
The use of binary polymeric networks in stabilising polyethylene oxide
solid dispersions

Jones, D. S., Tian, Y., Li, S., Yu, T., Abu Diak, O. A., & Andrews, G. P. (2016). The use of binary polymeric
networks in stabilising polyethylene oxide solid dispersions. Journal of Pharmaceutical Sciences, 105(10),
3064–3072. DOI: 10.1016/j.xphs.2016.06.004

Published in:
Journal of Pharmaceutical Sciences

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-
nc-nd/4.0/which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

http://pure.qub.ac.uk/portal/en/publications/the-use-of-binary-polymeric-networks-in-stabilising-polyethylene-oxide-solid-dispersions(2201b43c-74cc-4567-a130-83f9047aae1f).html


The use of binary polymeric networks in physical stabilization of 
polyethylene oxide solid dispersions 
 

David S. Jones, Osama A. Abu-Diak, Yiwei Tian, Gavin P. Andrews. 

 

The Drug Delivery and Biomaterials Group, School of Pharmacy, Medical Biology Centre, 

Queen’s University, 97 Lisburn Road, Belfast. BT9 7BL, Northern Ireland, UK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

The objective of this study was to investigate the role of amorphous domain of 

polyethylene oxide (PEO), a semicrystalline polymer, on the stability of drug/PEO 

solid dispersion. Molecular dispersion of drugs within hydrophilic low molecular 

weights PEOs (solid solution) has been demonstrated as a viable approach to 

enhance the dissolution properties and hence the oral bioavailability of poorly soluble 

drugs. In this system, the drug molecules are dissolved within the amorphous 

domain of the polymer and a miscible amorphous drug/polymer combination can 

result in a decrease of the polymer crystallinity, and hence increasing its amorphous 

fraction. This may result in increasing the drug solubility in the polymer hence 

affecting the stability of drug/polymer solid dispersion system. PEO is a highly 

crystallisable semi-crystalline polymer in natural and a rapid decrease in the 

amorphous fraction of the polymer may occur immediately after hot-melt extrusion 

resulting a forced migration of amorphous drug into nearby amorphous region. Thus, 

the actual concentrations of the drug within PEO solid dispersion were much higher 

than the concentration that we intended. Therefore, we are proposing a novel 

method of stabilising the amorphous drug/PEO solid dispersion by stabilising the 

amorphous region of PEO using another amorphous polymer. Inclusion of a miscible 

polymer that can increase the glass transition (Tg) of PEO (antiplasticization) or/and 

form strong inter-polymer interactions was used to enhance the stability of the 

amorphous PEO. In this study, the effects of inter-polymer interactions and miscibility 

between PEO and an amorphous polymer of high Tg, Eudragit® S100, on the 

stability of the amorphous PEO and consequently the PEO/drug celecoxib (CX) solid 

dispersion was studied. Hot-melt extrusion (HME) was used to prepare different 

ratios of binary polymer blends of PEO/S100 (70/30, 50/50 and 30/70 w/w) and 

ternary solid dispersion systems containing pre-defined drug loading within the 

PEO/S100 polymer blends.  Results from differential scanning calorimetry (DSC) and 

dynamic mechanical thermal analysis (DMTA) suggested a great miscibility between 

PEO and S100 polymer blends particularly in the 50/50 ratio. After immediately 

HME, single Tg was observed in all ternary systems that increase with increasing 

S100 amount (antiplasticization). The completely absence of PXRD crystalline 

Bragg’s peaks also suggested the full amorphous CX/polymer solid dispersion has 

been produced. Upon storage, CX crystallized rapidly from the CX/PEO (30/70) 



system within 3 days at 40°C and 75% RH, whereas it remained stable without 

crystallization up to 4 weeks within CX/(PEO/S100) 30/(50/50) system. Interestingly, 

both the stability of the amorphous PEO and CX were greater in the ternary system 

containing the polymer blend at 50/50 ratio than other systems. Despite of the lower 

Tg of 30/(50/50) system than 30/(30/70) one, the former was more stable. This 

indicates that the antiplasticization effects by Eudragit® S100 were not the 

predominant mechanism in such stabilization and also highlights the role of the inter-

polymer interactions in stabilizing the amorphous PEO and consequently the drug 

dissolved in the amorphous region of PEO. FTIR studies confirmed the presence of 

hydrogen bonding between the carboxyl groups of Eudragit® S100 and the oxygen 

ether of PEO after HME. The strength of these inter-polymer interactions appeared 

to the highest in the systems containing a polymer blend of 50/50 ratio comparing to 

other systems. These findings suggest that the inter-polymer hydrogen bonding 

between PEO and Eudragit® S100 was the main reason for stabilizing the 

amorphous PEO, and consequently the stability of CX/PEO solid dispersion system. 

Keywords: solid dispersion; hot-melt extrusion; polymer blends; inter-polymer   

interactions; Flory-Huggins theory  

 

 

 

 

 

 

 

 

 

 

 



1.0 Introduction 

The use of combinatorial chemistry and high-throughput screening has resulted in a 

significant number of poorly-water soluble drugs within pharmaceutical development 

pipelines (Lipiniski et al., 2001; Lindenberg et al., 2004). More than 40% of marketed 

drugs have been estimated as either poorly soluble or water insoluble (Dubin, 2005). 

It is well accepted that addressing this problem is one of the most significant 

challenges being faced within the development of oral drug products (Leuner and 

Dressman, 2000, Sarnes et al., 2014). The slow drug dissolution rate and low drug 

solubility in the gastro-intestinal fluids may result in incomplete and variable 

bioavailability.  One of the enabling strategies that can be used to overcome this 

problem is increasing the drug solubility or/and dissolution rate via the development 

of solid dispersions (Serajuddin, 1999). The drug can either be molecularly 

dispersed, dispersed as an amorphous form or as small crystals in an inert 

hydrophilic carrier (Chiou and Reigelman, 1971). Often, amorphous drugs have 

higher solubility than their crystalline counterparts (Hancock and Zografi, 1997). 

Although, the development of solid dispersions continues to be explored within the 

research area, the commercial success of dosage forms containing amorphous 

drugs is still limited due to poor physical stability and scale up problems (Serajuddin, 

1999; Bikiaris, 2011). The low physical stability of amorphous drugs and their 

tendency to re-crystallize rapidly negate their solubility advantage. Polymers used in 

solid dispersions can stabilize amorphous drugs either by their anti-plasticization 

effects (Van den Mooter et al., 2001) or by their strong interactions with the drugs 

(Huang et al., 2008; Andrews et al., 2010a, Abu-Diak et al, 2011, Abu-Diak et al., 

2012). Therefore, the rational selection of polymeric excipients is very important in 

producing stable amorphous solid dispersion (Tian et al, 2013).   

Solid dispersions can generally be prepared using melt or solvent methods. In the 

solvent method, the drug and carrier are dissolved in a mutual solvent followed by 

solvent removal. In melting method, drug/carrier solid dispersions are prepared by 

co-melting/cooling. The problems associated with the organic solvents e.g. toxicity, 

safety hazards and solvent residuals make melting the method of choice despite of 

the potential problem of thermal degradation of drugs and carriers. Over the last 

decade, hot-melt extrusion (HME) has gathered renewed interest, particularly with 



regard to production of solid dispersions (Albers et al., 2009; Lakshman et al., 2008; 

Miller et al., 2008, Tian et al., 2014).  

Polyethylene oxide (PEO) is a semicrystalline non-ionic thermoplastic polymer 

exhibiting a low melting point, rapid solidification rate and low toxicity making it ideal 

for HME and formation of amorphous solid dispersion (Zhang and McGinity, 1999). 

Due to their hydrophilic character and ability to form solid dispersions, lower 

molecular weight PEOs have been widely used as carriers to enhance the 

solubility/dissolution properties of poorly soluble drugs (Li et al., 2006; Ozeki et al., 

1997; Schachter et al., 2004). Melting of PEO followed by solidification upon cooling 

may decrease PEO crystallinity, and hence increase the amorphous PEO fraction 

(Prodduturi et al., 2005). Molecular dispersions of drugs within semicrystalline 

polymers (solid solutions) can be formed by dissolution of drug molecules within the 

amorphous domain of these polymers rather than in the crystalline fraction 

(Janssens et al., 2008, Qing et al., 2010, Abu-Diak et al., 2012). In previous studies, 

it has been shown that the dissolution of ketoprofen within the amorphous domains 

of PEO was resulted in the formation of solid solutions (Schachter et al., 2004). 

Additionally, drug/polymer miscibility may result in a decrease of PEO crystallinity 

thus leading to dissolution of larger amount of drug. This effect has been extended to 

other drugs compounds with a more recently study by Janssens et al (2008) 

confirming that the crystallinity of a polymeric carrier significantly influences the 

solubility of itraconazole (Janssens et al., 2008). However, PEO is also a highly 

crystallisable and hence a rapid decrease in its amorphous fraction can occur with 

time (Qing et al., 2010). This decreases the drug solubility and resulted in a phase 

separation and drug re-crystallization (unstable solid solutions) despite the apparent 

high solubility/miscibility of drug in the amorphous region of PEO (Schachter et al, 

2004, Li et al., 2006). Therefore, stabilizing the amorphous fraction of PEO may 

result in increasing the stability of drug/PEO solid dispersions.  

The miscibility and interactions within binary PEO-based polymer blends have been 

studied extensively in polymer sciences (Kuo and Chang, 2001; Brus et al., 2000, 

Chu and Wu, 2000; Miyoshi et al., 1996). PEO can act as a proton acceptor through 

the oxygen atom of ethylene oxide monomer (Robeson et al., 1981). It has been 

reported that PEO can form miscible polymer blends, complexes, through formation 

of specific hydrogen bonding interactions with polymers containing proton donor 



groups e.g. poly(acrylic acid) (PAA) (Smith et al., 1959), poly(methacrylic acid) 

(PMAA) (Miyoshi et al., 1996), poly(methyl vinyl ether-maleic acid) (PMVE-MAc) 

(Rocco et al., 2001), poly(vinylphenol-co-methyl methacrylate) (PVPh-co-PMMA) 

(Kuo and Chang, 2001), poly(methylmethacrylate) (Osman et al., 2005). Smith et al. 

(1959) reported that a fully amorphous inter-polymer complex resulted from 

complexation between PAA and PEO. Inhibition of amorphous PEO crystallization 

can be achieved either by anti-plasticization effects (Robeson et al., 1981) or/and 

through formation of strong specific hydrogen bonding within the miscible polymer 

blends (Rocco et al., 2001; Kuo and Chang, 2001). Therefore, we are proposing in 

here that in order to stabilising the amorphous region of PEO/drug solid dispersion, a 

polymer-PEO blend might be viable approach in the light of well-established polymer 

physics theory (Flory-Huggins Theory) 

The aim of this study was to investigate the potential effects of the miscibility and 

inter-polymer interactions in polymer blends, composed of a semi-crystalline polymer 

(PEO) and an amorphous polymer (Eudragit® S100), in stabilizing drug/PEO solid 

dispersions. In this study, HME was used to prepare PEO/Eudragit® S100 binary 

polymer blends and ternary systems containing the drug and the polymer blend. 

Celecoxib (CX), a poorly soluble non-steroidal anti-inflammatory (NSAID), was used 

as a model drug in this study. Eudragit® S100, an amorphous copolymer based on 

poly(methacrylic acid-methyl methacrylate), has been previously used as a polymeric 

matrix in pharmaceutical HME applications (Bruce et al., 2005; Schilling et al., 

2010a, 2010b). Eudragit® S100 has a high Tg and contains free carboxyl groups that 

can act as a proton donor or/and acceptor (Fadda et al., 2008). Therefore, there is a 

potential of miscibility and inter-polymer interactions in PEO/S100 polymer blends, 

which have been investigated in this study using differential scanning calorimetry 

(DSC), dynamic mechanical thermal analysis (DMTA) and fourier-transform infrared 

(FT-IR) analytical techniques.  



2.0 Materials & Methods 

2.1 Materials  

Celecoxib (CX) was a kind gift from Hikma Pharmaceuticals (Amman, Jordan), 

Eudragit® S100 (MW=135000 g/mol) was donated by Evonik Röhm GmbH 

(Darmstadt, Germany), polyethylene oxide (MW=100,000 g/mol) (PEO 100,000), 

sodium chloride, and potassium bromide were purchased from Sigma-Aldrich 

Chemie GmbH (Poole, Dorset, England).  

2.2 Methods 

2.2.1 Preparation of hot-melt extrudates 

Melt extrudates containing CX at 30% w/w were prepared using different ratios of 

PEO 100,000/Eudragit® S100 (100:0, 70:30, 50:50 and 30:70) using a co-rotating 

twin-screw extruder (Minilab, Thermo Electron Corporation, Stone, Staffordshire, UK) 

at a temperature of 150°C and a screw speed of 100 rpm. In addition, melt 

extrudates composed of similar ratios of binary polymeric systems of PEO/S100 

without CX were prepared at similar extrusion conditions. The melt extrudates were 

milled by cryogenic milling using an IKA® A11 basic analytical mill (IKA® Werke 

GmbH, Deutschland, Germany).  

2.2.2 Thermogravimetric Analysis (TGA) 

The thermal stability of CX, PEO and Eudragit® S100 was studied using a TA 

instruments Q500 TGA (Leatherhead, UK). Ramp tests were performed at a scan 

speed of 10 ºC/min over a range from 20 to 500 ºC. Nitrogen was used as the 

purging gas during all TGA experiments. 

2.2.3 Differential Scanning Calorimetry (DSC) 

DSC was used to characterize the thermal properties of the drug, polymers and melt 

extrudates. DSC analyses were conducted using Perkin-Elmer DSC 4000 

(Cambridge, UK) equipped with a refrigerated cooling system (Perkin-Elmer 

Intracooler-SP). Data analysis was performed using Pyris Manager software (version 

10.1). Samples between 5.0 and 10.0 mg were accurately weighed and placed in 

crimped aluminium pans. The measurements were conducted at a heating rate of 

10°C/min. The DSC was calibrated for baseline correction using empty pans, and for 



temperature/enthalpy using high purity metal indium and zinc. Nitrogen was used as 

the purging gas at a flow rate of 20 mL/min. All analyses were performed at least in 

duplicate.  

2.2.4 Melting point depression analysis 

Miscibility within melt extruded PEO/S100 binary polymer blends has been studied 

using melting point depression experiment. The binary mixtures were also prepared 

using mortar and pestle in comparison with melt extrusion. The reduction in the 

melting point of the crystalline phase of PEO as a function of composition and inter-

polymer interactions has been analyzed using the Nishi-Wang equation (Nishi and 

Wang, 1975):                                                                                  

𝑇𝑇𝑚𝑚 −  𝑇𝑇𝑚𝑚𝑚𝑚 =   −𝑇𝑇𝑚𝑚𝐵𝐵𝑉𝑉2 ∅12

∆𝐻𝐻2
                     Equation (1)                                                                                   

Where Tm and Tmb are melting temperatures of pure crystalline polymer and the 

blend, respectively; the subscript 1 is identified as amorphous polymer and 2 is 

identified as crystalline polymer. B is the interaction energy density between blend 

components; V2 is the molar volume of the repeating unit of the crystalline polymer; 

Ф1 is the volume fraction of the amorphous polymer in the blend; and ∆H2 is the heat 

of fusion of the crystalline polymer per mole of the repeating unit. 

The melting points of PEO in the PEO/S100 melt extrudates (30/70-90/10 mass 

ratios) determined by DSC were fitted by the Nishi-Wang equation. The B-value was 

estimated by non-linear regression analysis (GraphPad Prism® version 5.04). V2 

(37.2 cm3/mol) was calculated by summation of the volumes of the structural groups 

of the repeating unit of PEO (–CH2-CH2-O-) (Van Krevelen, 1990). The densities of 

PEO (1.18 g/cm3) and Eudragit S100 (1.12 g/cm3) were obtained from the ratios of 

molecular weights to molar volumes. The volume fraction of Eudragit® S100 (Ф1) 

was calculated from the weight fractions and densities of the components. Seven 

experimental data points were used for this fit. The coefficient of determination (R2) 

and randomness of the residuals were used to determine the goodness of fit.  

2.2.5 Dynamic mechanical thermal analysis (DMTA) 

DMTA was used in conjunction with DSC to characterize the miscibility of the binary 

polymer blends and the ternary systems. DMTA analyses were conducted using a 



TA instruments DMA Q8000 (Leatherhead, UK). Data analysis was performed using 

Universal Analysis 2000 software. Approximately 30 mg of powder samples were 

placed inside a powder clamp used in conjunction with the dual cantilever clamp. 

The powder clamp is a uniquely rectangular designed stainless steel lower tray and 

upper cover plate assembly measuring 35x12x3.0 mm. The DMTA measurements 

were conducted at a heating rate of 3°C/min with an oscillatory frequency of 1 Hz. 

and oscillatory amplitude of 20.0 µm. All measurements were performed at least in 

duplicate.         

2.2.6 Powder X-ray Diffractometry (PXRD) 

PXRD patterns were obtained using a Rigaku Miniflex II benchtop X-ray 

diffractometer (Kent, UK) provided with Miniflex II Software. Samples were placed on 

a zero background sample holder. Cu Kα1 radiation was used as an X-ray source. 

The beam produced by the X-ray tube passes through a 5° soller slit and a 1.25° 

divergence slit. The diffraction pattern was measured using a voltage of 30kV and a 

current of 15mA. The angular range (3-40° 2θ) was scanned in continuous mode 

with a step size of 0.05° and a scan rate of 3°/min. 

2.2.7 Fourier Transform Infrared (FTIR) 

FTIR analyses were performed using a Fourier Transform Infrared 

Spectrophotometer model 4100 (FT/IR-4100) (Jasco, Japan) and Jasco Spectra 

Manager Version 2 Software. A small mass of each sample was mixed with dry 

potassium bromide (KBr) using a mortar and pestle and compressed to prepare a 

disk. A scanning range of 4000–400 cm-1 was used for all samples.  

2.2.8 Stability Study 

Stability studies were conducted at 40ºC and 75% RH during a four week period. 

Samples of milled melt extrudates were placed in open weigh boats and stored at 40 

°C inside a dessicator containing a saturated sodium chloride solution. PXRD was 

used to qualitatively define the presence of crystalline drug and PEO content at 

different storage intervals. 

3 Results & Discussion 

3.1 Thermal stability 



Thermal stability of materials is a prerequisite for HME. These materials must 

not degrade at, or below, the extrusion temperature used. TGA has been widely 

used to determine the degradation temperatures of materials and hence to assess 

their thermal stability prior to HME (Bruce et al., 2005; Zhu et al., 2006). TGA can 

determine the mass loss of material as a function of temperature, therefore this 

technique has often been used to identify volatile degradants. TGA ramp test of CX 

did not exhibit any volatile degradation prior to reaching 250°C, after which 

significant mass loss was detected (data not shown). As reported previously by 

Andrews et al. (2010b), the TGA isothermal experiments confirmed the thermal 

stability of CX at a temperature of 170°C. The degradation temperatures of PEO and 

Eudragit® S100 were determined by TGA heating ramp test at 350°C and 185°C, 

respectively. These significantly higher degradation temperatures than the 

temperature used for HME (150°C) suggest that these materials were thermally 

stable during HME particularly with the short residence time within the extruder <2 

min and the absence of any signs of degradation from the formulations. Eudragit® 

S100 did lose a small percentage of total mass (~3% w/w) below a temperature of 

100°C during the TGA heating ramp test, which was assumed to be due to water 

loss. It has been reported by Schilling et al. (2010a) that the DSC thermogram of 

Eudragit® S100 displayed two broad endothermic events due to evaporation of 

unbound water below 100°C and the thermal degradation of the polymer at 200-

250°C. 

3.2 Characterization of melt extrudates  

DMTA has been widely used to detect the glass transition (Tg) of amorphous or 

semicrystalline polymers (Craig and Johnson, 1995; Jones, 1999). Therefore, this 

technique has been used in conjunction with DSC to study the miscibility of different 

polymer blends (Pomposo et al, 1996; Cascone et al. 1997; Bikiaris et al., 2004). 

Although both techniques give similar information, they vary significantly in their 

sensitivity, sample preparation and analysis (Abiad et al., 2010). In the DSC, the Tg 

is characterized by a change in heat capacity as a function of temperature as the 

material passes through the Tg temperature. A single compositional dependent Tg 

detected by DSC is an indication of full miscibility at a dimensional scale between 

20-40 nm (Kuo and Chang, 2001). In the DMTA measurement, the ratio of the loss 

modulus (viscous component) to the storage modulus (elastic component) is referred 



to as the loss tangent or tan delta (δ) (Brent et al., 1997). In general, the temperature 

at which the mechanical damping factor, tan delta or loss tangent, exhibits a 

maximum at Tg of the material. It has been demonstrated that DMTA is more 

sensitive than DSC by 1000 times in detecting the Tg of polymers (Bikiaris et al., 

2004). The ability of DMTA to accurately detect changes in the moduli of polymeric 

systems forms the basis of the experimental determination of Tg temperature (Ferry, 

1980). Even very weak molecular motions resulted from very small segments or 

parts of macromolecular chains can be detected accurately by DMTA (Wetton, 

1986). The difference between the Tg values determined by DSC and DMTA 

methods is common. In DMTA, the exact position of Tg depends mainly on the 

studied frequency, whereas in DSC Tg depends on the used heating rate (Bikiaris et 

al., 2004). 

In our study, DMTA was used to provide more detailed and accurate information 

about the Tg of formulations and hence the miscibility within the binary and ternary 

systems. The DSC and DMTA thermograms of CX, PEO, Eudragit® S100 and the 

melt extrudates are shown in Figures 1 and 2, respectively. Table 1 summerizes the 

most important thermal events that have been determined from the DSC and DMTA 

thermograms of the drug, polymers and the melt extrudates. The heat of fusion (∆Hf) 

calculated from the PEO melting transition in the DSC thermograms of the melt 

extrudates was used to estimate the relative degree of PEO crystallinity within the 

melt extrudates compared to the unprocessed PEO (Janssens et al., 2008): 

          

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (%) =  ∆𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
(∆𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃 ×𝑤𝑤%)

 × 100                Equation (2) 

 

where the heat of fusion of unprocessed PEO was calculated to be 217.2 J/g at 

specified heating rate within this experiment (assumed to be 100% crystallinity). It 

was also used in the equation 1 for the calculation of B value for PEO/Eudragit S100 

polymer blend.  

It was not possible to determine the Tg of the amorphous domain of PEO powder 

either by DSC or DMTA mostly because of its low content. Melting of semicrystalline 



polymers followed by solidification upon fast cooling may create larger amorphous 

region of the semicrystalline polymers (Prodduturi et al., 2005). To increase the 

amorphous content and ease the detection of glass transition of PEO, the 

unprocessed powder was heated above its melting point and then quench cooled in 

the DSC and DMTA instruments. The Tg of the amorphous PEO resulted from the 

quench cooled samples was determined at -38.7 °C by DMTA (tan δ peak), whereas 

DSC could not detect its Tg. Additionally, it was possible to detect the Tg of 

amorphous PEO in the melt extrudates containing pure polymer, solidified upon 

cooling at ambient conditions and immediately tested by DMTA (tan δ peak) (Figure 

2). The increase in amorphous PEO fraction in the extruded samples comparing to 

the unprocessed PEO powder was due to the fast cooling after HME and 

subsequently the generation of more amorphous PEO region. The relatively higher 

Tg of freshly prepared pure PEO melt extrudates comparing to the Tg of amorphous 

PEO resulted from quench cooling of PEO melt, may be attributed to the significantly 

higher PEO crystallinity in the melt extrudates solidified upon cooling at ambient 

conditions (77.2%) than the melt solidified by quench cooling (62.4%). In the former 

process, there was more time for PEO to re-crystallize and hence greater crystallinity 

was formed in the sample. It has been reported that PEG 6000, which has the 

greatest degree of crystallinity, has the highest Tg among PEGs (Craig, 1995). The 

decrease in the amorphous content of PEO as a result of its crystallization can result 

in increasing the chain stiffening of the polymer, lowering its chain mobility, and 

consequently increasing its Tg (Kuo and Chang, 2001; Robeson et al., 1981). 

PEO powder, a semicrystalline polymer, exhibits a sharp endotherm for its melting at 

67.9°C in the DSC. The melting point of PEO decreased to 65.8°C after HME of the 

pure polymer (Figure 1). This decrease in the melting point of PEO may be related to  

the chemical potential decrease due to the presence of more amorphous region 

comparing to the unprocessed PEO powder. The PEO melting point was decreased 

further to 63.5°C in the PEO melt samples solidified by quench cooling attributing to 

the higher cooling rate. 

Furthermore, in comparison to the physical mixture of PEO/S100 upon heat-cool-

heat cycles, a significant decrease in the melting point was obtained for all 

PEO/S100 melt extrudated samples at similar w/w fractions. DSC thermograms of 

these sample were ploted in Figure 3 together with the Nishi-Wang equation fitted to 



the PEO/S100 melt extrudated samples (Figure 3). Good agreement between the 

experimental and predicted Tmb was obtained for this system (R2≈ 0.976) with the B-

value calculated to be -0.2691 J/cm3. This suggested the applicability of Nishi-Wang 

simplified equation in assessing the miscibility and intermolecular interaction of  

polymer blends in molten state. More interestingly, a greater degree of melting 

depression, i.e. better PEO/S100 intermolecular interaction has been achieved by 

using the melt extrusion process in comparison to the mortar and pestle physical 

mixture. It also suggests that the melt extrusion may provide an optimal process for 

polymer blends to reach or close to the maximum interaction state of the system.   

Heat-cool-heat cycles were performed on Eudragit® S100 powder samples to 

remove the unbound water. Eudragit® S100, an amorphous polymer, exhibits a high 

Tg which was determined to be 165.5 °C and 172.6°C, in second heat cycle from the 

DSC and DMTA measurements, respectively. As a result of its high Tg and its 

degradation temperature that is close to its Tg, it is not possible to extrude Eudragit® 

S100 alone without plasticization. In previous reported studies, different plasticizers 

have been used for HME of Eudragit® S100 formulations (Bruce et al., 2005; 

Schilling et al., 2010a). In our study, PEO/S100 polymer blends were successfully 

extruded at a temperature significantly below the Tg of Eudragit® S100. It was not 

possible to prepare CX/Eudragit® S100 binary systems at temperatures below 

180°C, which were dark brown indicating the possibility of Eudragit® S100 and/or CX 

degradation during HME. The flow property of the extrudates was poor with very long 

residential time indicating the high melt viscosity and consequently the high shear 

forces generated inside the extruder that accelerated the degradation of Eudragit® 

S100 and potential the CX. Lin and Yu (1999) reported using reflectance FT-IR/DSC 

microspectroscopy to examine the thermal stability of Eudragit® S100 that the initial 

reaction temperature of a 6-membered ring of cyclic anhydride degradant in 

Eudragit® S100 films can be very close to 180°C. 

Macroscopic appearance of PEO melt extrudates can give initial indication about the 

PEO crystallinity and its miscibility with other polymers or drugs. Pure PEO 

extrudates were opaque after cooling. The opacity in the appearance of PEO melt 

extrudates is related to its significant content of dense crystalline regions of the 

polymer (Produtturi et al., 2005). The extruded PEO/S100 binary system at 70/30 

ratio were opaque which may give an initial indication of presence of significant PEO 



crystallinity. For these melt extrudates, the percentage of PEO crystallinity was 

calculated to be 61.1%. This indicates that a significant reduction in PEO crystallinity 

(16.7%) was achieved by the mixing with Eudragit® S100 at similar extrusion 

conditions. The melting point of PEO was further decreased to 63.5°C comparing to 

the PEO melting point of the extruded polymer (65.8°C). The depression in the 

melting point of a crystalline polymer blended with an amorphous polymer is a strong 

indication of their miscibility and interactions (Kuo and Chang, 2001). This occurs 

due to thermodynamic reasons resulted from the decrease in the chemical potential 

of the crystallisable polymer due to the addition of the second component. It has 

been reported that the melting point of PEO decreased in the PEO/poly(methyl vinyl 

ether-maleic acid) (PMVE-MAc)  binary blends as a result of inter-polymer miscibility 

and hydrogen bonding (Rocco et al., 2001). Increasing Eudragit® S100 content up to 

50% (w/w) resulted in a more transparent PEO/S100 melt extrudates. Transparency 

of polymer blends is a strong indication but not a proof of miscibility. The DSC 

thermogram of PEO/S100 binary system of 50/50 ratio has shown a completely 

absence of melting endotherm from PEO and also the appearance of single Tg after 

HME. These results indicate that PEO is presented as an amorphous form within the 

PEO/S100 system at 50/50 ratio. Similar results were obtained for PEO/S100 melt 

extrudates of 30/70 ratio. The further reduction in PEO crystallinity within the 

PEO/S100 binary systems with increasing Eudragit® S100 content indicates the 

potential interactions between PEO and Eudragit® S100 during HME and further 

mixed amorphous polymer blend has been achieved. It was also reported by Chu 

and Wu (2000) that the reduction in PEO crystallinity in phenolic resin/PEO blends 

was attributed to the specific inter-polymer hydrogen bonding through the hydroxyl 

group of phenolic and the oxygen ether of PEO.  

To further characterize the miscibility between PEO and Eudragit® S100, the Tg(s) of 

PEO/S100 binary systems were characterized by DSC and DMTA. It was not 

possible to detect the Tg of PEO/S100 (70/30) system in its DSC thermogram. This 

may be related to the presence of significant PEO crystallinity and hence the low 

amorphous PEO content in these melt extrudates. Conversely, DMTA thermogram 

exhibited a small tan δ peak at 4.93°C, which is mostly related to the Tg of 

PEO/S100 (70/30) system. However, a distinct single tan delta peak was detected in 

the DSC and DMTA thermograms of PEO/S100 (50/50) melt extrudates at -2.41 and 



8.15°C, respectively. A single Tg for the PEO/S100 50/50 polymer blend between 

the Tg of individual components strongly suggests that this polymer blend is fully 

miscible blends with a homogeneous amorphous phase (Kuo and Chang, 2001). 

This indicates the formation of a miscible single phase after HME of PEO/S100 

(50/50) system and that PEO was totally molecularly dispersed within the melt 

extrudates particularly with the total loss of PEO crystallinity. Previous studies on 

PEO binary polymer blends with different amorphous polymers reported that 

miscibility within the polymer blends has driven by the inter-polymer hydrogen 

bonding network between blend components (Miyoshi et al., 1996; Chu and Wu, 

2000; Brus et al., 2000). Conversely, DMTA thermogram of PEO/S100 (30/70) 

system showed more than one Tg between the Tg(s) of amorphous PEO and 

Eudragit® S100 at tan δ peaks of 75.9, 111.2, 164.0°C, although the DSC showed 

only a single Tg at 64.8°C. These DMTA results indicate that PEO was partially 

miscible in the PEO/S100 (30/70) system after HME. This can highlight the 

importance of using DMTA as a sensitive analytical technique to detect the Tg(s) of 

the polymer blend and hence to give more accurate conclusions about the degree of 

miscibility between its components (Lafferty et al., 2002). 

Although PEO was present in lower concentration in PEO/S100 (30/70) system than 

the 50/50 one, the 30/70 ratio was less homogeneous after HME. This non-

homogeneity in PEO/S100 (30/70) system may be related to the insufficient 

plasticization of Eudragit® S100 by PEO (30% w/w) particularly that HME was carried 

out significantly lower than its Tg. The insufficient plasticization of polymers during 

HME may result in high melt viscosity and hence low mixing efficiency of the 

materials inside the extruder. This consequently may result in non-homogeneous 

polymer blend of more than one phase.  

The DSC thermogram of crystalline CX showed a sharp endotherm at 163.2 °C 

corresponding to its melting, whereas the DMTA thermogram showed a tan δ peak 

at 162.2°C for the drug melting. Amorphous CX, prepared by quench cooling of the 

melt, exhibited a Tg at 58.9 and 68.6 °C in the DSC and DMTA (tan δ peak), 

respectively. Inclusion of CX at 30% (w/w) in PEO/S100 (30/70) system resulted in 

more homogeneous extrudates of single miscible phase. These effects might be 

related to the further plasticization effects of CX as it has significantly lower Tg in 

comparison to Eudragit® S100 and hence greater mixing efficiency.  



All freshly extruded CX/(PEO/S100) ternary systems were transparent. No melting 

transition for PEO was detected in the DSC thermograms of the CX/(PEO/S100) 

30/(50/50) and 30/(30/70) ternary systems, indicating that crystalline region of PEO 

was completely converted into amorphous after HME. However, a very small melting 

endotherm (∆H 1.1 J/g) was detected for PEO in the DSC thermogram of 

CX/(PEO/S100) 30/(70/30) system indicating the presence of PEO crystalline 

content in melt extrudates as the PEO content increases in the polymer blends. 

The observation of single Tg from DSC thermograms of all prepared CX/(PEO/S100) 

ternary systems would suggest the formation of a single miscible phase after HME. 

These DSC results were confirmed by DMTA results that also showed a single tan δ 

peak for these ternary systems. (They are not signle tan delta system from the 

DMTA other than the ratio of 50/50 PEO/S100). The Tg of these ternary systems 

increased with increasing Eudragit® S100 fraction as a result of its high Tg. The 

increase in the Tg of CX/(PEO/S100) ternary systems was in the order of 30/(70/30) 

> 30/(50/50) > 30/(30/70), -18.42, 7.25 and 44.47 °C (DSC) and -8.91, 37.67 and 

64.18°C (DMTA, tan δ peak), respectively. Although CX/PEO (30/70) binary system 

does not contain Eudragit® S100, its Tg was higher than the Tg of CX/(PEO/S100) 

30/(70/30) system, 0.65 and 12.30°C, determined by DSC and DMTA (tan δ peak), 

respectively. This higher Tg of CX/PEO (30/70) comparing to CX/(PEO/S100) 

system may be related to the significant crystallinity of PEO within the CX/PEO 

(30/70) melt extrudates (59.1%) i.e. lower amorphous PEO content and hence lower 

plasticization effects by amorphous PEO (Robeson et al., 1981).  

Nevertheless, no melting transition related to CX was detected in the DSC and 

DMTA thermograms of the CX/PEO and CX/(PEO/S100) systems. These results 

alone could not confirm the absence of CX crystallinity within the melt extrudates in 

solid state as there is a possibility that CX was dissolved within the molten PEO 

during the slow heating cycle of the DSC and DMTA runs. To further clarify the 

absence of CX crystalline form in the melt extrudates, PXRD was used to give more 

details and also to study their physical stability during storage.  

3.3 Storage stability of melt extrudates 

Figure 4 shows the PXRD spectra of crystalline CX, PEO, Eudragit® S100, and 

CX/PEO (30/70) physical mixture (PM).  The most characteristic peaks in the PXRD 



pattern of crystalline CX are located at 2θ angles of 5.6, 10.9, 15.0, 16.3, 21.7, 22.3, 

27.2 and 29.7, 32.7 and 35.1º. The PXRD pattern obtained for Eudragit® S100 

showed an amorphous “halo”.  The X-ray diffraction pattern of PEO showed distinct 

bragg’s peaks at 2θ values 19.5, 22.5, 23.7, 26.5, 27.3, 35.7, and 36.5º. The X-ray 

pattern of the CX/PEO physical mixture (3:7), showed the bragg’s peaks of PEO and 

crystalline CX albeit with lower intensities due to the dilution effect of CX in PEO. 

The most distinct non-overlapped peaks detected in the PXRD pattern of CX/PEO 

(30/70) physical mixture were located at 2θ 19.6 and 23.7 for PEO and at 2θ 11.3, 

16.6, 22.9 and 29.9 for CX as pointed out in Figure 4. These CX and PEO distinct 

peaks were used as standard for the analysis of freshly prepared melt extrudates 

and crystal growth during the stability study.  

Figures 5a-5d show the PXRD patterns of freshly prepared CX/PEO and 

CX/(PEO/S100) melt extrudates and after storage at 40°C and 75%RH up to 4 

weeks. All the characteristic CX crystal peaks were completely absent in the PXRD 

patterns of the freshly prepared melt extrudates suggesting that CX crystallinity was 

completely lost after HME. As previously discussed, DSC and DMTA showed a 

single Tg in these systems, therefore it can be deduced that CX was molecularly 

dispersed within these melt extrudates. PEO crystal peaks were clearly observed in 

the PXRD of CX/PEO melt extrudates, whereas they were completely absent in the 

CX/(PEO/S100) 30/(50/50) and 30/(30/70) ternary systems. However, very small 

PEO crystal peaks have been detected in the PXRD pattern of CX/(PEO/S100) 

30/(70/30). These PXRD results were in good agreement with the DSC results 

discussed earlier.  

We have observed that the stability of amorphous PEO within CX/(PEO/S100) 

ternary systems was highly dependent on PEO/S100 ratio which significantly 

increases in the system containing polymer blend of 50/50 ratio than other systems. 

Upon storage, a rapidly recrystallization was obervered from sample CX/(PEO/S100) 

30/(70/30) and 30/(30/70). The PEO crystal peaks were clearly detected in their 

PXRD pattern after only three days storage (Figure 5b and 5d). Interestingly, PEO 

remained in amorphous form within the ternary system containing PEO/S100 at 

50/50 ratio without re-crystallization up to 2 weeks despite of its higher PEO content 

comparing to its content in the 30/(30/70) system. Only a small PEO crystal peak at 

2θ 20.1 was detected after 2 weeks storage, which increased its intensity with time 



(Figure 5c). These results may suggest that Eudragit® S100 polymer at PEO/S100 

(50/50) ratio can provide greater stability for amorphous PEO than other PEO/S100 

ratios in the ternary systems containing similar drug CX (30% w/w). This greater 

content of amorphous PEO may provide better carrier to accommodate drug CX and 

hence may lead to greater amorphous drug stability in the storage.  

In comparison to ternary system, CX/PEO(30/70) solid dispersion re-crystallized 

rapidly. Its PXRD pattern showed distinctive CX crystal peaks after three days 

storage. These peaks increased in their intensities with increasing storage time 

(Figure 5a). In general, greater physical stability for CX was achieved by inclusion 

Eudragit® S100 polymer into CX/PEO solid dispersion. More interestingly, similar to 

the stability of amorphous PEO, the drug stability may also increase in the system 

containing polymer blend at 50/50 ratio. This suggests the stabilizing of amorphous 

PEO may result in an increase in the stability of dissolved CX molecules within the 

solid dispersion. Similar to CX/PEO 30/70 binary system, amorphous CX re-

crystallized rapidly from the CX/(PEO/S100) 30/(70/30) and 30/(30/70) systems after 

3 days storage but with lower CX crystal peaks number and intensities. Furthermore, 

no CX crystal peaks were detected in the PXRD pattern of the ternary system of 

30/(50/50) up to 4 weeks under stress conditions (the duration of the stability study).  

It should be noted that, due to the high miscibility between CX and molten polymer 

PEO during the extrusion (under low temperature condition), most of dissolved drug 

CX should be distributed within the amorphous region of polymer PEO. Therefore, 

we propose that, this superior storage stabilization of CX in this system may be 

attributed to the stabilization of amorphous domain of PEO using amorphous 

polymer Eudragit S100, which consequently resulted in the stabilizing the drug 

dissolved within it.  

3.4 The effect of amorphous polymer Eudragit S100 

It has been previously demonstrated that physical stabilization of amorphous solid 

dispersions may be related to antiplasticization effects by blending with polymers 

with higher Tg. Formation of miscible systems (solid molecular dispersions) of single 

Tg that is significantly higher than the Tg of amorphous drugs can result in enhanced 

stability by decreasing their molecular mobility (Van den Mooter et al., 2001). 

Although the Tg of the CX/(PEO/S100) 30/(50/50) system was significantly lower 



than the Tg of CX (PEO/S100) 30/(30/70), the stability of both amorphous PEO and 

CX were significantly greater. This means that the anti-plasticization effects achieved 

by increasing Eudragit S100 amount in the ternary systems was not the predominant 

mechanism in this physical stabilization of amorphous PEO and CX. Another 

reported mechanism of stabilizing amorphous solid dispersions is through formation 

of strong specific drug/polymer interactions (Huang et al., 2008). Certain types of 

molecular association are needed to achieve crystallization, so disruption of the 

hydrogen bond patterns in amorphous compounds would be useful in the physical 

stabilization of amorphous phases. Thus by targeting the proton donor and/or 

acceptor groups in the amorphous drug to interact with the polymer can result in 

inhibition of crystallization of the amorphous form (Tang et al., 2002). CX/PEO 

(30/70) solid solution was relatively unstable comparing to the ternary systems 

containing similar drug amount. This means that CX/PEO intermolecular interactions, 

if exist, has no significant role in such stabilization of CX in the ternary systems. 

Increasing polymer/drug ratio may increase the strength of hydrogen bonding 

between the drug and polymer, as this makes the polymer functional groups are 

more available for interactions with drug molecules. Ozeki et al. (1997) reported that 

the strength of hydrogen bonding increased with increasing PEO content in 

flurbiprofen/PEO solid dispersions. Additionally, the strength of hydrogen bonding 

increased significantly with increasing polyvinylpyrrolidone (PVP) concentration in 

felodipine solid dispersions (Karavas et al., 2006). If any intermolecular interactions 

between CX and Eudragit® S100 formed during HME, they would be stronger and 

more significant in CX/(PEO/S100) 30/(30/70) system than 30/(50/50) as it has 

higher Eudragit® S100/CX ratio. Therefore, drug/polymer interactions might not be 

the main reason behind the stabilization of amorphous CX within the CX30/(50/50) 

system. These findings highlight the importance of investigating the role of inter-

polymer interactions in such stabilization, which has not been explored in 

pharmaceutical literature before. 

The high miscibility between PEO and Eudragit® S100 after HME suggests that 

specific inter-polymer interactions might have been formed, which mostly stabilized 

the amorphous region of PEO and consequently the drug molecules dissolved within 

the inter-polymer network.  It has been shown that PEO crystallization was retarded 

and even inhibited by adding the amorphous poly(vinylphenol-co-



methylmethacrylate) (PVPh-co-PMMA) copolymer through formation of hydrogen 

bonding between the hydroxyl group of PVPh-co-PMMA and the ether oxygen of 

PEO (Kuo and Chang, 2001).  

Infrared spectroscopy has been proven a highly effective means of investigating 

specific interactions between polymers. FTIR studies were conducted in order to 

characterize the type of the inter-polymer interactions within the melt extrudates. The 

chemical structure of PEO consists of repeat units of polyethylene oxide monomers 

(–CH2-CH2-O-). PEO can act as a proton acceptor through the oxygen ether of the 

ethylene oxide monomer (Robeson et al., 1981), which may interact with the proton 

donor group of Eudragit® S100, the carboxylic acid group, during HME. The FTIR 

spectrum of PEO showed a triplet peak in the region of 1000-1200 cm-1 (1054, 1095, 

and 1150 cm-1), which were related to the stretching vibration of C-O-C bond 

(Socrates, 1994). The intensity and shape of the C-O-C stretching mode of PEO with 

the significant decrease in their positions were indicative of formation of strong 

specific hydrogen bonding between PEO and PMVE-MAc (Rocco et al., 2001). 

Unfortunately, the FTIR spectrum of Eudragit® S100 exhibited strong peaks at this 

region due to the stretching vibrations from the C-O-C of the ester group of 

melthylmethacrylate monomer (Socrates, 1994). Additionally, amorphous CX 

exhibited bands of significant intensities in this region (Gupta and Bansal, 2005). 

Therefore, it was difficult to make definite conclusions about any significant changes 

in the stretching vibration bands of the oxygen ether of PEO that might have been 

occurred after HME due to the overlapping from the CX and Eudragit® S100 peaks.  

The broad absorption band located in the region of 3157-3678 cm-1 in the FTIR 

spectrum of PEO was due to the stretching vibration of the O-H bonded to C-H. 

However, the stretching band of OH group of Eudragit® S100 was higher in its 

intensity and located in a wider region 3046-3727 cm-1 (centred at 3435 cm-1). In the 

binary polymer blends and ternary systems, the stretching broad band of PEO was 

overlapped by the relatively more intense band of the O-H bonded to C=O group of 

methacrylic acid of Eudragit® S100. After HME, this band has been shifted toward 

lower frequencies (red shift) in the spectra of both binary and ternary polymer blends 

comparing to corresponding physical mixtures. This red shifting may be attributed to 

the formation of inter-polymer hydrogen bonding interactions between the OH group 

of Eudargit® S100 (proton donor) and the oxygen ether of PEO (proton acceptor).  



Interestingly, more significant shift in the position of the OH stretching band of 

Eudragit® S100 has been occurred after HME of the binary polymer blend at 50/50 

ratio comparing to the other polymer blends suggesting stronger hydrogen bonding 

(Figure 6a). Similarly, the ternary system containing a polymer blend of 50/50 ratio 

exhibited further red shifting (3426 cm-1) in the position of the OH group from 

Eudragit® S100 than the other ternary systems, which was located at 3431 cm-1 and 

3433 cm-1 in the spectra of CX/(PEO/S100) (30/(70/30) and 30/(30/70), respectively. 

For the lower wavenumber range in the FTIR, the stretching vibration band of C=O 

group of the free carboxyl groups in methylmethacrylic acid of Eudragit® S100 was 

detected at 1705 cm-1. The very low intensity of this band was mostly due to the 

overlapping from the more intense stretching vibration band of the esterified carbonyl 

group (1731 cm-1), particularly that the ratio of the free carboxyl groups to the ester 

groups in Eudragit® S100 is approximately 1:2. It was not possible to detect this 

band in the spectra of the PEO/S100 physical mixture samples due to the dilution 

effect. Interestingly, after HME of the binary polymer blends, it was possible to detect 

two separate small stretching bands related to the C=O of the carboxyl groups of 

Eudragit® S100 (Figure 6b). The red shifts in one of these bands toward lower 

frequencies may be attributed to the formation of hydrogen bonding between the 

C=O of the carboxyl groups of Eudragit® S100 and the hydroxyl group (OH) of PEO. 

Conversely, blue shifts toward higher frequencies have been occurred to the 

corresponding band. These blue shifts might be resulted from the weakness or 

disruption of the intra- or/and intramolecular interactions between the C=O bonded to 

O-H within Eudragit® S100 molecules as a result of the hydrogen bonding formation. 

Furthermore, the intensities of these bands in PEO/S100 melt extrudates increases 

in the order 50/50 > 70/30 > 30/70. Interestingly, this order was in a good agreement 

with the degree of red shifting that has been recorded in the position of OH 

stretching band of Eudragit® S100 after HME. Increasing PEO content in PEO/S100 

binary blend resulted in increasing inter-polymer interactions significantly from 30% 

to 50% PEO then the strength of hydrogen bonding decreased as a result of further 

increase in PEO and the significant PEO crystallinity within the melt extrudates. Kuo 

and Chang (2001) have reported similar trend that, the inter-polymer hydrogen 

bonding interactions between PEO and PVPh-co-PMMA were largely depended on 

the PEO content within the binary polymer blends. 



In our study, the intensities of C=O stretching band of the Eudragit® S100 in the 

binary polymer blend of 50/50 was the greatest among other systems. This gives 

further evidence of formation of stronger hydrogen bonding within the melt 

extrudates of PEO/S100 at ratio 50/50 than the other ratios. An increase in the band 

intensity can give a more reliable indication of the hydrogen bonding than the red 

shift of stretching frequency (Lutz and Jacob, 1996). Similar findings have been 

deduced from the FTIR spectra of the ternary systems that, the intensities of the 

peaks related to the stretching vibration of C=O of the carboxyl  groups of Eudragit® 

S100 increased after HME particularly in the ternary system containing PEO/S100 

(50/50). It clearly suggests the existence of stronger inter-polymer hydrogen bonding 

at this ratio comparing to other ternary systems. These results indicate that the 

strong inter-polymer hydrogen bonding that has been formed between the carboxyl 

groups of Eudragit® S100 and the oxygen ether of PEO in the binary polymer blend 

still presented in the ternary system at ratio of 50/50. We propose that, the strong 

inter-polymer network was mostly responsible for the greatest physical stabilization 

of amorphous PEO within the ternary system of 30/(50/50) ratio, and consequently 

the predominant mechanism in stabilizing the molecularly dispersed CX molecules.  

4.0 Conclusions 

This study highlighted the importance of inter-polymer interactions in stabilizing 

amorphous solid dispersions of poorly soluble drug system. The high miscibility 

between PEO and Eudragit® S100 at specific ratio and the stabilization effects of on 

amorphous PEO resulted in enhanced the storage stability of amorphous CX solid 

dispersion within the inter-polymeric complexity. DMTA analytical technique was 

efficient in detecting the Tg of amorphous PEO and consequently in studying the 

miscibility within the prepared systems. FTIR studies gave evidence of formation of 

strong inter-polymer hydrogen bonding particularly in the system containing polymer 

blend of 50/50 ratio. This was in good agreement with PXRD studies that showed 

greater stabilization in this system comparing to other systems. In this study, the 

inter-polymer interactions showed higher effects than the antiplasticization effects by 

Eudragit®S100 in stabilizing the amorphous PEO and consequently the dissolved CX 

molecules. This suggests that these inter-polymer interactions were the predominant 

mechanism behind such stabilization.  
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Table 1. The most important thermal events determined from the DSC and DMTA    

thermograms of CX, PEO, Eudragit® S100 and the melt extrudates.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. 
 
  

             Tm (°C)                 ∆H (J/g)                                  Tg (°C)          
              DSC            DMTA (Tan δ peak) 

CX 163.2 84.0  58.9   68.6 
PEO powder 67.9  217.2  ND  -38.7 
PEO HME           65.8 167.5 ND  -30.0 
Eudragit® S100     165.5                                                               172.6 
CX/PEO      

30/70  89.8 0.65                              12.3 
PEO/S100 

30/70 ND ND  64.8 75.9, 111.2, 164.0 
50/50 ND ND -2.41  8.15 
70/30 63.5 92.8   5.70  4.93 

CX/(PEO/S100) 
30/(30/70)  ND  44.5  64.2 
30/(50/50)  ND               7.3 37.7 
30/(70/30)  1.07             -18.4               -8.9 

ND : PEO enthalpy could not be detected i.e. complete loss of PEO crystallinity (totally amorphous). 
Values in brackets represent the PEO % crystallinity calculated based on equation (1). 

 
 
 
 
 
 
 
Figure Captions 



 
Figure  1. DSC thermograms of CX, PEO, Eudragit® S100 and the melt extrudates  
(     represents the Tg position). 
 
Figure 2. DMTA thermograms of CX, PEO, Eudragit® S100 and the melt extrudates  
(     represents the Tg position). 
 
Figure 3. Fit of experimental data to Nishi-Wang equation: Tmb of PEO in Eudargit® 
S100 system prepared by physic mixture () melt extrudates obtained from 
experimental data (); predicted by Nishi-Wang equation (  ̶  ). 
 
Figure  4. PXRD patterns of CX, Eudragit® S100, PEO and CX/PEO PM (30/70). 
 
Figure 5. PXRD patterns of freshly prepared melt extrudates and after storage at 
40°C and 75% RH up to 4 weeks. a) CX/PEO (30/70); b) CX/(PEO/S100) 30/(70/30); 
c) 30/(50/50); d) 30/(30/70). 
 
Figure 6. FTIR spectra of PEO/S100 binary polymer blends a) 3000-4000 cm-1; b) 
1600-1800 cm-1.    
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Figure 2 
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Figure 5a 
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Figure 5b 
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Figure 5c 
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Figure 5d 
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Figure 6a (it is hard to see the shifts and intensity difference) 
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Figure 6b (hard to see the shoulders in 1700+ and intensity difference)    
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