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Abstract—We consider the problem of resource selection in
clustered Peer-to-Peer Information Retrieval (P2P IR) networks
with cooperative peers. The clustered P2P IR framework presents
a significant departure from general P2P IR architectures by em-
ploying clustering to ensure content coherence between resources
at the resource selection layer, without disturbing document
allocation. We propose that such a property could be leveraged in
resource selection by adapting well-studied and popular inverted
lists for centralized document retrieval. Accordingly, we propose
the Inverted PeerCluster Index (IPI), an approach that adapts
the inverted lists, in a straightforward manner, for resource
selection in clustered P2P IR. IPI also encompasses a strikingly
simple peer-specific scoring mechanism that exploits the said
index for resource selection. Through an extensive empirical
analysis on P2P IR testbeds, we establish that IPI competes
well with the sophisticated state-of-the-art methods in virtually
every parameter of interest for the resource selection task, in the
context of clustered P2P IR.

Keywords—Clustering Peers; Semi-structured; Peer to Peer;
Information Retrieval; Query Routing; Evaluation.

I. INTRODUCTION

Resource Selection in P2P IR systems is the problem of
selecting a subset of relevant peers that are most promising
with respect to a user query [6], [7]. Co-operative P2P IR
systems are those where the broker that is responsible for
resource selection is free to acquire information from peers
it manages, and uses such information to prioritize resources
for a query. The results from selected peers are then merged
to create a final result list. Resource selection is a critical
component in P2P IR; excluding relevant peers in the resource
selection stage would inevitably lead to less accurate IR
results.

This paper focuses on the problem of resource selection
in co-operative clustered P2P IR networks. Co-operative clus-
tered P2P IR networks use clustering to build semantically
coherent peer-clusters [8]. As we will see, the clustered P2P
IR architecture involves a two-level clustering so that coherent
documents are first grouped within each peer, followed by
aggregating coherent clusters from across peers. The resource
selection task is then applied to such homogeneous cluster
groups involving multiple peers. This is in sharp contrast to a
general P2P IR framework where the resource selection layer

needs to work across diverse resources. For example, in a
typical case for federated search over various news agencies,
each news agency managed by a separate peer would comprise
documents as diverse as the entire corpus. This property of
general P2P IR has led to development of methods that model
and exploit distributional information (e.g., variance) of terms
across peers, in their scoring process. Much like in traditional
IR, P2P IR resource selection works by computing a query-
specific score for each peer, followed by choosing the top-
scoring peers to route the query to. Reliance on inter-peer
distributional information in computing peer-specific scores
induces a dependency at the resource selection layer; for ex-
ample, updates within a document collection in one peer would
require a re-computation of the distributional information held
at the resource selection level, and would result in changes
in the score of other peers, for a subsequent query1. This
restricts parallelism between the update processing and scoring
processes at the resource selection layer. We postulate that
the content homogeneity at the resource selection layer in
clustered P2P IR makes such sophistication an overkill, and
that the semantic coherence at the resource selection layer
could enable us to fall back on much simpler peer-specific
models for resource selection. Our main contributions are as
follows:

• We posit that simplistic word frequency based mod-
els would be able to leverage the content homogene-
ity clustered P2P IR frameworks to accurately perform
resource selection. Accordingly, we adopt conventional
inverted indexes from IR literature for resource selection
in clustered P2P IR and propose IPI, a remarkably simple
resource selection method for clustered P2P IR.

• Through an extensive empirical evaluation on classical
P2P IR testbeds, we establish that IPI competes with
sophisticated resource selection methods for virtually
every parameter of interest.

This paper is organised as follows: We first outline related

1The analogous dependency in the clustered architecture is the change in
clustering assignments, which are handled at the framework level beneath the
resource selection layer.



TABLE I: Related Work Overview (α, β are method-specific parameters)

Method Info Per IPP Resource
Peer (IPP) Size Score Computation

CVV[1] ∀w,DFP (w) O(W ) ∝
∑
q∈Q CV V (q)×DFP (q) where CV V (w)

is the variance of the distribution of w across peers
Taily[2] For every word, O(W ) Approximates distribution of document scores in each resource

Expected Frequency & using a gamma dist. and scores resources based on the
Expected Variance estimate of high-scored documents from the distribution

CORI [3] ∀w,DFP (w) O(W ) ∝
∑
q∈Q

DFP (q)
DFP (q)+α+β×#words in P

KL[4] ∀t ∈ P,∀w, O(WT ) Multiple topic-specific langauge models in a peer; query
Prob(w|t) is matched against LMs using KL-divergence and

assigned to the collections with best matching topics.
vGlOSS[5] ∀w,DFP (w)& O(W ) Estimate of the number of documents that the peer would

#DocsP (w) return assuming terms in the query co-occur in documents
IPI (Our) ∀w, IPI[w].P O(W )

∑
q∈Q IPI[q].P

work in the P2P IR resource selection and our target P2P IR
architecture. We then describe our resource selection method,
followed by an empirical analysis and conclusions.

II. RELATED WORK

In cooperative P2P IR networks, brokers maintain peer-level
collection statistics, that summarize the content at each peer, to
determine the relevant peers for the given query [9]. Resource
selection methods differ in the kind of peer-level statistics
maintained, and the scoring methodology used to assess the
estimated relevance of peers to a query. As discussed earlier,
state-of-the-art methods maintain and exploit cross-peer term
distribution information to score peers.

A terse summary of well-known resource selection methods
in cooperative environments used in this study appears in
Table I. We use three notations, (1) DFP (w) that denotes the
sum of document frequencies (or tf.idf) of w across documents
in the peer P , (2) #DocsP (w) that simply counts the number
of documents that contain w, and (3) p(w|.) the probability
of w across documents for each topic in P . Table I illustrates
that all techniques use some form of cross-peer distributional
information; examples include word-specific peer frequencies
in CORI and variance in CVV and Taily.

III. CLUSTERED P2P IR ARCHITECTURE

We now describe the well-studied clustered P2P IR ar-
chitecture (used in [8], [10] and various others), our target
architecture. This leverages clustering methods so that the re-
source selection can be done at the level of coherent groups of
documents from across peers. It uses two levels of clustering:
• Stage 1, Intra-peer Clustering: Each peer clusters the

set of documents it manages using a text clustering
method such as K-Means so that they are grouped into
multiple semantically coherent clusters; we call these as
peer-clusters. The peer-clusters represent different topics
within a peer (e.g., sports). The topic centroids are used
to do further processing in Stage 2.

• Stage 2, Super-Peers: The topical centroids of peer-
clusters from across peers are further clustered into a
number of clusters. Hence, centroids corresponding to
similar topics from separate peers are expected to be
aggregated into a robust topical coherent representation
for resource selection at super-peer level. At runtime,
resource selection is performed at the level of each such
cluster of peer-clusters. Each of the clusters output from
this operation would be managed by a super peer that is
responsible for resource selection.

The 2-stage clustering process ensures that routing decisions
can be made at the level of super-peers that manage coherent
content internally, while not disturbing the document assign-
ment to peers; this likens the scenario to a domain-specific
search engine at each super-peer.

Each super-peer would use the resource selection algorithm
chosen by the designer to route the query to a subset of the
peers among those whose peer-clusters it manages; there is no
inter-super-peer communication, unlike the unclustered ultra-
peer architecture [11]. As outlined, each super-peer manages
information about multiple clusters from across peers. We will
denote the kth cluster from peer Pi as P k

i . For every super-
peer Sj , CSj denotes the set of clusters that are managed
by Sj . Due to the clustering-based construction, CSj could
contain zero, one or multiple clusters from a specific peer. We
use a centroid-based representation throughout; thus, Cd(P k

i )
denotes the centroid of the documents within the kth cluster
in the ith peer. Specifically, the centroid in the vector space
has as many entries as there are words in the vocabulary, the
entry for each word takes the average of the value of the word
across the components.

Peer Centroids : Cd(P k
i )[w] =

∑
d∈Pk

i
tf.idf(w, d)

#docs in P k
i

Super−peer Centroids : Cd(CSj
)[w] =

∑
Py

x∈CSj
Cd(P z

x )[w]

#clusters in CSj



where tf.idf(w, d) denotes the tf-idf score of the word w
in document d.

IV. INVERTED PEERCLUSTER INDEX

Motivation: Our approach seeks to exploit the content co-
herence at the peer-cluster level in the clustered architecture
to devise a simple scoring method that uses the conventional
inverted indexing approach for Information Retrieval. In par-
ticular, we expect that the clustering step mitigates the hetero-
geneity of content at the super-peer level to an extent so that
simple word-frequency scores are meaningful and informative
enough. Content diversity in unclustered environments can be
thought of as contaminating simple frequentist statistics (due
to mixing of diverse semantics); this warrants the usage of
cross-peer information (e.g., estimates of variance) as is com-
monly employed in state-of-the-art resource selection methods
surveyed in Section II. On the other hand, the clustering
inherent in the clustered P2P architecture is itself a model
of cross-peer information; thus, we consider exploiting that
property of the architecture to bypass modeling cross-peer
distributional information again at the resource selection layer.
We will now outline the construction of our inverted index
based resource selection method.
Usage: It may be noted that the two-layered clustered archi-
tecture allows for resource selection of two levels: one where
a subset of super-peers may be chosen using the super-peer
centroids, and another where a subset of peer-clusters may be
chosen at each super-peer based on the peer-cluster centroids.
We will focus on the latter, assuming that the query is made
available to all super-peers with results across super-peers
being merged centrally; this also allows for a fair comparison
against single-level P2P networks.
Inverted PeerCluster Index: The inverted peercluster index
at any super-peer is simply an inverted index (i.e., word-level
lists) over the peers; each peer is tagged with a score that is
aggregated across the peer-clusters from the peer. The word-
level index for the word w at a super-peer Sj would contain
2-tuples in the form of [peer, score] entries:

IPI(Sj)[w] = {
[
Px,

∑
Py

x∈CSj

Cd(P y
x )[w]

]
|Px : ∃y, P y

x ∈ CSj
}

Thus, if S2 manages two peer-clusters from P3, the entry
for word w for P3 would be the sum of the entries for
the word in the two Cd(P i

3)s within CS2
. Despite the lists

entries being peer-specific, we call it a peer-cluster index since
the corresponding scores are computed by aggregating across
only those peer-clusters that belong to the super-peer (and not
across all documents in the peer). We will denote IPI much like
an associative array where L.Px denotes the score for Px in
the list L. Given a query Q containing terms {q1, q2, . . . , ql},
we then score peers within Sj as follows.

Score(Px, Q) =

{
0, if ∃qi, IPI(Sj)[qi].Px = φ∑

qi∈Q IPI(Sj)[w].Px, otherwise

P1: 0.1 P2: 1.5 P5: 0.5

P1: 0.3 P3: 0.35 P5: 0.1

Brutus

Calpurnia

P1: 0.4

P5: 0.6

Fig. 1: IPI Example; Scoring for Query ’Brutus Calpurnia’ on
the right

Thus, only those peers who have an entry in the list
corresponding to each query term are eligible; the eligible
peers are then scored using a sum-based aggregation of
corresponding entries. The eligibility condition is a scoring
adaptation targeted specifically at the P2P IR use case. It
may be noted that the messaging cost is a step function,
with a fixed cost (of communicating the query, and collecting
the results) incurred for every selected resource. A discrete
eligibility function serves to exclude potentially irrelevant
resources upfront towards reducing messaging costs.

Depending on the budget constraint (in terms of compu-
tational expense), the peer-clusters with the top scores are
chosen for Sj to route the query to. Declaratively, if k peer-
clusters are to be chosen,

Top-k@(Sj , Q) = argmax
R⊆CSj

,|R|=k

∑
Px∈R

Score(Px, Q)

The typical resource allocation algorithm chooses k as
a specified percentage of peers according to the selection
mechanism adopted by that approach. If there are fewer
eligible peers than the specified percentage, only the eligible
ones are selected. The fraction operates as a meta-parameter
to the selection algorithm. The selected peers, then process
the query in a cluster-agnostic manner, following which their
results are merged.
Example: Figure 1 shows an example structure of the IPI
index (sorted by peer id) in a super-peer, and the aggregated
scores for a query Brutus Calpurnia to illustrate the working
of the IPI resource selection approach. P2 and P3 are ineligible
since they occur only in one of the lists; P4, on the other hand,
does not occur in either list.
Setting up: The simplicity of the IPI formulation is also
reflected in the ease of setting up the index. A step involving
frequency counting of words is the only overhead in the set-up
phase, in contrast with the techniques in Table I.

V. EXPERIMENTAL EVALUATION

Experimental Setup: We use three P2PIR testbed categories,
DL*, ASIS*, and U*, with 1500, 11680 and 11680 peers re-
spectively, which are derived from the WT10g collection [12];
the WR and WOR variants indicate where there is content
replication across peers or not. The standard query set of
TREC topics 451-5502 is used and we report performance
measurements averaged across the 100 queries in the set. For

2http://trec.nist.gov/data/webmain.html

http://trec.nist.gov/data/webmain.html


TABLE II: IPI Retrieval effectiveness at 10% of Selected Peers

DL* DLWOR Testbed DLWR Testbed
Method Precision Recall P@10 MAP Precision Recall P@10 MAP

Flooding 0.02866 0.54790 0.16900 0.08659 0.02089 0.42564 0.01837 0.02232
IPI 0.02461 0.47601 0.188 0.09358 0.0229 0.4534 0.023 0.02662

CVV 0.02435 0.44472 0.182 0.08281 0.02158 0.41428 0.02 0.0239
Taily 0.02769 0.50463 0.182 0.09493 0.02523 0.46911 0.026 0.02978
CORI 0.02686 0.45697 0.177 0.0864 0.0256 0.44471 0.027 0.03171

KL 0.01105 0.1513 0.109 0.02782 0.0104 0.13508 0.034 0.01295
vGIOSS 0.02208 0.38807 0.171 0.07616 0.0183 0.33898 0.034 0.02915

RW 0.01455 0.18186 0.134 0.03856 0.01516 0.13561 0.042 0.0122
IPI Rank 3 2 1 2 3 2 6 4
ASIS* ASISWOR Testbed ASISWR Testbed
Method Precision Recall P@10 MAP Precision Recall P@10 MAP

Flooding 0.02532 0.46296 0.16400 0.07122 0.01635 0.33847 0.01414 0.01732
IPI 0.02469 0.45859 0.163 0.07047 0.02117 0.41612 0.016 0.01998

CVV 0.02508 0.45601 0.166 0.07227 0.02053 0.41176 0.016 0.01954
Taily 0.02613 0.45867 0.159 0.07103 0.02088 0.39249 0.02 0.02218
CORI 0.02636 0.46426 0.161 0.0743 0.02066 0.39906 0.014 0.02014

KL 0.01525 0.25003 0.121 0.04275 0.01565 0.27106 0.015 0.01721
vGIOSS 0.01966 0.35336 0.153 0.06321 0.01901 0.35926 0.016 0.02386

RW 0.0131 0.16287 0.111 0.03037 0.01451 0.17353 0.019 0.01084
IPI Rank 4 3 2 4 1 1 3 4

U* UWOR Testbed UWR Testbed
Flooding 0.02764 0.49910 0.21200 0.10581 0.02269 0.42657 0.01400 0.02331

IPI 0.02582 0.46564 0.211 0.10022 0.02269 0.42657 0.014 0.02331
CVV 0.02158 0.38 0.186 0.0862 0.01932 0.36159 0.012 0.01926
Taily 0.02781 0.48616 0.183 0.10931 0.02563 0.45538 0.014 0.02751
CORI 0.0273 0.46807 0.191 0.09365 0.02674 0.46429 0.014 0.02969

KL 0.01295 0.20201 0.122 0.0478 0.01319 0.24118 0.015 0.01491
vGIOSS 0.01859 0.34657 0.157 0.06733 0.01906 0.35583 0.016 0.02367

RW 0.01405 0.16086 0.117 0.03062 0.01463 0.17359 0.02 0.00832
IPI Rank 3 3 1 2 3 3 4 4

all methods in the evaluation, we use the COMBMNZ merging
algorithm [13] for merging the results of selected resources,
which are then evaluated on standard IR evaluation metrics.
For baselines, we used the resource selection algorithms from
Table I.

A. Experimental Results and Discussion

Two core dimensions are of interest; effectiveness as measured
by the quality of results on IR evaluation metrics, and the
efficiency as measured by the messaging costs indicated by
the number of peers chosen. We analyze them separately.
Effectiveness/Result Quality: Table II lists Precision, Recall,
P@{10, 30, 100} and MAP measures evaluated at the top-
1000 in the merged list. As may be seen, IPI performs on
par with state-of-the-art resource selection methods across the
various testbeds. The rank of IPI listed under each scenario-
metric combination summarizes the competitiveness of IPI.

This outlines that IPI is very competitive with state-of-the-art
resource selection methods in the clustered P2P IR setting.
Efficiency/Messaging: Another core parameter of interest in
the P2P IR resource selection is the messaging cost; Figure 2
shows illustrating messaging cost distributions. To summarize
the charts, IPI is seen to incur mostly similar messaging
costs to CORI, Taily, and CVV; these four methods were
seen to be those that scored high on accuracy measures in
our effectiveness study. KL is seen to incur slightly higher
messaging costs on an average, while vGlOSS is seen to be
slightly more efficient in messaging over IPI, CORI, Taily, and
CVV.

VI. CONCLUSIONS

In this paper, we addressed the problem of resource se-
lection in the clustered P2P IR architecture. We observed
that clustering within the architecture may be seen as a
model of cross-peer information and discern that sophisticated
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0 500 1,000 2,000

IPI

CVV

Taily

CORI

KL

vGOISS

(e) UWOR Test-bed.
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(f) UWR Test-bed.

Fig. 6: The efficiency of IPI method in Semi-structured P2PIR Environments

6.2. Documents Retrieval Resource Selection Methods
Table V summarizes the results on the IR testbeds. The top and bottom parts of the
table illustrate standard resource selection methods and the document retrieval re-
spectively; the best value of each evaluation metric is boldfaced for each category of
techniques. Additionally, the best value across categories is underlined as well. It may
be seen from the table that the document retrieval methods perform better in every
testbed and evaluation metric, barring one case where Taily is seen to outperform oth-
ers. The last row Majority@10% counts the number of document retrieval methods (out
of the 8 being studied) that perform either equally or better than the best performing
general resource selection method under study, on the corresponding evaluation met-
ric. Appendix B includes the other five majority percentages as deep evaluation of such
methods.

As may be seen, the documents retrieval methods exhibit best and competitive re-
sults, as the best performing resource selection methods, compared to the standard
baseline methods in three environments. The average majority percentages on each
testbed are 54.2%, 37.5%, 48%, 33.3%, 58.3%, and 50% to DLWOR, DLWR, ASISWOR,
ASISWR, UWOR, and UWR respectively; which is on average over all environments
roughly 47% across metrics. In more detail, the probabilistic TF IDF and BM25 models
rank the peers based on how rare are the query terms to discriminate the relevance of
peers through tuning the TF and IDF (i.e, ICF inverted collection Frequency) within
the peer and other peers. These two methods performs better in DL and U environ-
ments due to the large size of peers in determining the two variables. On the other
hand, Hiemstra LM method obtains consistent results in the three environments,
which indicates the effectiveness of relevant peers’ (i.e, the whole peers under spe-
cific super-peer) language models to generate the query terms especially the testbeds

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2016.

Fig. 2: Efficiency Analysis: Messaging Costs

models that maintain and exploit cross-peer term occurrence
distributional metrics at the resource selection layer would not
be necessary for this architecture. Accordingly, we outlined
a simple index-based method for resource selection, called
IPI, adapting inverted indexes from centralized IR literature.
Through an extensive analysis on P2P IR testbeds, our method,
IPI, is seen to be as good as state-of-the-art resource selection
methods designed for general P2P IR architecture, both in
terms of accuracy as well as messaging costs; this establishes
IPI as a simple and effective resource selection method for
clustered P2P IR. The independence between the scores of
peers due to non-usage of term occurrence distributional
information is an attractive feature in IPI, making it a natural
choice for resource selection in clustered P2P IR.

In future work, we plan to explore methods to adapt the
IPI approach to un-co-operative environments by devising
sampling strategies that could identify intra-peer clusters, so
that the notion of peer clusters may extend naturally.
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