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Abstract

An RVE–based stochastic numerical model is used to calculate the permeabil-

ity of randomly generated porous media at different values of the fiber volume

fraction for the case of transverse flow in a unidirectional ply. Analysis of the

numerical results shows that the permeability is not normally distributed. With

the aim of proposing a new understanding on this particular topic, permeabil-

ity data are fitted using both a mixture model and a unimodal distribution.

Our findings suggest that permeability can be fitted well using a mixture model

based on the lognormal and power law distributions. In case of a unimodal dis-

tribution, it is found, using the maximum–likelihood estimation method (MLE),

that the generalized extreme value (GEV) distribution represents the best fit.

Finally, an expression of the permeability as a function of the fiber volume frac-

tion based on the GEV distribution is discussed in light of the previous results.
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1. Introduction

The flow of a fluid through porous media is a central problem in many

engineering applications such as composite manufacturing, rheology, geophysics,

oil engineering, etc. An excellent review of the relevant contributions in the field

is reported in [1].5

In liquid composite molding (LCM), the porous medium consists of dry

fibers, while the fluid is a polymer resin. The knowledge of the transport prop-

erties is crucial when setting the manufacturing process parameters, and their

determination has been investigated using experimental techniques [2, 3, 4, 5, 6,

7, 8, 9], numerical simulations such as the lattice Boltzmann method (LBM) [10]10

or the Finite Element Method (FEM) [11], and analytical solutions [7, 8, 9].

The determination of the transport properties of a fluid through a porous

medium is a complicated task and depends on parameters such as pressure

gradient, velocity, viscosity and compressibility of the fluid. However, in com-

posites manufacturing several simplifications apply. First of all, the viscosity of15

the resin is high: in the region of 100-1000 mPa.s for RTM, and the velocity

of the fluid is very small, therefore creeping flow (known also as Stokes). Resin

can also be considered incompressible so that viscosity, µ, is the only material

parameter that plays a role in the determination of the transport properties.

When considering the porous material as homogeneous, and under the hy-20

pothesis of creeping flow, Darcy’s law applies, i.e. the flow is proportional to

the pressure drop and inversely proportional to the fluid viscosity. In the de-

scribed conditions, fluid motion is described in terms of the permeability, K,

that depends only on the geometry of the porous medium. On the other hand,

at very low Reynolds number (creeping flow), the Carman–Kozeny (CK) equa-25

tion applies [12, 13], and permeability is expressed as a function of the geometry

of the particles that form the porous bed1. If a random distribution of fibers is

considered, a modification of CK equation is required [11].

The study of the flow of the resin at a micro–scale level, and the effects of

the micro–structure, have already been investigated in previous studies [2, 11].30
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In those studies the fibers are considered regularly arranged and the effect of

random distribution of the fiber is not taken into account.The uncertainties

associated with permeability originated from fiber size distribution, porosity

and compaction, will cause significant errors [14] when simulating the transport

properties of fluid in porous media. Although previous studies have assumed35

permeability as a random variable in porous media modeling, the complexity

involved in establishing a mutual relationship between micro– and macro–scale

uncertainties is not common, with only one paper so far [15] proposing a prob-

ability density function for permeability.

Nevertheless it is undeniable that the random distribution of the fibers has40

an effect on the permeability [16, 17, 18]. The aim of this paper is therefore

to quantify this effect and point at ways to propose a method to calculate the

saturated permeability of the fibrous porous medium.

At the micro–scale, the porous medium consists of several cylindrical fibers,

all nearly parallel between them, and randomly distributed. Here, only the45

transverse permeability is investigated (permeability in the transverse direc-

tion of the fiber), the two–dimensional case is considered, and two–dimensional

Representative Volume Elements (RVEs) are generated to model the fibers as

impermeable circles (the capillarity effects and permeability of the fiber is ne-

glected). The RVEs are generated by using the algorithm previously developed50

by the authors [19] and it is applied to a range of fibre volume fractions. Finally

a method for the estimation of the permeability at each fiber volume fraction is

proposed.

It should be noted that several micro–structural effects influence permeabil-

ity, including: i) the shape of the fiber, ii) the size of the fiber and its statistical55

variation, iii) the volume fraction of the composite and its statistical variation,

and iv) the fiber distribution. In this paper we focus on the effects of the random

distribution of the fibers alone.
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2. Methods

In the case of a stationary creeping flow of a Newtonian incompressible fluid

in the absence of body forces, the Stokes equations read:

∇ ·
[

−pI + µ
(

∇u + (∇u)
T

)]

=0 (1a)

ρ∇ · u =0 (1b)

where p is the pressure, u is the velocity, I the identity matrix, ρ and µ the60

density and the dynamic viscosity of the fluid, respectively.

Assuming no voids, superficial velocity U is obtained from the local velocity

of the fluid as:

U =
1

V

∫

Vf

udv = εū = (1 − vf ) ū (2)

where V is the total volume, Vf is the volume of the fluid, u is the local velocity

of the fluid, ū is the average velocity, ε is the porosity, and vf is the fibre

volume fraction. Darcy’s law relates the superficial velocity within the RVE to

the pressure gradient across the characteristic size of the RVE, L:

U = −K

µ
∇p (3)

where K is the permeability of the porous bed and ∇p is the pressure gradient.

Permeability depends only on the geometry of the RVE, and is independent

from the superficial velocity and from the pressure. Therefore it can be written:

K = K (d, L, vf ) (4)

where d is the diameter of the fiber, L is the characteristic length of the RVE,

and vf the volume fraction. As dimensionally, permeability may be normalised

K̃ = K/d2. Then equation 4 can be rewritten as:

K̃ = K̃ (Nf , vf ) (5)

where Nf = L/r, being r the radius of the fiber. The normalized permeability

in equation (5) is a function of the fiber volume fraction, vf , and of the size of

the RVE, Nf .
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The dependence on the size of the RVE can be eliminated if sufficiently big65

RVEs are used. A preliminary study on the minimum size of the RVE necessary

to eliminate Nf from equation (5) is conducted, leading to the determination

of the normalized permeability as a function of the fibre volume fraction alone,

K̃ = K̃ (vf ).

3. Numerical model70

3.1. Detail of the FE model

Computational Fluid Dynamics (CFD) models were created using the com-

mercial software COMSOL Multiphysics 4.4 [20]. Matlab R2013b [21] was

used to generate the random distribution of fibers [19] and to run CFD sim-

ulations in a FOR loop. 2000 simulations were run at every volume fraction,75

vf = 0.3, 0.35, 0.4, .., 0.8. A total of 22000 simulations were run to obtain the

statistical distribution of the normalized permeability.

RVEs were meshed using triangular mesh elements. In a preliminary phase

simulations were run with the aim of choosing the appropriate element dimen-

sion. In order to insure convergence, this work verified that the size of the chosen80

element represented a good compromise between computational cost and accu-

racy of results. The mesh independence of the results was also verified.

Periodic boundary conditions were applied to the exterior edges of the RVE

(in yellow in Figure 1) meanwhile wall boundary conditions were imposed at

the interior edges. To impose a periodic boundary condition, the source and

sink edges need to be defined. If the flow goes from West (W) to East (E), the

boundary conditions are written as (please refer to Figure 1):

pE − pW = ∆p �= 0 (6a)

pN − pS = 0 (6b)

where ∆p is the arbitrary pressure drop imposed. Under the assumed hypoth-

esis, in fact, permeability is independent from the applied pressure drop.
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Figure 1: Applied boundary conditions.

(a) Velocity field. (b) Streamlines.

Figure 2: Results of the numerical model.

After running the simulation, velocity fields and streamlines are obtained

as reported in Figures 2(a) and 2(b), respectively. The velocity fields can be

integrated (see equation 2) to calculate the superficial velocity U . At this point,

by knowing the applied pressure drop ∆p, the size of the RVE, and the viscosity

of the fluid, the permeability is calculated as shown in equation (3). Streamlines

are used to infer the tortuosity, which is defined as the ratio between the length

of the streamline and the length of the porous bed. In the present case it is

proposed to calculate the tortuosity as:

τ =

∑

li
e

∑

li
p

(7)

where li
e is the effective length of the i–th streamline, and li

p is the length of the85

streamline projected along the flow direction.
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  (a) Nf = 10 (b) Nf = 30 (c) Nf = 50

Figure 3: RVEs’ dimensions (not in scale).

3.2. Size of the RVE

If the size of the RVE is sufficiently large, or under the assumption of ergod-

icity, the expected value associated with the permeability distribution, and its

standard deviation converge. This has been shown in [16] and it is confirmed90

by our calculations. Examples of the generated RVEs are reported in Figure 3.

Figures 4(a)–4(b) show the probability density function (pdf) of the normalized

permeability as a function of the dimension of the RVE. The pdf is calculated

using the kernel smoothing estimation based on Gaussian distribution. It is ob-

served that small RVEs may lead to an error in the estimation of the expected95

value and to big standard deviations. Figures 4(a)–4(b) show that when the

size of the RVE is 30 times larger than the radius of the fiber (Nf ≥ 30), both

the expected value and the standard deviation of the statistical distribution

converge. In this study, Nf = 40 is used.

4. Results and discussion100

4.1. The normality test

Matlab Statistical Toolbox [21] and R Statistical Software [22] are used for

the statistical analyses performed in the following.

Figure 5 shows the histogram and Q–Q plot obtained for vf = 0.5. It is

evident that the normal distribution cannot be an appropriate estimation for the105

permeability distribution. The same considerations apply to the permeability
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Figure 4: pdfs of the normalized permeability distribution as a function of the size of the

RVE.

Table 1: Skewness and kurtosis of the numerical distributions.

vf 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

skewness 0.21 0.21 4.8e-2 0.19 0.23 0.21 0.16 0.20 0.31 0.38 0.15

kurtosis 3.0 2.8 2.8 2.8 3.0 2.9 2.9 2.9 2.9 2.5 2.9

distributions obtained for different values of the volume fraction. However,

for the sake of conciseness, Q–Q plots concerning these distributions are not

reported here. From Figure 5 it can be observed that permeability distributions

show fatter tails and thinner body than the normal distribution (Figure 5(a)),110

and that it is approximately symmetric (Figure 5(b)). It should be noticed

that the true and normal density (Figure 5(b)) cross each other twice on each

side of the mean value, satisfying Finuncan’s condition [23] which states that

fatter tails are often associated to more peaked distributions. Moreover, with

reference to [24], the difference in the appearance of the distributions is due to115

the difference in variances and not in kurtosis. This is shown in Table 1, where

skewness and kurtosis of the permeability data are reported. Table 1 shows

that the skewnesses of the permeability data lies between 0 and 0.5, implying

that the permeability distribution is approximately symmetric. In addition, the

kurtosis values are around 3 which is consistent with a normal distribution. As120

expected, there is no significant difference between the calculated kurtosis and

that of the normal distribution and hence this method does not allow one to
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(a) Normal distribution fit (dashed

lines indicate the 95% confidence in-

terval using the KS test)

(b) Histogram, normal fit (in black)

and true density (in red)

Figure 5: Q–Q plots and pdf of permeability data (vf = 0.5).
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Table 2: Statistical characterizations of permeability data derived from RVEs

vf τ (mean) COV (τ) K̃ (mean) COV (K̃) Chi-square test significance level

Normal Lognormal

0.3 1.34 0.0074 0.024 0.131 0.0779 0.0029

0.4 1.42 0.007 0.0064 0.145 0.00013 1.89E-10

0.5 1.47 0.108 0.0016 0.148 0.042 0.027

0.6 1.51 0.08 0.00047 0.157 0.2438 0.003262

0.7 1.54 0.008 0.00012 0.161 0.3 2.10E-09

0.8 1.53 0.006 1.83E-05 0.125 0.1558 0.05813

detect the large variation in the tails [23].

4.2. Permeability statistics

Statistical characterizations of the derived permeability for different values125

of vf are summarized in Table 2. Table 2 shows that permeability coefficients

of variation (COVs) for different values of vf lie between 0.12 and 0.16, which

is approximately 10 times larger than the tortuosity COVs. These observations

suggest that uncertainty associated with permeability is one order of magni-

tude greater than that associated with tortuosity. Thus, although tortuosity130

influences the mean value of permeability, it does not explain the uncertainty of

permeability. It is thought that, in the present case, the larger uncertainty of

permeability is caused by the porosity distribution. In addition, the coefficient

of variation for permeabilities is approximately in the same range as reported

in [25, 26] for smaller sample sizes.135

The chi-square test, with a significance of 5%, was also applied to permeabil-

ity data in terms of normal and lognormal distributions2. The p values reported

in Table 2 suggest the appropriateness of using a lognormal distribution, over

a normal distribution, to represent permeability data. However, a close obser-

vation of Figure 6 allows one to conclude that although the true density and140

lognormal fit are virtually the same (as shown in Figure 6(b)), the lognormal
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(a) Lognormal distribution fit

(dashed lines indicate the 95%

confidence interval using the KS

test)

(b) Histogram, normal fit (in black)

and true density (in red)

Figure 6: Q-Q plots and pdf of permeability data after log transformation (vf = 0.5).

distribution cannot represent the whole set of data. In fact, even after logarith-

mic transformation, the distribution shows a substantial skewness, as reported

in Figure 6(a). Moreover, from the Q–Q plot of Figure 6(a), it can be concluded

that both upper and lower tails fail to represent the permeability at very low145

probability.

Summarizing, the lognormal distribution can be used to fit the data of the

body of the empirical distribution, but fails at low probability (i.e. in the tails).

To take into account the tails, extreme value theory is used. In the following,

two approaches are proposed to fit the permeability data: i) the use of a mixture150

of two or more distributions [27], ii) the use of heavy-tailed distribution models.
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Figure 7: Histogram of permeability data at vf = 0.5 with parametric estimation of tail: the

bulk tail fraction in red fitted with normal and parameterised tail fraction in blue fitted with

Generalized Pareto distribution. The vertical dashed lines indicated the threshold.

4.2.1. Mixture modelling and threshold estimation

This paper proposes to define two different distributions to fit the body and

the tails of the empirical distribution. In the previous section it was concluded

that the lognormal distribution fits well the empirical data in the body of the155

distribution; therefore, for the body the lognormal distribution is used. For

the tails, a power distribution is used. The reason is that, in the framework of

extreme values theory [28], it has already been shown that power distribution

is the best choice for fat tails.

Figure 7 shows the mixture model of the permeability data for vf = 0.5.

The estimation of the threshold (represented as vertical dashed lines in Fig-

ure 7) where the transition from one model to another occurs, is critical. This

transition exists in both the left and right tails of the empirical distribution, but

in Figure 7 only the upper threshold is represented for clarity. Mathematically,

a probability distribution of the permeability data following a power law model

can be expressed as equation (8):

Pp(K) = α K̃α
min K−(α+1) (8)

where α and K̃min are experimental positive constants. For the lognormal

12



  

distribution it reads:

Pln(K) =
1

σ
√

2π

1

K̃
exp

−
(

ln K̃ − µ
)2

2σ2
(9)

Taking the logarithm of (8) and (9) yields:

ln(Pp(K)) = ln(α) + α ln(K̃min) − (α + 1) ln(K) (10)

ln(Pln(K)) = ln(σ
√

2π) − ln(K) − (ln(K) − µ)2

2σ2
(11)

In case of large σ, equation (11) would show near-linear log-density beahviour.160

Therefore both the power and lognormal distributions would have near–linear

log Complementary Cumulative Distribution Functions, lccdf.

The lccdf of the transformed data is plotted for vf = 0.5 in Figure 8.

As expected, the body of the empirical distribution can be fitted using a

lognormal model while the tails are fitted using a power law model in [29] (blue165

and red lines in Figure 8, respectively). Therefore the permeability data can

be fitted using a linear combination of the lognormal and power law models:

in the range K̃min ≤ K̃ ≤ K̃max the permeability data can be fitted using

a lognormal model, while outside this range (K̃ < K̃min and K̃ > K̃max) the

permeability data is fitted using a power law model. This behaviour was already170

observed by [30] who showed that a mixture of lognormal distributions in terms

of a geometric distribution would behave lognormally in the body and have a

power law model in the tails. More recently, the above model was corrected

by a double Pareto distribution [31] who showed that the mixture distribution

specifically have Paretian (power law) behavior in the tails. Hence, one could175

conclude that an appropriate permeability distribution model closely fits the

body of a lognormal distribution and the tails of the double Pareto distribution.

It is not clear what could cause the fat tails. Strictly speaking, fiber distri-

bution is not completely random. It is clear that Complete Spatial Randomness

(CSR) cannot be achieved, as found already in [19]: due to the finite size of180

fibers, their distribution cannot be completely random because the space oc-

cupied is limited by others (it should be noticed that for the generation of the

13



  

Figure 8: Distribution of the transformed permeability data at vf=0.5 (double logarithmic

scale).

RVE a hard–core model is used, therefore interpenetration between fibers cannot

occur).

4.2.2. Fitting extreme value distributions185

Statistical tests allow one to reject the null hypothesis that a sample comes

from a given statistical distribution but do not determine from which distribu-

tion a given sample comes from. Of course this is not a simple task and even if

several statistical methods (as the methods of moments) can be applied to this

purpose, the determination of the distribution cannot be rigorous.190

Nonetheless, this paper proposes to obtain the candidate statistical distribu-

tion as the distribution that best fit the numerical data. Several distributions

were used to fit the data.In particular: beta, birnbaumsaunders, exponential,

extreme value, gamma, generalized extreme value, generalized pareto, inverse

gaussian, logistic, loglogistic, nakagami, normal, rayleigh, rician, tlocationscale,195

and weibull were studied.

The best fit was obtained using the maximum-likelihood estimation (MLE)

method and minimizing the negative logarithm of the likelihood.

Figure 9 shows the empirical pdf and the best fits (among the distributions

aforementioned). The distributions are listed in the legend in order of best fit.200

It is possible to observe that the generalized extreme value (GEV) represents

the best fit the data for all the volume fractions considered.
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Figure 9: pdfs of the normalized permeability distributions (for the sake of conciseness the

distributions are reported only for vf = 0.4, 0.6).

5. Correlation between tortuosity, porosity and permeability

In the previous sections, it was shown that a mixture model (consisting of a

lognormal distribution for the body and a power law model (or pareto [29]) for205

the tails) or a GEV provide better fit over normal distributions for permeability

of macroscopic samples with randomly arranged fibers.

These families of distributions (GEV, power law, pareto, lognormal) have

been found to be useful for stochastic modelling [32, 33, 34, 35, 36] when inputs

such as permeability follow heavy–tailed distributions. However, the use of210

mixture model is more complex than GEV. Thus, for the sake of convenience,

the GEV model is used in the following because it i) provides a closed-form

expression, ii) yields a permeability model with two parameters, iii) encompasses

a range of classes of tail behaviour.

The pdf of the GEV distribution reads:

f = 1
σ

[

1 + κ
(

x−µ
σ

)]

−1−

1

κ exp
{

−
[

1 + κ
(

x−µ
σ

)]

−

1

κ

}

(12)

where µ, σ, and κ are the location parameter, the scale parameter, and the

shape parameter for the GEV distribution, respectively. Figure 10 shows the

variation of µ and σ as a function of the volume fraction. The location, the
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Figure 10: Location and scale parameters as a function of the volume fraction.

scale, and the shape parameter can be fitted as:

µ = 1.232 exp (−13.25 vf ) (13a)

σ = 0.1496 exp (−12.84 vf ) (13b)

κ ≈ −0.215 (13c)

as the shape parameter is approximately constant when varying the fiber volume

fraction. Equations (13) allow the calculation of permeability as a function of the

fiber volume fraction. The normalized permeability is obtained as the expected

value of the GEV distribution and it reads:

K

d2
= E(x; vf ) = µ − σ

κ
+

σ

κ
Γ (1 − κ) (14)

where Γ (•) is the gamma function of (•). Figure 11 shows the normalized

permeability as a function of the volume fraction and the confidence interval at

95%. Permeability can also be obtained by the Carman–Kozeny equation [12]

as:

K =
εµu

∇p
=

εD2
h

ψCK

(15)

where Dh = 4/d [11] is the hydraulic diameter and ψCK is the Kozeny fac-

tor. Substituting the expression of the hydraulic diameter in equation (15) and

rearranging yields:

ψCK =
d2 (1 − vf )

3

Kv2
f

=
d2ε3

K (1 − ε)
2 (16)
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Figure 12: Determination of the Kozeny factor.

The Kozeny factor is a dimensionless parameter usually obtained experimentally.

Substituting equation (14) in (16) allows the calculation of the Kozeny factor

as a function of ε/ (1 − ε) as reported in Figure 12. The Kozeny factor can be

fitted as:

ψCK =

(

0.01374
ε

1 − ε
+ 0.05038 − 0.004641

1 − ε

ε

)

−2

(17)

At this point, it is worth comparing the Kozeny factor, ψCK , calculated using

equation (17), with both experiments and models found in the literature. Fig-

ure 13 shows this comparison considering models and experiments reported by

other authors [2, 11, 16, 37, 38, 39, 40, 41, 42]. It is noted that the proposed

model correlates well with the original CK and Gebart’s model [2] only for large

values of porosity. On the contrary, for small values of the porosity, the results

of our model do not match the prevision of Gebart’s model [2] but they correlate

better with the experiments. As proposed by Carman [12] the Kozeny factor

17



  

Figure 13: Comparison of the proposed model with experiments and models found in litera-

ture.

can also be written as:

ψCK = Φ τ2 (18)

where τ is the tortuosity and Φ is a parameter taking into account the shape

of the particles (or the fibers). The tortuosity was estimated by Carman [12]

to be constant and equal to
√

2 ≈ 1.4 for a porous bed composed by spherical

particles. The tortuosity calculated using equation (7) is reported in figure 14

as a function of vf . Please, notice that the value proposed by Carman does not

substantially differs from the value calculated here for the case of cylindrical

fibers. The tortuosity calculated can be fitted as:

τ = 1.552 exp
{

− [(vf − 0.7787) /1.221]
2
}

(19)

Finally the shape parameter Φ is calculated from equation (18). Figure 15

shows the variation of Φ with the volume fraction vf . It can be fitted as:

Φ = 81.33

(

ε

1 − ε

)

−0.7508

+ 48.67 (20)

215

18



  

0.3 0.4 0.5 0.6 0.7 0.8
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

τ

vf

FEM

fitting

Figure 14: Tortuosity as a function of the volume fraction. Error bars represent the standard
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6. Conclusion

The main conclusions of this work may be summarized in the following

points.

• It was demonstrated that using CFD simulations and applying appropriate

boundary conditions is possible to obtain the statistical distribution of the220

saturated permeability of a fibrous porous medium. Only the saturated

transverse permeability was considered in this paper. The uncertainty

in the calculation of permeability depends on several parameters: 1) the

uncertainty in the measure of the volume fraction, 2) the uncertainty in

the dimension of the fibers (fiber diameter is not constant but varies); 3)225

the effect of the random distribution of the fiber. Only the last effect was

considered here.

• The normalized permeability distribution appears not to be normal. Q–Q

plots showed that the permeability distribution has fatter tails than the

normal distribution. The fact that the normalized permeability is not230

normally distributed may be surprising but it may be explained with the

fact that the position occupied by the fibers is not completely random.

Complete Spatial Randomness (CSR) exists only for points generated in

a region using a Poisson distribution. Circles, having a finite dimensions

do not allow CSR because of the fact that the space occupied by a given235

circle is unavailable to other circles [19].

• It is common practice to ignore the extreme values, as done in the second

worldwide permeability benchmark [25]. Our results, however, showed

that extreme values in permeability data cannot be considered outliers

with negligible probability and that a normal distribution cannot be the240

characteristic model for permeability.

• We also showed how to identify both the lower and upper tails in the data.

We postulate that the reasons for this non–normal behaviour could be, i) a

combination of micro– and macro–scale flows, ii) undetectable patterns of

20



  

permeability because of heterogeneous distributions of fibers, iii) random245

distribution of fibers.

• We propose that a mixture model (consisting of a lognormal distribution

for the body and a power law model (or pareto [29]) for the tails) or a

GEV provide better fit for the description of the statistics of permeability.

• An expression of the permeability and of other relevant parameters used250

in Carman–Kozeny equation, was obtained as a function of the volume

fraction vf .
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Notes260

1Strictly speaking, Carman–Kozeny (CK) equation applies to porous beds of spherical

particles, but it has been applied also to the case of fibrous media.

2Chi-square test rejects the null-hypothesis when the p value is p > 0.05.
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