) above, we obtain that Bi(h)�Bi(g) � p2(1� p)k and Bj(h)�Bj(g) � p2(1� p)k.
Moreover, any additional link formed by i cannot decrease the expected bene�ts of players in
Nnfi; jg. Therefore,

P
`2N u`(h)�

P
`2N u`(g) =

P
`2N B`(h)�

P
`2N B`(g)�c � 2p2(1�p)k�c >

0. Thus g is not e¢ cient, a contradiction.

Proposition 2 lays out the relationship between costs, bene�ts and the level of connectivity.
Proposition 2.(i) identi�es that trade-o¤s involved in making these decisions from a decentralized
perspective while Proposition 2.(ii) identi�es the conditions that a network designer will have to
satisfy. From Proposition 2.(i) it is easy to see that when p2(1�p) > c; then a Nash network is node
superconnected. The same condition holds for e¢ cient networks by adjusting the cost parameter.

4 Conclusion

Most of the analysis of models of network formation occurs in deterministic settings. Our paper is
the �rst strategic model of network formation that allows for node failure and identi�es conditions
for network connectivity. Given the fact that node failure is a common cause for concern, this
is important for studying several new types of problems. Clearly, following earlier work on link
failure, one can always introduce heterogeneity in values and probabilities in the model. The more
interesting question would be to simultaneously analyze the possibility of node and link failure in
the network. This line of research has important implications for the defense of critical networks.
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