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ABSTRACT 
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An exploratory phase II biomarker-embedded trial (LPT109747; NCT00526669) designed to 

determine the association of lapatinib induced fluoropyrmiinde gene changes with efficacy of 

lapatinib plus capecitabine as first-line treatment for advanced gastric cancer (GC) or 

gastroesophageal junction (GeJ) adenocarcinoma independent of tumor HER2 status. Tumor 

biopsies obtained before and after 7-day lapatinib (1250mg) to analyze changes in gene 

expression, followed by a 14-day course of capecitabine (1000mg/m
2
 BID, 14/21 days) plus 

lapatinib 1250mg daily. Blood samples were acquired for pharmacokinetic analysis. Primary 

clinical objectives: response rate (RR), 5-month progression-free survival (PFS). Secondary 

objectives: overall survival (OS), PFS, time-to-response, duration-of-response, toxicity and 

identify associations between lapatinib pharmacokinetics and biomarker endpoints. Primary 

biomarker objectives: modulation of 5-FU-pathway genes by lapatinib, effects of germline SNPs 

on treatment outcome, and trough steady-state plasma lapatinib concentrations. 68 patients 

were enrolled; (75% GC, 25% GeJ). 12 patients (17.9%) had confirmed partial response, 31 

(46.3%) had stable disease, and 16 (23.9%) had progressive disease. Median PFS and OS 

were 3.3 and 6.3 months, respectively. Frequent AEs included diarrhea (45%), decreased 

appetite (39%), nausea (36%), and fatigue (36%). Lapatinib induced no changes in gene 

expression from baseline and no significant associations were found for SNPs analyzed. 

Elevated baseline HER3 mRNA expression was associated with a higher RR (33% vs 0%, 

p=0.008). Lapatinib plus capecitabine was well tolerated, demonstrating modest antitumor 

activity in patients with advanced GC. The association of elevated HER3 and RR warrants 

further investigation as an important player for HER-targeted regimens in combination with 

capecitabine. 
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INTRODUCTION	

Gastric (GC) and gastroesophageal junction (GeJ) cancer is the fifth most common 

cancer worldwide, and the third leading cause of cancer-related deaths, with incident 

cases approaching one million annually (1,2). Recurrent and metastatic GC and GeJ 

cancer has a poor prognosis, with median survival of <1 year. Only 20% of cases are 

diagnosed at an early, potentially curable, stage (1,2). 

 

In patients with advanced GC, chemotherapy improves overall survival (OS) compared 

with best supportive care (3). Five classes of cytotoxic agents are utilized as first-line 

therapy and include fluoropyrimidines, platinums, taxanes, topoisomerase inhibitors and 

anthracyclines.  The REAL-2 study results indicate non-inferiority of  capecitabine plus 

platinum agent compared to 5-FU and cisplatin. For patients demonstrating human 

epidermal growth factor receptor 2 (HER2) overexpression or amplification, trastuzumab 

combined with systemic therapy has become the standard treatment (4). Combination 

regimens have been shown to increase efficacy with response rates (RR) ranging from 

30% to 50%, progression-free survival (PFS) of 3−7 months and OS of up to 11 months, 

but not without significantly increasing treatment-related toxicity (4–8). Given the high 

percentage of patients who fail to respond to current therapies there is a critical need for 

novel, effective and personalized therapeutic strategies for the treatment for GC. 

 

Capecitabine, an oral fluorouracil (5-FU) pro-drug, has demonstrated activity as a single 

agent in GC with a RR of 19−34% (4,9). Once activated, 5-FU inhibits the de novo 

synthesis of thymidylate by inhibiting thymidylate synthase (TS), depleting thymidylate 
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pools, essential for DNA replication and repair and inducing a thymineless state and 

growth arrest (10,11). 5-FU is subsequently inactivated in the liver by the enzyme 

dihydropyrimidine dehydrogenase (DPD) (10,11). Despite no clear consensus to date, 

numerous studies have demonstrated that elevated TS levels or overexpression is 

associated with resistance to 5-FU-based therapy (11–16) and studies have suggested 

that lapatinib may down-regulate TS expression, sensitizing cancer cells to  

fluoropyrimidines (17,18). 

 

In addition to cytotoxic agents, there has been an increase in the evaluation of targeted 

therapies for GC. One potential therapeutic target is the HER family (19,20). HER2 

overexpression or amplification has been reported in 6−33% of GC and GeJ, a similar 

rate to that observed in breast cancer (21–25). The largest analysis to date of the 

incidence of HER2 amplification in GC was from the Phase III ToGa trial, which 

evaluated the combination of trastuzumab with chemotherapy in patients with metastatic 

GC. The authors reported the overall rate of HER2 amplification to be 22%, with a 

higher percentage (34%) in patients with GeJ tumors (26). HER2 amplification and 

overexpression has been correlated with a poor prognosis, although this remains 

controversial in GC (24,27,28). In addition to HER2, epidermal growth factor receptor 

(EGFR) has been shown to be up-regulated in 8−18% of GC and GeJ tumors (29). 

 

Lapatinib, a small molecule, dual tyrosine kinase inhibitor targeting EGFR and HER2, 

was predicted to demonstrate significant clinical activity against GC, where HER2 is 

amplified and/or there is an overexpression of EGFR or HER2 (29,30). To date, 
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lapatinib appears to have minimal activity as a single agent in first-line therapy of 

advanced/metastatic GeJ and GC based upon preliminary data from Phase II and III 

clinical studies (31–33). Although the study investigating lapatinib as first-line therapy in 

patients with advanced or metastatic GC met first-stage criteria and went on to 

complete enrollment (31), the study investigating lapatinib in relapsed adenocarcinoma 

of the esophagus stopped early because of rapid progression of disease. However, in a 

Phase I lapatinib plus capecitabine trial, one of two subjects enrolled with recurrent GC 

experienced a prolonged partial response (PR),	 suggesting the potential benefit from 

combination with other cytotoxic agents and the necessity of identifying biomarkers for 

patient selection (34,35). 

 

Based on the evidence suggesting that expression of EGFR and HER2 in GC and GeJ 

tumors is associated with poor prognosis, an exploratory international, multicenter 

Phase II study investigating the association of lapatinib-induced fluoropyrimidine 

pathway gene expression changes with clinical outcome to lapatinib plus capecitabine 

in first-line advanced GC and GeJ cancers was conducted to evaluate both biomarker 

and clinical endpoints and identify patients most likely to respond or be resistant to this 

regimen. It is important to note that this study was conducted in an era prior to 

recognition of HER2 amplification or overexpression as a patient selection tool for 

identifying patients likely to benefit from HER2 targeted agents. 
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PATIENTS AND METHODS 

Eligible patients had histologically-confirmed, newly-diagnosed, advanced metastatic or 

unresectable GC, including adenocarcinoma of the GeJ. Untreated was defined as no 

prior chemotherapy, no prior radiotherapy, and no targeted therapy. Partial gastrectomy 

was allowed. Patients were ≥18 years old, with an Eastern Cooperative Oncology 

Group (ECOG) performance status of 0−2, and measurable disease according to 

Response Evaluation Criteria in Solid Tumors (RECIST), had no history of other 

malignancy, and were able to swallow and/or receive enteral medications via 

gastrostomy feeding tube (including the ability to absorb medication). Patients were 

required to have adequate, hepatic and renal function. Exclusion criteria included 

malabsorption syndrome or uncontrolled inflammatory gastrointestinal disease, a known 

history of uncontrolled or symptomatic angina, arrhythmias, congestive heart failure, 

dementia, or total gastrectomy. The study was approved by the Institutional Review 

Board at the University of Southern California (USC) and all patients provided sign 

informed consents in accordance with institutional and federal guidelines. 

 

Study design 

This Phase II study (GSK study number LPT109747; ClinTrials.gov NCT00526669) was 

an open-label, multi-center, global, single-arm design and was conducted in molecularly 

unselected untreated patients with advanced or metastatic GC, prior to HER2 patient 

selection as a requirement for HER2 targeted agents and was completed in 2011. The 

primary biomarker objective was to identify any change of intra-tumoral messenger RNA 

(mRNA) and protein levels of genes known to modulate 5-FU sensitivity including TS, 
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DPD, thymidine phosphorylase, and their relationship to the HER pathway(s) on Day 0 

through serum levels of lapatinib. The primary clinical objective of this study was to 

assess RR and PFS at 5 months’ post-treatment with combination of lapatinib plus 

capecitabine in unselected patients with advanced/metastatic GC. The secondary 

clinical objectives included: (i) assessment of OS, (ii) assessment of time to 

progression, (iii) time to response, (iv) duration of response, and (v) quantitative and 

qualitative toxic effects of the regimen.  

 

After initial tumor biopsy (or archived formalin-fixed, paraffin-embedded tissue acquired 

since diagnosis), lapatinib alone was given as a 7-day run-in at 1250 mg daily followed 

by a second biopsy. These biopsies were performed to determine lapatinib effects on 

the intratumoral gene expression profiles using quantitative real-time polymerase chain 

reaction (qRT-PCR). Failure to complete the second biopsy resulted in patient 

ineligibility for the primary study biomarker endpoint. The day of the second biopsy was 

designated as Day 0 of Cycle 1. On the following day, a 14-day course of capecitabine 

at a dose of 1000 mg/m
2
 twice daily was initiated in combination with the continuous 

daily dose of lapatinib 1250 mg, every 21 days. This regimen continued in the absence 

of treatment-related toxicity, until disease progression or the patient withdrew from 

study. 

 

Treatment assessments 

A complete medical and surgical history, physical examination, complete blood count 

(CBC), and chemistry profile were obtained prior to treatment initiation. Baseline 
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computed tomographic (CT) scans were obtained prior to commencing treatment. CBC 

and comprehensive chemistry profile were repeated on a weekly basis for the first 2 

weeks from the first day of treatment, and every 3 weeks for the subsequent 24 weeks. 

Echocardiograms were performed at baseline and every 12 weeks thereafter. Medical 

history, physical examination, and toxicity assessment per National Cancer Institute 

Common Toxicity Criteria 3.0 were conducted weekly during the first cycle and every 

cycle thereafter. CT scans were repeated every 6 weeks for first 24 weeks, then every 

12 weeks thereafter, to assess response. Responses were categorized according to 

RECIST v1.0. 

 

Molecular correlates 

Genotyping was conducted on DNA isolated from peripheral blood samples (56 eligible 

patients). Single nucleotide polymorphisms (SNPs) analyzed included those in cyclin D1 

(CCND1), cyclooxygenase 2 (COX2), EGF, EGFR, HER2, vascular endothelial growth 

factor (VEGF), interleukin 8 (IL-8), methylenetetrahydrofolate receptor (MTHFR), and 

TS. Genomic DNA was extracted using the QiAmp kit (Qiagen, Valencia, CA, USA). 

SNPs were tested using the PCR-restriction fragment length polymorphism technique 

as previously described.(34). Briefly, forward and reverse primers were used for 

amplification of the specific DNA amplicon, followed by digestion of PCR products with 

restriction endonucleases (New England Biolab, MA, USA). In the case of no 

appropriate restriction endonuclease, PCR products were analyzed by direct 

sequencing.  
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Gene expression levels were quantified for TS, DPD, EGFR, HER2, and HER3 using 

TaqMan qRT-PCR on board an ABI PRISM 7900 Sequence Detection System (Applied 

Biosystems, Foster City, CA, USA). Following deparaffinization, laser capture micro-

dissection was used to isolate tumor tissue. RNA isolation and complementary DNA 

(cDNA) synthesis was performed using the method developed by Dr. Danenberg at 

USC (US Patent #6248535) as previously described(36).. Extracted mRNA served as a 

template for cDNA synthesis and subsequent RT-PCR quantification of mRNA 

expression. qRT-PCR conditions have been described previously.(36) 

 

Pharmacokinetic  assessments 

Blood samples for measurement of lapatinib plasma concentration were obtained 

immediately prior to the lapatinib doses on Days -7 and -1, and the last doses 

administered after 6, 12, 18, 30, 42, 54, 66, and 78 weeks of treatment. Blood samples 

were anti-coagulated with EDTA, centrifuged, and plasma separated for storage at or 

below -20˚C until analyzed. Samples were analyzed for lapatinib using a previously 

published (37) validated method based on protein precipitation, followed by high-

performance liquid chromatography tandem mass spectrometry analysis. The lower limit 

of quantification for lapatinib was 5 ng/mL using a 25 µL aliquot of human plasma with a 

higher limit of quantification (HLQ) of 5000 ng/mL. Concentrations above the HLQ were 

diluted and re-analyzed. The analytical runs met all predefined criteria. Precision and 

accuracy, relative to nominal, were within 15%.	
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Statistical design 

The intent-to-treat (ITT) population was the same as the safety population, consisting of 

all subjects who entered the study and received at least one dose of lapatinib. Change 

in biomarker expression level from baseline and following 7 days of lapatinib treatment 

was analyzed. Fisher’s exact test was used to analyze if there were significant 

associations between analyzed SNPs and response, and the log-rank test was used for 

PFS and OS. Determination of hazard ratios for SNP data was based on the method 

described by Berry et al. (38) The Wilcoxon signed rank test was used to determine if 

there were significant changes between pre- and post-treatment mRNA expressions 

levels. Fishers’ Exact test was used to determine if there were significant associations 

between pre-treatment mRNA expression levels and RR; log-rank tests were used in 

the analyses for PFS and OS. The cut-off for gene expression level comparisons were 

derived based on pre-defined, published method (39). P-values were not adjusted for 

multiple comparisons. These modest p-values were within the number expected to 

occur by random chance in a set of 56 total statistical tests.  

 

The RR and the PFS at 5 months were analyzed to address the primary clinical 

objective. Five-month PFS was defined as the percentage of surviving patients who 

were progression-free 5 months after the date of initial treatment, where a subject was 

considered progression-free without observation of disease progression or death due to 

any cause.  
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RESULTS 

Patient characteristics 

From March 17, 2008 to April 13, 2011, 68 patients were enrolled in the trial and 67 

received at least one dose of study treatment (these 67 subjects were included in the 

ITT and safety populations). Of these 67, 56 had available samples for subgroup and 

biomarker analysis. Of the 68 patients, 52 (76%) completed the study. The most 

common reasons for premature withdrawal were loss to follow-up (n=3; 4%), and 

patients’ decision to withdraw (n=2; 3%). Baseline characteristics for the ITT population 

(n=67), and the subgroup with specimens available (n=56), are presented in 

Supplemental Table 1. Baseline characteristics and clinical outcome for the entire trial 

population and those patients with specimens available for molecular correlates were 

extremely well balanced (Supplemental Table 1 and Table 2). 

 

Treatment administration 

The median duration of lapatinib treatment was 13 weeks (range 1.4–87 weeks) and the 

median duration of capecitabine treatment 11.1 weeks (range 0.9–86 weeks). Reasons 

for treatment discontinuation include disease progression (67%), adverse events (AEs) 

(15%), patient decision (9%), other reasons (6%), consent withdrawal (1%), and death 

(1%).  

 

Response, PFS, and OS 

For the ITT population, the confirmed RR was 17.9% (95% confidence interval [CI]: 9.6, 

29.2). There were no complete responses. A best confirmed response of PR was 
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observed in 12 (17.9%) patients. Stable disease (SD) was observed in 31 

(46.3%) patients (Table 1). Sixteen (23.9%) patients had progressive disease (PD). A 

waterfall plot of tumor shrinkage among patients with evaluable unconfirmed response 

(n=61) is shown in Supplemental Figure 1. Ten patients experienced a reduction in 

tumor size of ≥40% and 29 patients had tumor shrinkage of >10%. The 5-month PFS 

was 28.7% (95% CI: 17.9, 40.3). The median PFS was 3.3 months (95% CI: 2.9, 4.3). 

The median OS was 6.3 months (95% CI: 5.0, 9.1).  

 

Toxicity 

AEs were reported by the vast majority of patients (64 patients, 96%) and approximately 

two-thirds of subjects had AEs considered related to study treatment (45 patients, 67%). 

Two deaths due to AEs were reported (pneumonia and a thrombo-embolic event) but 

neither were considered to be related to study treatment. Serious AEs (SAEs) were 

experienced by 22 (33%) patients, of which 4 (6%) were considered related to study 

treatment. AEs leading to discontinuation of study drug were reported by 10 (15%) 

patients. The most frequently reported AEs were diarrhea (30 patients, 45%), 

decreased appetite (26 patients, 39%), nausea (24 patients, 36%), and fatigue 

(24 patients, 36%). This is consistent with previous studies of lapatinib in combination 

with capecitabine. 

 

SNPs in the EGFR and fluoropyrimidine pathway and clinical outcome to lapatinib plus 

capecitabine 

Genetic SNPs were assessed from whole blood samples from 56 patients. A total of 11 



	 13 

polymorphisms were evaluated in 9 genes: CCND1, COX2, EGF, EGFR, HER2, IL-8, 

MTHFR, TYMS, and VEGF.  

 

Of the 11 SNPs analyzed, only the MTHFR A1298C rs1801131 demonstrated a 

statistically significant association with RR for patients treated with lapatinib plus 

capecitabine. RR, based on unconfirmed response, was higher in the MTHFR1298 A/A 

vs A/C, C/C polymorphism (39% vs 9%, p=0.023; Figure 1), but the association was not 

significant if only confirmed responses were considered (Table 2). No significant 

associations were observed between the remaining SNPs evaluated and RR, PFS, or 

OS. 

 

Gene expression and clinical outcome to lapatinib plus capecitabine 

Tumor cDNA from 38 samples were utilized to determine the effects of lapatinib on 

intratumoral mRNA levels of 5 genes in pre- and post-treatment biopsies: TS, DPD 

EGFR, HER2, and HER3. 

The primary biomarker analyses indicated that there was no significant change in 

gene expression levels from baseline following 7 days of treatment with lapatinib 

monotherapy (Table 3). Further analysis for changes in HER2 gene expression levels in 

HER2 amplified and non-amplified patients demonstrated that HER2 mRNA levels were 

higher in patients with amplified HER2 than those without HER2 amplification in tumor 

tissues prior treatment and post treatment (p=.025 and .002, respectively; 

Supplementary Table 1). No statistically significant changes in HER2 gene expression 
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were observed in the subset of HER2-amplified patients following lapatinib treatment 

(p=0.22, Supplementary Table 1). 

In the analyses gene expression results and clinical outcome variables, elevated 

HER3 gene expression was associated with a higher RR (Table 4). Specifically, RR 

were higher in patients with HER3 expression values greater than the established 4.51 

cut-off (33% vs 0%, p=0.008) (Table 4). Although not significant, high EGFR/HER1 

mRNA expression (>1.19, n=26) before treatment showed a trend toward an 

association with longer PFS compared with low EGFR/HER1 mRNA expression (≤1.19, 

n=11; p=0.097) (Table 4).  

 

Pharmacokinetic assessment 

Lapatinib plasma concentrations on day (-1) were measurable in 66 patients, ranging 

from 38 to 4459 ng/mL. There were no apparent relationships between lapatinib plasma 

concentration on day (-1) after a week of daily lapatinib dosing and mRNA expression 

levels of DPD, TS, EGFR, HER2, and HER3.  

 

Lapatinib plasma concentrations at week 6 were measurable in 46 patients, ranging 

from 7 to 5223 ng/mL. Although these samples were collected at steady state, 

concentrations within each subject fluctuated over the study period. Fluctuation, 

measured as the ratio of maximum to minimum values, was greater in subjects after 

partial gastrectomy, with a geometric mean ratio of 5.22 versus 2.29 in subjects with an 

intact stomach. Lapatinib plasma concentrations were lower in patients with prior partial 

gastrectomy (Table 5). Week 6 geometric mean (95% CI) concentration for patients with 
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intact stomach was 1027 (712–1482) ng/mL and for partial resected stomach was 175 

(68–452) ng/mL (p=0.001). There was no evidence that this translated into a difference 

in survival. Median (range) PFS was 115 (43–419) days in partial gastrectomy patients 

(n=6) and 90 (22–473) days in patients with intact stomachs (n=51). Tumor response 

was not lower in gastrectomized patients despite lower plasma exposure compared with 

patients with intact stomachs.   

 

Changes in tumor size were examined relative to Week 6 lapatinib concentration. Ratios 

of maximum decrease in SLD to baseline displayed no relationship in patients with PD 

or SD, but appeared to be a related in patients with PR (n=13), where higher 

concentrations produced larger decreases in tumor size (Supplementary Figure 2).   

 

DISCUSSION 
 

Despite the availability of cytotoxic agents and increasingly effective chemotherapeutic 

regimens, the prognosis for patients with GC or GeJ adenocarcinoma remains poor. 

Current employed standard-of-care treatments for advanced GC include numerous 

regimens with the majority favoring fluoropyrimidine and platinum combinations. 

Although modest improvements in patient survival have been achieved in recent years, 

complex genetics, tumor heterogeneity and toxicity remains a consistent problem and 

limits the use of more aggressive multi-drug combinations, particularly in patients with 

poor performance status. In addition, many putative predictive and prognostic 

biomarkers have been analyzed, but with numerous conflicting reports, the goal of 

personalized chemotherapy treatment for GC remains a concept as opposed to a 
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reality. In this study, the combination of lapatinib and capecitabine demonstrated a 

manageable toxicity profile with the most frequent on-therapy AEs limited to diarrhea, 

decreased appetite, fatigue, and nausea. The antitumor activity observed was 

significant with a RR of 17.9% and a median OS of 6.3 months. However, in this setting, 

other recently evaluated combinations including those employing combinations of 

capecitabine with either oxaliplatin or cisplatin combinations have demonstrated 

improved clinical activity (5). 

 

HER2 amplification is observed in approximately 15% of patients with GC but the 

proporotion is higher in intestinal (33%) and lower in diffuse (6%) (40). Further, HER2 

has been reported as an independent prognostic and potentially predictive biomarker in 

GC, but the precise role it plays remains controversial, with some initial reports 

suggesting that HER2 amplification is associated with aggressive disease and poor 

clinical outcome (41). However, the randomized phase III trial in advanced GC (ToGA) 

in selected patients for HER2 overexpression or amplification, determined that HER2-

positivity, and the intestinal subtype were found to be factors associated with a more 

favorable survival in advanced GC (40). In addition to inhibiting HER2, lapatinib also 

targets EGFR, which is overexpressed in 8–18% of GC, and the contribution of this 

mechanistic component to the efficacy is less understood. The ToGA trial also 

established that adding the HER2-targeted monoclonal antibody trastuzumab to 

standard chemotherapy leads to a significant improvement in OS compared with 

chemotherapy alone. This set a new standard of treatment for patients with HER2-

positive GC, firmly establishing HER2 as an efficacious target in this disease (40). The 
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results of the ToGA trial provided sound rationale for the clinical evaluation of other anti-

HER2 agents for GC.  In the current analysis, neither EGFR nor HER2 mRNA 

expression, measured by qPCR, changed significantly from baseline following lapatinib 

treatment. Of note, the current study was initiated and conducted in an era prior to the 

establishment and routine implementation of testing for HER2 amplification and/or 

overexpression as a selection tool for identification of patients likely to benefit from 

HER2-targeted therapy.  

 

Preclinical analyses have reported that lapatinib can induce intratumoral gene 

expression changes in the 5-FU pathway, including the downregulation of TS, the 

primary target of fluoropyrimidine-based agents. Importantly, while TS overexpression is 

widely reported as an important mechanism of resistance to fluoropyrimidine-based 

therapies, validation and implementation as a predictive biomarker in the clinic is still 

needed (42). The lapatinib-induced transcriptional down-regulation of TS is reported to 

contribute to synergy between HER2-targeted agents and fluoropyrimidines in both 

breast and GC cells with HER2 amplification (17,18). One of the primary objectives of 

this study was to investigate the clinical relevance of these observations and assess the 

feasibility of this type of analysis via repeat biopsy in an unselected patient population 

Phase II biomarker-driven study. The gene expression analyses indicated no significant 

change in intratumoral gene expression from baseline levels following 7 days of 

treatment with lapatinib monotherapy. Interestingly, intratumoral gene expression of the 

molecular targets of lapatinib were not associated with any clinical outcome variables 

tested. Elevated HER3 gene expression was, however, associated with a significantly 
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improved RR to lapatinib plus capecitabine. Elevated HER3 was recently reported to be 

an independent poor prognostic marker in GC (43) and is proposed to amplify the 

oncogenic effects of increased expression of HER2 and EGFR (44). While increased 

HER3 expression has typically been reported as an acquired resistance mechanism to 

HER-targeted agents, several recent studies have reported improved outcome to 

lapatinib in patients with elevated HER3 at baseline. Specifically, elevated HER3 was 

associated with improved clinical outcome in patients with breast cancer who received 

lapatinib plus capecitabine (45). The HER2/HER3 heterodimeric complex is reported to 

induce the most potent dimeric signaling of all the possible combinations resulting in 

HER dimeric complexes (46). It is plausible that elevated expression of HER3 drives an 

increased rate of HER2 intracellular signaling and is thus more susceptible to 

neutralization, with lapatinib leading to an improved response.  

 

The pharmacokinetic data obtained in this study represents the longest duration of 

measurement during lapatinib therapy. The week 6 concentration was the most 

predictive of drug responses. This time point was also associated with the largest 

difference in plasma concentration between subjects with intact versus resected 

stomachs. Lower exposure and higher fluctuation is consistent with disrupted biliary 

recycling secondary to partial gastrectomy. Although limited, the data in this study 

suggests that partial gastrectomy should not affect response, suggesting little or no 

effect on tumor uptake, which may be more dependent on HER2 expression than on 

plasma lapatinib concentration. 
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This study demonstrates that biomarker-embedding, including somatic genotyping and 

tumoral gene expression analysis from serial biopsies is feasible in the context of global 

clinical trials. While the combination of lapatinib and capecitabine was well tolerated 

there was only modest antitumor activity, limiting this regimen as a treatment option for 

an unselected patient population in with advanced GC, The biomarker analysis 

suggests that patients with elevated intra-tumoral HER3 may have an increased 

likelihood of response in unselected HER2 amplified patients. 
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Table 1. Clinical outcome by patient cohort  
 
 All patients 

(n=67) 
N (%) 

Subgroup with 
specimen (n=56)  

N (%) 
RECIST response, confirmed   
 Complete response 0 0 

 Partial response 12 (17.9) 10 (17.9) 

 Stable disease 31 (46.3) 25 (44.6) 

 Progressive disease 16 (23.9) 14 (25) 

 Inevaluable 8 (11.9) 7 (12.5) 

 RR (%) (95% CI
*
) 17.9 (9.6, 29.2) 17.9 (8.9, 30.4) 

   

RECIST response, unconfirmed   
 Complete response 0 0 

 Partial response 16 (23.9) 13 (23.2) 

 Stable disease 29 (43.3) 23 (41.1)  

 Progressive disease 16 (23.9) 14 (25) 

 Inevaluable 6 (8.9) 6 (10.7) 

 RR (%) (95% CI
*
) 23.9 (14.3, 35.9) 23.2 (13.0, 36.4) 

   

PFS   
 PFS rate at 5 months (%) (95% CI

†
) 28.7 (17.9%, 40.3%) 24.6 (14.0, 36.7%) 

 Median (95% CI
†
), months 3.3 (2.8, 4.3) 3.0 (2.6, 4.2) 

   

OS   
 Median (95% CI

†
), months 6.3 (5.0, 9.1) 5.8 (3.8, 8.6) 

*
Based on exact 95% CIs. 

†
Based on Log-Log Transformation.  

Abbreviations: CI, confidence interval; OS, overall survival; PFS, progression-free 

survival; RR, response rate 	
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Table 2. Response, progression-free survival, and overall survival by polymorphisms and HER2 amplification status. 
 

  Response  Progression-free survival  Overall survival 
Polymorphisms N Yes No P* 

value 
Median  
(95% CI) 

HR  
(95% CI)‡ 

P* 

value 
Median  
(95% CI) 

HR  
(95% CI)‡ 

P* 
value 

CCND1 A870G    0.71   0.32   0.73 
 A/A 16 2 (13%) 14 (88%)  3.0 (2.0, 4.2) 1 (Ref)  6.3 (3.3, 11.6) 1 (Ref)  
 A/G† 32 8 (20%) 32 (80%)  3.0 (2.6, 4.3) 0.74 (0.40, 1.37)  5.8 (3.5, 9.1) 1.12 (0.58, 2.19)  
 G/G† 8          
COX2 G765C    0.34   0.26   0.30 
 G/G 47 7 (15%) 40 (85%)  3.0 (2.5, 3.8) 1 (Ref)  5.4 (3.8, 8.1) 1 (Ref)  
 G/C† 2 3 (33%) 6 (67%)  5.7 (2.6, 5.8+) 0.63 (0.26, 1.48)  9.1 (3.5, 23.1) 0.62 (0.24, 1.57)  
 C/C† 7          
EGF A61G    0.73   0.92   0.85 
 G/G 19 3 (16%) 16 (84%)  3.1 (2.9, 4.3) 1 (Ref)  5.8 (3.7, 14.7) 1 (Ref)  
 G/A 27 6 (22%) 21 (78%)  2.9 (2.0, 4.3) 1.10 (0.59, 2.05)  5.6 (3.3, 8.6) 1.20 (0.62, 2.33)  
 A/A 10 1 (10%) 9 (90%)  2.6 (1.6, 8.6) 1.16 (0.51, 2.63)  8.1 (1.1, 15.9) 1.06 (0.45, 2.52)  
EGFR G497A    0.16   0.33   0.087 
 G/G 24 2 (8%) 22 (92%)  2.9 (2.5, 4.3) 1 (Ref)  4.2 (2.6, 8.6) 1 (Ref)  
 G/A† 24 8 (25%) 24 (75%)  3.3 (1.8, 4.3) 0.76 (0.43, 1.36)  7.3 (4.2, 14.8) 0.61 (0.33, 1.10)  
 A/A† 8          
HER2 G655A    0.48   0.82   0.45 
 A/A 35 5 (14%) 30 (86%)  2.9 (1.8, 4.2) 1 (Ref)  4.4 (3.5, 8.1) 1 (Ref)  
 A/G 21 5 (24%) 16 (76%)  3.8 (2.8, 4.4) 0.94 (0.53, 1.66)  8.6 (3.8, 14.7) 0.80 (0.43, 1.46)  
IL8 T251A    0.36   0.23   0.23 
 T/T 19 3 (16%) 16 (84%)  3.1 (1.7, 4.1) 1 (Ref)  5.4 (3.5, 7.3) 1 (Ref)  
 T/A 24 3 (13%) 21 (88%)  2.9 (2.5, 4.3) 0.86 (0.45, 1.65)  6.3 (3.1, 15.4) 0.61 (0.32, 1.19)  
 A/A 13 4 (31%) 9 (69%)  4.2 (3.0, 5.8) 0.54 (0.25, 1.20)  5.8 (2.0, 22.9) 0.58 (0.25, 1.36)  
MTHFR C677T    0.72   0.96   0.99 
 C/C 22 3 (14%) 19 (86%)  3.0 (1.7, 4.4) 1 (Ref)  8.1 (3.5, 11.6) 1 (Ref)  
 C/T† 26 7 (21%) 27 (79%)  3.0 (2.6, 4.2) 1.01 (0.57, 1.80)  5.0 (3.8, 7.3) 1.01 (0.55, 1.82)  
 T/T† 8          
MTHFR A1298C    0.16   0.071   0.23 
 A/A 31 8 (26%) 23 (74%)  3.0 (2.6, 5.3) 1 (Ref)  7.2 (4.2, 9.3) 1 (Ref)  
 A/C† 20 2 (8%) 23 (92%)  3.0 (1.7, 4.1) 1.63 (0.92, 2.91)  4.4 (3.0, 8.6) 1.42 (0.79, 2.56)  
 C/C† 5          
TS-5’UTR    1.00   0.87   0.26 
 2R/2R, 2R/3C, 3C/3C 20 3 (15%) 17 (85%)  3.1 (2.6, 4.4) 1 (Ref)  5.4 (3.1, 12.9) 1 (Ref)  
 2R/3G, 3G/3C 26 5 (19%) 21 (81%)  2.9 (1.8, 4.2) 1.07 (0.57, 2.01)  8.1 (3.8, 14.8) 0.67 (0.34, 1.33)  
 3G/G 10 2 (20%) 8 (80%)  2.8 (1.6, 4.3) 1.22 (0.56, 2.67)  4.2 (2.2, 8.6) 1.17 (0.51, 2.69)  
TS-3’UTR    0.75   0.97   0.68 
 +/+ 14 3 (21%) 11 (79%)  3.1 (1.7, 4.3) 1 (Ref)  5.4 (3.5, 11.4) 1 (Ref)  
 +/- 22 3 (14%) 19 (86%)  2.6 (1.8, 5.3) 0.96 (0.45, 2.05)  5.8 (2.9, 14.7) 0.73 (0.32, 1.64)  
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 -/- 20 4 (20%) 16 (80%)  3.0 (1.8, 4.3) 1.03 (0.49, 2.18)  6.1 (3.8, 8.6) 0.88 (0.40, 1.95)  
VEGF C936T    1.00   0.78   0.66 
 C/C 42 8 (19%) 34 (81%)  3.0 (2.8, 4.3) 1 (Ref)  5.8 (3.8, 9.1) 1 (Ref)  
 C/T† 12 2 (14%) 12 (86%)  2.6 (1.7, 4.3) 0.91 (0.48, 1.75)  5.6 (2.6, 8.1) 1.16 (0.59, 2.30)  
 T/T† 2          
HER2 status    0.66   0.95   0.80 
 Amplified 8 1 (13%) 7 (88%)  4.3 (1.6, 8.5) 1 (Ref)  6.3 (2.6, 16.7) 1 (Ref)  
 Not amplified 34 8 (24%) 26 (76%)  3.0 (2.8, 4.3) 1.02 (0.46, 2.28)  5.8 (3.8, 8.6) 1.10 (0.49, 2.47)  

*Based on Fisher’s exact test for response and log-rank test for PFS and OS. †Dominant model: combining patients carrying 
heterozygous and homozygous variant genotypes together for outcome analyses. ‡Based on the method described by Berry et al (38).. 
Abbreviations: CCND1, cyclin D1; CI, confidence interval; COX, cyclooxygenase; EGF, epidermal growth factor; EGFR, epidermal 
growth factor receptor; HER, human epidermal receptor; HR, hazard ratio; IL8, interleukin 8; MTHFR, methylenetetrahydrofolate 
receptor; OS, overall survival; PFS, progression-free survival; TS, thymidylate synthase; VEGF, vascular endothelial growth factor
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Table 3. Intratumoral gene expression by treatment 
 
  Prior treatment  Post treatment  Change (post-prior)  
Gene N Median (Min, Max) N Median (Min, Max)  N Median (Min, Max) P value* 
TS 38 3.16 (0.53, 9.57) 39 3.64 (0.67, 11.30) 34 0.38 (-2.33, 7.25) 0.10 
DPD 32 0.58 (0.14, 1.87) 33 0.68 (0.16, 2.71) 26 0.12 (-0.61, 1.04) 0.097 
EGFR/HER1 37 1.59 (0.51, 87.84) 37 1.73 (0.10, 89.64) 32 0.15 (-1.88, 41.89) 0.10 
HER2 33 0.04 (0.01, 0.49) 34 0.06 (0.01, 1.87) 28 0.01 (-0.29, 1.61) 0.26 
HER3 37 4.51 (1.25, 43.61) 40 6.18 (0.89, 12.86) 33 0.87 (-36.31, 8.18) 0.38 
*Based on the Wilcoxon signed rank test.  
Abbreviations: DPD, dihydropyrimidine dehydrogenase; EGFR, epidermal growth factor receptor; 
HER, human epidermal receptor; TS, thymidylate synthase
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Table 4. Response, PFS, and overall survival by pretreatment intratumoral gene expression 
 

  RECIST response  Progression-free survival  Overall survival 
Gene N Yes No P* value Median  

(95% CI) 
HR  
(95% CI)§ 

P* value Median  
(95% CI) 

HR  
(95% CI)§ 

P* value 

TS†    0.61   0.29   0.20 
 ≤4.1 29 4 (14%) 25 (86%)  3.0 (1.7, 4.4) 1 (Ref)  11.6 (5.4, 15.4) 1 (Ref)  
 >4.1 9 2 (22%) 7 (78%)  4.3 (3.0, 8.6) 0.64 (0.27, 1.51)  7.8 (2.0, 12.9) 1.68 (0.72, 3.88)  
DPD‡    0.55   0.38‡   0.66 
 ≤0.86 27 6 (22%) 21 (78%)  3.0 (2.9, 5.3) 1 (Ref)  7.8 (5.4, 14.7) 1 (Ref)  
 >0.86 5 0 (0%) 5 (100%)  1.7 (1.5, 1.7) 2.76 (0.67, 11.41)  16.1+ (2.3, 16.1+) 0.72 (0.17, 3.11)  
EGFR/HER1†    0.65   0.097   0.74 
 ≤1.19 11 1 (9%) 10 (91%)  3.0 (1.7, 4.3) 1 (Ref)  14.8 (3.8, 16.9) 1 (Ref)  
 >1.19 26 5 (19%) 21 (81%)  4.2 (2.6, 5.8) 0.54 (0.24, 1.24)  7.8 (4.2, 14.7) 1.15 (0.50, 2.63)  
HER2†    1.00   0.30   0.92 
 ≤0.065 25 5 (20%) 20 (80%)  4.3 (2.9, 5.7) 1 (Ref)  11.4 (4.2, 14.7) 1 (Ref)  
 >0.065 8 1 (13%) 7 (88%)  2.6 (1.6, 4.3) 1.55 (0.63, 3.81)  5.4 (2.0, 16.9) 0.96 (0.39, 2.33)  
HER3‡    0.008   0.11‡   0.75 
 ≤4.51 19 0 (0%) 19 (100%)  3.0 (1.6, 4.3) 1 (Ref)  6.3 (3.5, 15.4) 1 (Ref)  
 >4.51 18 6 (33%) 12 (67%)  4.3 (3.0, 8.6) 0.40 (0.18, 0.91)  11.4 (7.2, 15.9) 0.89 (0.42, 1.88)  

*Based on Fisher’s exact test for response and log-rank test for PFS and OS.†The cut-off value of gene expression was based 
on our previous studies (31,38,47). ‡The cut-off value was based on the optimal cut point for PFS and p values were adjusted 
accordingly (48). §Based on the method described by Berry et al.(38). Abbreviations: CI, confidence interval; DPD, 
dihydropyrimidine dehydrogenase; EGFR, epidermal growth factor receptor; HER, human epidermal receptor; HR, hazard ratio; 
PFS, progression-free survival; TS, thymidylate synthase 
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Table 5. Lapatinib steady-state plasma trough concentrations (ng/mL) in gastric 
cancer subjects with and without prior partial gastrectomy.   
 
Parameter Intact stomach Resected stomach Ratio* 
Cmin (ng/mL) at Week 1 821 (633–1064) 

[n=57] 
532 (279–1017) 
[n=9] 

0.65 (0.36–1.16) 
[p=0.219] 

Cmin (ng/mL) at Week 6 1027 (712–1482) 
[n=40] 

175 (68–452) 
 [n=6] 

0.17 (0.07–9.40) 
[p=0.001] 

*Ratio, comparing steady state plasma trough concentrations (ng/mL) between patients 
with GC with and without prior partial gastrectomy; geometric means, 90% CI. 
Abbreviations: CI, confidence interval; Cmin, minimum plasma concentration; GC, gastric 
cancer 
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Figure legend 
 

Figure 1. MTHFR A1298C rs1801131 polymorphism demonstrated a statistically 

significant association with RR for patients treated with lapatinib plus 

capecitabine.   

RR, based on unconfirmed response, was higher in the MTHFR1298 A/A vs A/C, C/C 

polymorphism (39% vs 9%, p=0.023). There were 28 patients that were homozygous for 

the A-allele, and 22 patients with the C-allele. However, the association was not 

significant if only confirmed responses were counted. Statistical analysis was run with 

Fisher’s Exact test. 
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