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An Efficient Precoder Design for Multiuser MIMO
Cognitive Radio Networks with Interference

Constraints
Van-Dinh Nguyen, Le-Nam Tran, Member, IEEE, Trung Q. Duong, Senior Member, IEEE,

Oh-Soon Shin, Member, IEEE, and Ronan Farrell, Member, IEEE

Abstract—We consider a linear precoder design for an un-
derlay cognitive radio multiple-input multiple-output broadcast
channel, where the secondary system consisting of a secondary
base-station (BS) and a group of secondary users (SUs) is allowed
to share the same spectrum with the primary system. All the
transceivers are equipped with multiple antennas, each of which
has its own maximum power constraint. Assuming zero-forcing
method to eliminate the multiuser interference, we study the sum
rate maximization problem for the secondary system subject to
both per-antenna power constraints at the secondary BS and the
interference power constraints at the primary users. The problem
of interest differs from the ones studied previously that often
assumed a sum power constraint and/or single antenna employed
at either both the primary and secondary receivers or the
primary receivers. To develop an efficient numerical algorithm,
we first invoke the rank relaxation method to transform the
considered problem into a convex-concave problem based on a
downlink-uplink result. We then propose a barrier interior-point
method to solve the resulting saddle point problem. In particular,
in each iteration of the proposed method we find the Newton
step by solving a system of discrete-time Sylvester equations,
which help reduce the complexity significantly, compared to
the conventional method. Simulation results are provided to
demonstrate fast convergence and effectiveness of the proposed
algorithm.

Index Terms—MIMO, broadcast channel, beamforming, cog-
nitive radio, zero-forcing, sum rate maximization.

I. INTRODUCTION

Radio frequency spectrum has recently become a scarce and
expensive wireless resource due to the ever increasing demand
of multimedia services. Nevertheless, it has been reported in
[1] that the majority of licensed users are idle at any given time
and location. To significantly improve spectrum utilization,
cognitive radio (CR) is widely considered as a promising
approach. There are two famous CR models, namely oppor-
tunistic spectrum access model and spectrum sharing model.
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In the former, the secondary users (SUs, unlicensed users)
are allowed to use the frequency bands of the primary users
(PUs, licensed users) only when these bands are not occupied
[2]–[6]. In the latter, the PUs have prioritized access to the
available radio spectrum, while the SUs have restricted access
and need to avoid causing detrimental interference to the
primary receivers [7]–[9]. Towards this end, several powerful
techniques such as spectrum sensing and beamforming design,
have been used to protect the PUs from the interference from
the SUs and to meet quality-of-service (QoS) requirements
[10]–[13].

It is well-known that transmit beamforming has enormous
potential to improve the capacity of wireless communication
systems without requiring extra bandwidth or transmit power.
In fact, a popular method to control the interference that has
been widely used in the literature is based on zero-forcing
(ZF) technique, which places null spaces at the beamforming
vector of each co-channel receiver. Specifically, successive
zero-forcing dirty paper coding (SZF-DPC) was introduced
in [14] for single-antenna receivers and was extended to
multiple-antenna receivers in [15]. Inspired by these two
works, the authors in [16], [17] proposed efficient numerical
methods based on a barrier method to solve the throughput
maximization problem. These approaches were shown to have
a superior convergence behavior compared to a two-stage
iterative method based on the dual subgradient method [18].

The throughput maximization of a CR network was opti-
mally solved in [11], which considered a single secondary
multiple-input multiple-output (MIMO)/multiple-input single-
output (MISO) link under the constraint of opportunistic
spectrum sharing. Multiple antennas are exploited at the sec-
ondary transmitter to optimally trade off between attaining the
maximal throughput and meeting the interference threshold
at the primary receivers. The throughput of the SU link
was studied with instantaneous or average interference-power
constraint at a single PU in [19]. When multiple SUs access
a single-frequency which is licensed to one PU, a QoS
constraint for each secondary link is solved efficiently using a
geometric programming method under the interference-power
constraint at some measured point [20], [21]. The authors
in [22] considered maximizing the smallest weighted rate
and proposed distributed algorithms for optimal beamforming
and rate allocation. The channel capacity of CR networks
with two users was presented in [23], where the cognitive
user is assumed to know the message of the primary user
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non-causally prior to transmissions. The impact of average
interference power and peak interference power constraints on
the ergodic capacity of CR networks was compared in [24]. In
[25], an enhanced spectrum sensing scheme was proposed to
improve the optimal power allocation strategy in CR networks.
In parallel lines, beamforming design technique was applied
to control the total amount of interference caused by the
secondary transmitter, thereby enhancing the channel capacity
of CR MIMO networks [26], [27].

The sum rate (SR) maximization problem of CR has been
a classical one in wireless system design [28]–[31]. In par-
ticular, the authors in [28] considered the weighted sum rate
(WSR) maximization problem for CR multiple-SUs MIMO
broadcast channel (BC) under the sum power constraint and
the interference power constraints. The problem is shown
to be a nonconvex problem but can be transformed into an
equivalent convex CR MIMO multiple access channel (MAC)
problem via the general BC-MAC duality result. The problem
of WSR maximization for multiple MISO SUs in the presence
of multiple primary receivers was addressed in [29], where an
iterative algorithm based on the subgradient method was pro-
posed to determine the beamforming vectors. For the MIMO
ad hoc CR network considered in [30], a semidistributed
algorithm and a centralized algorithm based on geometric
programming and network duality were introduced under the
interference constraint at the primary receivers in order to
obtain a locally optimal linear precoder for the non-convex
WSR maximization problem. In [31], the authors investigated
a CR multiple-antenna two-way relay network, where optimal
relay beamforming and suboptimal beamforming vectors were
obtained based on the subspace projection and power control
algorithms that are proposed to satisfy the power budget as
well as the interference power constraints. However, all of
these algorithms generally have high computational complex-
ity and slow convergence.

Very recently, the SR maximization for CR MISO-BC with
a very large number of antennas at the secondary transmitter
was studied in [32]. For the general case, a low-complexity
suboptimal beamforming scheme based on partially-projected
regularized ZF beamforming was applied to obtain a closed-
form beamformer, and then deterministic approximations for
large system analysis were also derived. The authors in [33],
[34] studied a WSR maximization problem with a collection of
multiple PUs and SUs sharing a common frequency-flat fading
channel. Under the interference power and transmit power
constraint, a reformulation-relaxation technique was proposed
to solve a convex optimization problem over a closed bounded
convex set in the rate domain to bound the optimal value,
and a branch-and-bound algorithm is used to find a globally
optimal solution to the WSR maximization problem. Most
of prior research on beamforming design for CR networks
assumed that single antenna is employed at either both the
primary and secondary receivers or the primary receiver. To the
best of our knowledge, the SR maximization problem in more
general cases for CR MIMO-BC networks in the presence of
multiple SUs and PUs is still an open research and has not
been investigated previously.

In this paper we consider a CR network where the secondary

system consisting of a multiantenna BS sends data to multiple
users on its downlink channel while satisfying the interference
limit that it may cause to the legitimate users of the primary
system. We note that the capacity of the downlink transmission
of the secondary system can be achieved through DPC [35].
However, DPC is difficult to implement in practice since it
is a nonlinear precoding technique with high implementation
complexity. In this paper we adopt ZF precoding which has
been widely used in the literature thanks to its simplicity and
effectiveness at the secondary base station (BS), and consider
the SR maximization problem subject to per-antenna power
constraints (PAPC) at secondary BS and the interference power
constraint at PUs. By a standard rank relaxation method, the
precoder design problem can be cast as a semidefinite program
which can be solved by generic conic solvers such as SeDuMi
[36] or SDPT3 [37]. However, we do not follow such approach
for the following two reasons. First, it provides little useful
insights into the structure of the optimal precoder. Second,
its computational complexity is generally very high since
specifications of the considered problem are not exploited. In
this paper, our contributions include the followings

• We reformulate the SR maximization problem for the
considered CR MIMO system subject to PAPCs and in-
terference constraints into a concave-convex (also known
as minimax) program by extending a BC-MAC duality
result. To do this we first apply a standard rank relaxation
method and then prove that the relaxation is tight. In
particular, we show that the PAPCs and interference
constraints will become equality constraints in the derived
convex-concave program.

• We customize the barrier method to find a saddle point
(i.e., an optimal solution) of the convex-concave program.
The proposed algorithm is basically an iterative Newton-
type method which is customized to exploit the special
features of the design problem. Explicitly, in each it-
eration to find the Newton step, we arrive at a system
of Sylvester equations which is less complex to solve,
compared to a generic method based on solving a system
of linear equations.

• We provide extensive numerical results to justify the
novelty of the algorithm and compare its performance
with suboptimal solutions. In particular, the numerical
results demonstrate a superlinear convergence rate of
the proposed algorithm and superior performance on
achievable sum rate over the suboptimal solutions.

The rest of the paper is organized as follows. System model
and the formulation of the SR maximization problem are
described in Section II. In Section III, we present the proposed
algorithm to solve the considered problem. Numerical results
are provided in Section IV, and Section V concludes the paper.

Notations: Bold lower and upper case letters represent
vectors and matrices, respectively; HH and HT are Hermitian
and normal transpose of H, respectively; tr(H) and |H| are
the trace and the determinant of H, respectively; IN represents
an N × N identity matrix. [x]i is the ith entry of vector x.
[H]i,j is the entry at the ith row and jth column of H. en is the
nth unit vector (all entries are zero except for the nth element
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Figure 1: A cognitive network model with multiple SUs and
PUs.

which is 1). diag(x), where x is a vector, denotes a diagonal
matrix with diagonal elements of x. The notation X � 0
represents that X is a positive semidefinite matrix. N (H)
denotes the null space of H and λmax(X) is the maximum
eigenvalue of X.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cognitive transmission scenario where an N -
antenna secondary BS sends data to K SUs in the presence of
M PUs as shown in Fig. 1. The secondary system is allowed
to share the same spectrum band licensed to the primary
system. In an underlay cognitive network, the secondary
BS must adapt its transmit power to satisfy an interference
power constraint at the mth PU which is denoted by Im,
for m = 1, 2, · · · ,M . The numbers of receive antennas at
the kth SU and the mth PU are denoted by nk and ñm,
respectively, and their channel matrices (to the secondary
BS) are represented by Hk ∈ Cnk×N , for k = 1, · · · ,K,
and Gm ∈ Cñm×N , for m = 1, · · · ,M , respectively. We
assume that Hk, ∀k and Gm, ∀m remains constant during a
transmission block and change independently from one block
to another. We further assume that the channel matrices can
be perfectly known at the secondary BS, using a genie added
feedback. Though this assumption is quite ideal, it has been
considered in [28], [29], [32] to study their problems of interest
in the context of CR networks. In reality, perfect channel
estimation is hardly achieved and thus the results obtained in
this paper may act as an upper bound on the SR performance
for the secondary transmission in an underlay CR network.

In the considered system, linear precoding is employed at
the secondary BS to transmit data to the SUs. Specifically, the
vector of transmitted symbols of the kth SU, denoted by xk, is
multiplied by the precoder Tk ∈ CN×Lk , Lk ≤ min(N,nk),
before being transmitted. We assume that E[xkx

H
k ] = I.

In this way, the complex baseband transmitted signal at the

secondary BS can be expressed as

x =

K∑

k=1

Tkxk (1)

and the received signal at the kth SU is given by

yk = HkTkxk +
∑

j 6=k

HkTjxj + zk (2)

where zk ∈ Cnk×1 is the background noise with distribution
CN (0, Ink

). According to ZF precoding, we need to design
Tj such that HkTj = 0 for all j 6= k. Consequently, the
problem of SR maximization for cognitive transmission is
mathematically formulated as

max
{Tk}

K∑

k=1

log |I + HkTkT
H
k HH

k | (3a)

s. t. HkTj = 0, ∀j 6= k (3b)
K∑

k=1

[TkT
H
k ]n,n ≤ Pn, ∀n ∈ N (3c)

K∑

k=1

tr(GmTkT
H
k GH

m) ≤ Im, ∀m ∈M (3d)

whereN , {1, 2, · · · , N} andM , {1, 2, · · · ,M}. Here, the
constraint in (3c) is the power constraints for the nth antenna
at the secondary BS. We remark that an antenna is often
equipped with its own power amplifier (PA). Thus, we may
need to limit the maximum transmit power on each antenna for
it to operate within the linear region of the PA, which is more
power efficient [39], [40]. The per-antenna power constraints
(PAPCs) in (3c) different from those considered in [28], [32],
but we note that the proposed solution introduced in this paper
also applies to the sum power constraint (SPC) after slight
modifications. This will be elaborated in the Appendix. In
fact the interference from the secondary BS to a particular
PU is a matrix, which is non-degrading. This is different from
the case of PUs with single antenna in which the interference
is a scalar, referred to as interference temperature [28]. The
constraints in (3d) indicate that the sum of all eigenvalues
of the resulting interference matrix should be less than a
predetermined interference threshold Im at the mth PU. We
can rewrite (3d) as

∑ñm

i=1

∑K
k=1 gm,iTkT

H
k g

H
m,i ≤ Im, where

gm,i ∈ C1×N denotes the channel from the secondary BS
to the ith receive antenna of the mth PU. We note that
the term

∑K
k=1 gm,iTkT

H
k g

H
m,i represents the interference

temperature at the ith antenna of the mth PU. In this way,
(3d) implies that the sum of the interference temperatures of
all antennas at the mth PU should be smaller than or equal
to a predetermined threshold. There are possibly other ways
to control the interference generated by the secondary system.
For example, we may force the maximum eigenvalue or the
determinant (equivalent to the product of eigenvalues) of the
interference matrix to be smaller than a threshold. We remark
that all these ways of controlling the interference term are the
same for single-antenna PUs.

To further simplify (3), let H̄k =
[HT

1 · · ·HT
k−1 HT

k+1 · · ·HT
K ]T ∈ C(nR−nk)×N , where
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nR =
∑K
k=1 nk is the total number of receive antennas.

The condition for (3b) to be feasible is that N (H̄k) has a
dimension larger than zero, i.e., nR−nk > 0, for all k. In this
paper, we assume that the problem design in (3) is feasible,
which can be met when N −∑i6=k ni ≥ nk and the channel
matrices of the SUs and PUs have sufficiently low correlation
degree. Let V̄k be the null space of H̄k, then V̄k ∈ CN×n̄k

is a basis of N (H̄k), where n̄k = N −∑i 6=k ni. Then we
can write Tk = V̄kT̄k, where T̄k are the solutions to the
following problem

max
{T̄k}

K∑

k=1

log |I + HkV̄kT̄kT̄
H
k V̄H

k HH
k | (4a)

s. t.

K∑

k=1

[V̄kT̄kT̄
H
k V̄H

k ]n,n ≤ Pn, ∀n ∈ N (4b)

K∑

k=1

tr(G̃mkT̄kT̄
H
k G̃H

mk) ≤ Im,∀m ∈M (4c)

where G̃mk , GmV̄k ∈ Cñm×n̄k . Note that the problem
(4) is not a convex program and indeed different from [16],
where only conventional MISO systems were considered, i.e.,
without interference constraints. Moreover, we will solve (5)
through a BC-MAC duality, in contrast to dealing with the
primal domain as done in [17]. Towards this end we consider
the following problem.

max
{Sk}�0

K∑

k=1

log |I + H̃kSkH̃
H
k | (5a)

s. t.

K∑

k=1

[V̄kSkV̄
H
k ]n,n ≤ Pn, ∀n ∈ N (5b)

K∑

k=1

tr(G̃mkSkG̃
H
mk) ≤ Im,∀m ∈M (5c)

rank(Sk) ≤ nk, ∀k (5d)

where H̃k = HkV̄k ∈ Cnk×n̄k and Sk = T̄kT̄
H
k . Though (5)

is a nonconvex program, it can be solved to global optimality
by dropping the rank constraints in (5d) and then considering
the so-called rank relaxed problem. We will prove shortly that
the optimal solutions of the relaxed problem must satisfy the
rank constraints in (5d), meaning that the rank relaxation is
tight. Thus, from now onwards, we will consider the relaxed
problem of (5) in the sequel of the paper, instead of (5) in the
original form.

To solve the relaxed problem of (5), we can modify the
method presented in [18] which is based on the subgradient
method. However, subgradient methods generally converge
very slow in practice. Herein we propose an efficient method
to solve it using a barrier method which is known to have
superlinear convergence property.

III. PROPOSED ALGORITHM

In this section, we first transform the problem (5) into
an equivalent convex-concave problem [41, Section 10.3.4],
thereby showing the structure of the optimal precoder Sk.

We then propose a numerical algorithm to solve the convex-
concave problem by customizing interior-point methods to find
a saddle point (i.e., an optimal solution). The development of
the proposed algorithm is particularly based on the following
theorem.

Theorem 1. Consider the following convex-concave problem.

min
ψ≥0

max
{Qk}�0

∑K
k=1 log

|V̄H
k ΛV̄k+H̃H

k QkH̃k|
|V̄H

k ΛV̄k|

s. t.
∑K
k=1 tr(Qk) ≤ P

pTψ ≤ P.
(6)

where Λ = diag(η) +
∑M
m=1 λmGH

mGm, ψ = [ηT λT ]T ,
and p = [p̄T Ī

T
]T . We note that the objective function in

(6) is convex in ψ for fixed {Qk}, and concave in {Qk} for
fixed ψ, hence the name convex-concave. Let Ωk = V̄H

k ΛV̄k,
and UkDkV

H
k be a singular value decomposition (SVD) of

H̃kΩ
−1/2
k where Dk is square and diagonal. Then, the optimal

solution Sk of (5) can be obtained from that of (6) as

Sk = Ω
−1/2
k VkU

H
k QkUkV

H
k Ω

−1/2
k . (7)

Proof: Please refer to the Appendix.
Remark 1. Theorem 1 is different but similar in many ways
to Theorem 2 in [16] which is only dedicated to PAPCs
and MISO cases. Our duality result in Theorem 1 can be
viewed as an extension of the duality results in [16] to the
case of multiple linear constraints and MIMO cases. Since
rank(Qk) ≤ nk, it follows that rank(Sk) ≤ nk, which means
the relaxed problem of (5) is equivalent to (4).
Remark 2. Before proceeding further we provide some
insights into the convex-concave program in (6). Let
f̃(ψ, {Qk}) ,

∑K
k=1 log

|V̄H
k ΛV̄k+H̃H

k QkH̃k|
|V̄H

k ΛV̄k|
, i.e., the objec-

tive of (6). Then a problem closely related to (6) is given by

max
{Qk}�0

min
ψ≥0

f̃(ψ, {Qk})

s. t.
∑K
k=1 tr(Qk) ≤ P

pTψ ≤ P.
(8)

We can say that (ψ∗, {Q∗k}) is a solution to the convex-
concave program or a saddle-point for the problem, if for all
ψ and {Qk}

f̃(ψ∗, {Qk}) ≤ f̃(ψ∗, {Q∗k}) ≤ f̃(ψ, {Q∗k}). (9)

Since f̃(ψ, {Qk}) is differentiable, the above inequality im-
plies that the strong max-min property holds, i.e.,

max
{Qk}

min
ψ

f̃(ψ, {Qk}) = min
ψ

max
{Qk}

f̃(ψ, {Qk}). (10)

It is clear from the above discussions that solving (6)
boils down to finding a saddle point for the convex-concave
problem for which we will propose a computationally efficient
algorithm. First, as intermediate results when proving Theorem
1 (see the steps from (42) to (48) in the Appendix), we
can set the inequality constraints to be equality ones without
affecting the optimality. Based on this observation, it is more
computationally efficient1 to consider the following problem

1The equality constraints are generally easier to handle when using a barrier
method to solve an optimization problem. The reason is that we need to
introduce a barrier function (i.e. the log function in our case) to deal with
inequality constrains, while we do not need to do so for equality constraints.
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rather than problem (6).

min
ψ≥0

max
{Qk}�0

∑K
k=1 log

|V̄H
k ΛV̄k+H̃H

k QkH̃k|
|V̄H

k ΛV̄k|

s. t.
∑K
k=1 tr(Qk) = P

pTψ = P.

(11)

The proposed method is a result of applying a barrier method
to find a saddle point for problem (11). According to the
barrier method, we consider the modified objective function
given by

f(t,ψ, {Qk}) =

K∑

k=1

log
|V̄H

k ΛV̄k + H̃H
k QkH̃k|

|V̄H
k ΛV̄k|

−1

t

N+M∑

i=1

log(ψi) +
1

t

K∑

k=1

log |Qk|
(12)

where log |Qk| and log(ψi) are the logarithmic barrier func-
tions accounting for the positive semidefinite matrix constraint
Qk � 0 and ψi ≥ 0, respectively, and t > 0 is a parameter
that controls the logarithmic barrier terms. Given a fixed value
t, the barrier method requires solving the following equality
constrained minimax problem

min
ψ≥0

max
{Qk}�0

f(t,ψ, {Qk}) (13a)

s. t.

K∑

k=1

tr(Qk) = P (13b)

pTψ = P. (13c)

The main idea of interior-point method is that, given a fixed
value t, we find an optimal solution ({Qk},ψ) to (13) which
is referred to as the centering step, and then increase t until
the duality gap of the minimax optimization problem in (13)
satisfies an accuracy level. We start with KKT conditions for
(13), which are shown at the top of the next page, where
vk,i = V̄H

k ei, i.e., vk,i is the ith column of V̄H
k , and µi, i =

{1, 2}, are the dual variables corresponding to the constraints
in (13b) and (13c), respectively. In (14a), we have utilized the
fact that the gradient of

∑K
k=1 log

|V̄H
k ΛV̄k+H̃H

k QkH̃k|
|V̄H

k ΛV̄k|
with re-

spect to Qk is given by ∇Qk

∑K
k=1 log

|V̄H
k ΛV̄k+H̃H

k QkH̃k|
|V̄H

k ΛV̄k|
=

H̃k

(
V̄H
k ΛV̄k + H̃H

k QkH̃k

)−1
H̃H
k . Similarly, the gradient of∑K

k=1 log
|V̄H

k ΛV̄k+H̃H
k QkH̃k|

|V̄H
k ΛV̄k|

with respect to ψ(η,λ), where
Λ is a function of η and λ, is obtained as the first term in
(14c) and (14d).

To find a solution to the system of KKT conditions in (14),
we use the infeasible start Newton method. More explicitly,
the proposed algorithm starts with a point that does not satisfy
the equalities. The key computation is to find a Newton step
in each iteration method. Towards this end we replace Qk by
Qk + ∆Qk, ψ by ψ + ∆ψ, and µi by µi + ∆µi in (14a) to
obtain

tH̃k

(
V̄H
k ΛV̄k + H̃H

k QkH̃k + V̄H
k ∆ΛV̄k + H̃H

k ∆QkH̃k

)−1

H̃H
k

+ (Qk + ∆Qk)−1− t(µ1 + ∆µ1)I = 0
(15)

for all k, where ∆Λ = diag(∆η) +
∑M
m=1 ∆λmGH

mGm

and ∆ψ = [∆ηT ∆λT ]T . By using the identity (A +

B)−1 ≈ A−1 − A−1BA−1 for small B,2 and defin-

ing Ḣk = H̃k

(
V̄H
k ΛV̄k + H̃H

k QkH̃k

)−1

H̃H
k and Ĥk =

H̃k

(
V̄H
k ΛV̄k+H̃H

k QkH̃k

)−1

V̄H
k , we can approximate (15)

as

tQkĤk∆ΛĤH
k Qk + tQkḢk∆QkḢkQk

+ ∆Qk + t∆µ1Q
2
k = tQkḢkQk − tµ1Q

2
k + Qk.

(16)

Note that

QkĤk∆ΛĤH
k Qk =

N∑

i=1

∆ηiQkĤkeie
H
i ĤH

k Qk

+ QkĤk

M∑

m=1

∆λmGH
mGmĤH

k Qk

=
N∑

i=1

∆ηiuk,iu
H
k,i

+ QkĤk

M∑

m=1

∆λmGH
mGmĤH

k Qk

where uk,i = QkĤkei. Thus, (16) is equal to

t

N∑

i=1

∆ηiuk,iu
H
k,i + tQkĤk

M∑

m=1

∆λmGH
mGmĤH

k Qk

+ tQkḢk∆QkḢkQk + ∆Qk + t∆µ1Q
2
k

= tQkḢkQk − tµ1Q
2
k + Qk.

(17)

Next, from (14b) and (14e), we have

K∑

k=1

tr(∆Qk) = P −
K∑

k=1

tr(Qk) (18)

pT∆ψ = P − pTψ. (19)

From (14c) and (14d), we have (20) and (21) shown at the top
of the next page.

Letting Πk =
(
V̄H
k ΛV̄k + H̃H

k QkH̃k

)
and following the

same steps from (15) to (17) we can approximate (20) as

t(ϕi −
N∑

j=1

ϕi,j∆ηj −
M∑

m=1

ϕi,m∆λm −
K∑

k=1

βHk,i∆Qkβk,i)

+η−2
i ∆ηi + t∆µ2Pi = η−1

i − tµ2Pi, ∀i (22)

2The approximation is precise for small B and relatively crude for large B.
In fact, in the first iterations, the Newton steps are large and the approximation
is not very accurate. However, when the algorithm approaches the optimal
solution, the Newton steps will become small and thus the approximation is
very accurate. This will lead to a superlinear convergence rate of the proposed
algorithm as demonstrated in Fig. 2.
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H̃k

(
V̄H
k ΛV̄k + H̃H

k QkH̃k

)−1
H̃H
k +

1

t
Q−1
k − µ1I = 0,∀k (14a)

K∑

k=1

tr(Qk) = P (14b)

K∑

k=1

vHk,i

[
(V̄H

k ΛV̄k + H̃H
k QkH̃k)−1 − (V̄H

k ΛV̄k)−1
]
vk,i −

1

t
η−1
i + µ2Pi = 0,∀i (14c)

K∑

k=1

tr
(
G̃mk

[
(V̄H

k ΛV̄k + H̃H
k QkH̃k)−1 − (V̄H

k ΛV̄k)−1
]
G̃H
mk

)
− λ−1

m

t
+ µ2Im = 0,∀m (14d)

pTψ = P. (14e)

t

K∑

k=1

vHk,i

[
(V̄H

k ΛV̄k + H̃H
k QkH̃k + V̄H

k ∆ΛV̄k + H̃H
k ∆QkH̃k)−1 (20)

−(V̄H
k ΛV̄k + V̄H

k ∆ΛV̄k)−1
]
vk,i − (ηi + ∆ηi)

−1 + t(µ2 + ∆µ2)Pi = 0, ∀i.

t

K∑

k=1

tr
(
G̃mk

[
(V̄H

k ΛV̄k + H̃H
k QkH̃k + V̄H

k ∆ΛV̄k + H̃H
k ∆QkH̃k)−1 (21)

−(V̄H
k ΛV̄k + V̄H

k ∆ΛV̄k)−1
]
G̃H
mk

)
− (λm + ∆λm)−1 + t(µ2 + ∆µ2)Im = 0, ∀m.

where ϕi, ϕi,j , ϕi,m, and βk,i are, respectively, given by

ϕi =

K∑

k=1

vHk,i
[
Π−1
k −

(
V̄H
k ΛV̄k

)−1]
vk,i

ϕi,j =

K∑

k=1

|vHk,iΠ−1
k V̄H

k ej |2 − |vHk,i
(
V̄H
k ΛV̄k

)−1
V̄H
k ej |2

ϕi,m =

K∑

k=1

‖vHk,iΠ−1
k G̃H

mk‖2 − ‖vHk,i
(
V̄H
k ΛV̄k

)−1
G̃H
mk‖2

βk,i = H̃kΠ
−1
k vk,i.

(23)
In the same way, (21) is approximated as

t
(
φm −

N∑

j=1

φm,j∆ηj −
M∑

s=1

φm,s∆λs −
K∑

k=1

tr
(
ΞH
m,k∆QkΞm,k

))

+ λ−2
m ∆λm + t∆µ2Im = λ−1

m − tµ2Im, ∀m
(24)

where φm, φm,j , φm,s, and Ξm,k are, respectively, defined as

φm =

K∑

k=1

tr
(
G̃mk

[
Π−1
k −

(
V̄H
k ΛV̄k

)−1]
G̃H
mk

)

φm,j =

K∑

k=1

tr
(
G̃mk

[
Π−1
k V̄H

k eje
H
j V̄kΠ

−1
k

−
(
V̄H
k ΛV̄k

)−1
V̄H
k eje

H
j Vk

(
V̄H
k ΛV̄k

)−1
]
G̃H
mk

)

φm,s =

K∑

k=1

tr
(
G̃mk

[
Π−1
k G̃H

skG̃skΠ
−1
k

−
(
V̄H
k ΛV̄k

)−1
G̃H
skG̃sk

(
V̄H
k ΛV̄k

)−1
]
G̃H
mk

)

Ξm,k = H̃kΠ
−1
k G̃H

mk.
(25)

We can find the Newton steps for the optimization variables
by staking (17), (18), (19), (22), and (24) into a system of
linear equations. However such a conventional method requires
complexity of O

(
K3N6

)
3 which is relatively high. In this

paper we instead follow a block elimination method [17], [41]
which results in much lower complexity.

∆Qk = Σ
(0)
k +

N+M∑

i=1

∆ψiΣ
(i)
k + ∆µ1Σ

(N+M+1)
k . (26)

For notational simplicity, in (27), (28), and (30), we ex-
plicitly write (26) as ∆Qk = Σ

(0)
k +

∑N
i=1 ∆ηiΣ

(i)
k +∑M

m=1 ∆λmΣ
(m)
k + ∆µ1Σ

(N+M+1)
k . Substituting (26) into

(17) yields a system of (N +M + 2) discrete-time Sylvester
equations as follows:

tQkḢkΣ
(0)
k ḢkQk + Σ

(0)
k = tQkḢkQk + Qk − tµ1Q

2
k

tQkḢkΣ
(i)
k ḢkQk + Σ

(i)
k = −tuk,iuHk,i, for i = 1, · · · , N

tQkḢkΣ
(m)
k ḢkQk + Σ

(m)
k = −tQkĤkG

H
mGmĤH

k Qk,∀m
tQkḢkΣ

(N+M+1)
k ḢkQk + Σ

(N+M+1)
k = −tQ2

k.
(27)

3For a complex Hermitian matrix, the number of variables is N2 where
N is the size of the matrix. Suppose we have K Hermitian matrices, then
the total number of variables is K ×N2. Thus solving the system of linear
equations has complexity of O(K3N6).
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Numerical methods to solve the discrete-time Sylvester equa-
tions in (27) with complexity O(n3

k) can be found, e.g., in
[42]. That is to say, the complexity of solving (27) is much
less than that of solving a system of linear equations. Then,
substituting (26) into (22) results in

t
(
ϕi −

N∑

j=1

ϕi,j∆ηj −
M∑

m=1

ϕi,m∆λm −
K∑

k=1

βHk,i
(
Σ

(0)
k

+

N∑

j=1

∆ηjΣ
(j)
k +

M∑

m=1

∆λmΣ
(m)
k + ∆µ1Σ

(N+M+1)
k

)
βk,i

)

+η−2
i ∆ηi + tPi∆µ2 = η−1

i − tPiµ2. (28)

Let ωi =
∑K
k=1 β

H
k,iΣ

(N+M+1)
k βk,i, γi,j =∑K

k=1 β
H
k,iΣ

(j)
k βk,i, and γi,m =

∑K
k=1 β

H
k,iΣ

(m)
k βk,i.

Then, we can rewrite (28) as

t

N∑

j=1

ϕ̃i,j∆ηj + t

M∑

m=1

ϕ̃i,m∆λm − η−2
i ∆ηi + tωi∆µ1

− tPi∆µ2 = tϕ̃i + tPiµ2 − η−1
i , ∀i = 1, 2, . . . , N (29)

where ϕ̃i,j = ϕi,j + γi,j , ϕ̃i,m = ϕi,m + γi,m, and
ϕ̃i = ϕi −

∑K
k=1 β

H
k,iΣ

(0)
k βk,i. Similarly to the steps from

(28) and (29), let ω̃m =
∑K
k=1 tr

(
ΞH
m,kΣ

(N+M+1)
k Ξm,k

)
,

γ̃m,j =
∑K
k=1 tr

(
ΞH
m,kΣ

(j)
k Ξm,k

)
, and γ̃m,s =∑K

k=1 tr
(
ΞH
m,kΣ

(s)
k Ξm,k

)
, (24) can then be rewritten

as

t

N∑

j=1

φ̃m,j∆ηj + t

M∑

s=1

φ̃m,s∆λs − λ−2
m ∆λm + ω̃m∆µ1

−tIm∆µ2 = tφ̃m + tImµ2 − λ−1
m , ∀m = 1, 2, . . . , M (30)

where φ̃m,j = φm,j + γ̃m,j , φ̃m,s = φm,s + γ̃m,s, and φ̃m =

φm −
∑K
k=1 tr

(
ΞH
m,kΣ

(0)
k Ξm,k

)
. Next, substituting (26) into

(18) yields

K∑

k=1

tr
(
Σ

(0)
k +

N+M∑

i=1

∆ψiΣ
(i)
k +∆µ1Σ

(N+M+1)
k

)

= P −
K∑

k=1

tr(Qk) (31)

or equivalently

N+M∑

i=1

χi∆ψi+χN+M+1∆µ1 = P−
K∑

k=1

tr(Qk+Σ
(0)
k ). (32)

where χN+M+1 =
∑K
k=1 tr(Σ

(N+M+1)
k ) and χi =∑K

k=1 tr(Σ
(i)
k ). Let us define ∆x = [∆ψT ∆µ1 ∆µ2]T .

Then, we can stack (19), (29), (30), and (32) into a system of
linear equations as

A∆x = b (33)

where bi = tϕ̃i + tPiµ2 − ψ−1
i for i = 1, 2, . . . , N , bi =

tφ̃m+ tImµ2−ψ−1
i for i = N+1, N+2, . . . , N+M corre-

sponding to m = 1, 2, . . . ,M , bN+M+1 = P−∑K
k=1 tr(Qk+

Σ
(0)
k ), and bN+M+2 = P − pTψ. In summary, the entries of

A ∈ C(N+M+2)×(N+M+2) are given by

Ai,j =





tϕ̃i,j − δi,j
ψ2
i

1 ≤ i, j ≤ N
tϕ̃i,m 1 ≤ i ≤ N,N + 1 ≤ j ≤ N +M

tφ̃m,j N + 1 ≤ i ≤ N +M, 1 ≤ j ≤ N
tφ̃m,s − δi,j

ψ2
i

N + 1 ≤ i, j ≤ N +M

tωi 1 ≤ i ≤ N, j = N +M + 1

tω̃m N + 1 ≤ i ≤ N +M, j = N +M + 1

−tPi 1 ≤ i ≤ N +M, j = N +M + 2

χj i = N +M + 1, 1 ≤ j ≤ N +M + 1

Pj i = N +M + 2, 1 ≤ j ≤ N +M

0 otherwise

where δi,j denotes the Kronecker’s function, i.e., δi,j = 1

if i = j and δi,j = 0 otherwise, and p = [p̄T Ī
T

]T =
[P1, · · · , Pj , · · · , PN+M ]T . Herein, the complexity of com-
puting the inverse of the KKT matrix in (33) is of the order
O
(
(N +M)3

)
.

We summarize the proposed algorithm based on barrier
method to solve (6) in Algorithm 1. In line 7 of Algorithm 1,
r({Qk},ψ, {µi}) denotes the residual norm of {Qk}, ψ, and
{µi}, which is used in the backtracking line search procedure
and is defined as [17]

r
(
{Qk},ψ, {µi}

)
=

K∑

k=1

‖Ḣk +
1

t
Q−1
k − µ1I‖F

+ ‖u‖2 + ‖w‖2 + |P −
K∑

k=1

tr(Qk)|+ |P − pTψ|
(34)

where ui =
∑K
k=1 vHk,i

[
Π−1
k − (V̄H

k ΛV̄k)−1
]
vk,i − 1

t η
−1
i +

µ2Pi for i = 1, 2, · · · , N , and wm =
∑K
k=1 tr

(
G̃mk

[
Π−1
k −

(V̄H
k ΛV̄k)−1

]
G̃H
mk

)
− 1

tλ
−1
m + µ2Im for m = 1, 2, · · · ,M .

The backtracking line search stops when the residual norm is
smaller than a predetermined threshold, i.e., ε as shown in line
11.

Convergence and Complexity Analysis

Algorithm 1 which is based on a barrier method is guar-
anteed to converge to a solution to the convex-concave prob-
lem in (6), following the same arguments as those in [41,
Sec. 11.3.3]. Moreover, the numerical results provided in
Fig. 2 demonstrate that Algorithm 1 exhibits a superlinear
convergence rate, i.e., it converges very fast when approaching
the optimal solution. The complexity of Algorithm 1 is mostly
due to solving (27) and (33), which require complexity O(n3

k)
and O

(
(N +M)3

)
, respectively. That is to say, the proposed

algorithm requires significantly lower complexity, compared
to a generic method that has complexity of O(K3N6) as
mentioned previously. We note that semidefinite programing
(SDP) can be applied to solve the relaxed problem of (5) since
the logdet function can be represented by semidefinite cone
[43, page 149]. Modern SDP solvers are usually based on
a specific interior point method which is called the primal-
dual path following method. However, such a method, e.g., the
one in [44], will have a per iteration complexity of O(K4n̄4

k)
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Algorithm 1 The proposed numerical algorithm to solve
(6)

Initinalization: Qk := Ink
, ψ := 1, µ1 = µ2 = 1, t := t0,

γ, and tolerance ε > 0
1: repeat {Outer iteration}
2: repeat {inner iteration (centering step)}
3: Solve (27) to find Σ

(i)
k for 1 ≤ k ≤ K and 0 ≤ i ≤

N +M + 1.
4: Solve (33) to find ∆ψ and ∆µi.
5: Backtracking line search:
6: s = 1
7: while r({Qk} + s{∆Qk},ψ + s∆ψ, {µi} +

s{∆µi}) > (1−αs)r({Qk},ψ, {µi}) or {Qk}+
s{∆Qk} � 0 do

8: s = βs
9: end while

10: Update primal and dual variables: Qk := Qk +
s∆Qk; ψ := ψ + s∆ψ, µi := µi + s∆µi

11: until r({Qk},ψ, µi) < ε
12: Increase t: t = γt.
13: until t is sufficiently large to tolerate the duality gap.

which is higher than that in our proposed algorithm, especially
when K is large.

IV. NUMERICAL RESULTS

In this section, we provide numerical examples to illustrate
the results of the proposed algorithm. The entry of the channel
matrix from the secondary BS to the kth SU is modeled as
correlated Rayleigh fading, i.e., Hk = P

1/2
k ḦkR

1/2
k where

Ḧk is a matrix of independent circularly symmetric complex
Gaussian (CSCG) random variables with zero mean and unit
variance, and Pk ∈ Cnk×nk and Rk ∈ CN×N are the
receive and transmit correlation matrices, respectively. In our
simulation setups, the exponential correlation model is used,
where Pk and Rk are generated as [Pk]i,j = r

|i−j|
k and

[Rk]i,j = r̃
|i−j|
k , respectively [45], [46]. The correlation coef-

ficients rk and r̃k are given by rk = r×ejφ̆k and r̃k = r×ejφ̂k ,
where r ∈ [0, 1] and φ̆k and φ̂k are i.i.d. and uniformly
distributed over [0, 2π). The channel from the secondary BS
to the mth PU is generated as Gm = P

1/2
m G̈mR

1/2
m and the

covariance matrices Pm and Rm are generated similarly as
described above. The number of antennas at each SU receiver
is set to nk = 2 for all k. For simplicity, we further assume
the interference thresholds for all PUs are equal, i.e., Im = I ,
for all m, and the resultant power constraint for each antenna
is Pn = P/N for all n, where P is the total power budget.
The SRs are averaged over 10,000 simulation trials. For the
purpose of exposition, the results in Figs. 3-7 are shown with
r = 0, i.e., uncorrelated Rayleigh fading.

In Fig. 2 we show the convergence rate of the proposed
algorithm for the simulation settings given in the caption.
In particular, we plot the convergence rate of the proposed
barrier method for different numbers of transmit antennas
at the secondary BS in Fig. 2(a), and for different numbers
of PUs in Fig. 2(b). The initial values for the primal and
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(a) Convergence results of Algorithm 1 for different numbers of
transmit antennas at the secondary BS. The number of PUs is
M = 1.
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(b) Convergence results of Algorithm 1 for different numbers of
PUs. The number of transmit antennas is N = 10.

Figure 2: Convergence results of the proposed algorithm (a) for
different numbers of transmit antennas at the secondary BS,
and (b) for different numbers of PUs. Each curve is obtained
for one channel realization. The parameters of Algorithm 1
are as follows. The tolerance is set to ε = 10−5. The barrier
parameters γ and t0 are set to 1 and 50, respectively. The
backtracking line search parameters in Algorithm 1 are set to
α = 0.01 and β = 0.5. In this example, we set the network
parameters as K = 2, nk = 2,∀k, ñm = 2,∀m,P = 10 dB,
and I = 5 dB.

dual variables in Algorithm 1 are randomly generated. We
can see that Algorithm 1 shows a very fast convergence rate
when it is approaching the optimal solution. We note that this
convergence result can be expected for an algorithm based on
Newton’s method. We can also see that its convergence rate
is slightly sensitive to the network configurations.

Fig. 3 shows the impact of the interference thresholds on
the SR of the secondary system with respect to the transmit
power constraint. As can be seen from Fig. 3, decreasing the
interference threshold I degrades the system performance. The
performance gains achieved for higher interference threshold
are due to the fact that more transmit power can be used when
the interference threshold constraints are set to a higher value.
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Figure 3: Average sum rate of SUs with the total transmit
power for different interference thresholds at PUs. The net-
work configuration is N = 10, K = 3, M = 2, nk = 2, ∀k,
and ñm = 2, ∀m.
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Figure 4: Average sum rate of SUs with the total transmit
power for different numbers of PUs. In this example, we set the
network parameters as K = 3, nk = 2, ∀k, ñm = 2, ∀m, I =
5 dB, and N = 10.

Specifically, the SRs of the secondary system with different
levels of the interference threshold constraint are of the same
order in the low transmit power regime. The reason is that
the considered interference thresholds still allow the secondary
system to operate with nearly full transmit power.

Fig. 4 depicts the impact of the number of PUs on the
performance of the cognitive network. We can see that the
average SR of secondary system is degraded as the number
of PUs M increases, and the degradation is dramatic for large
transmit power at the secondary BS. For low power regime,
the secondary BS mainly focuses on maximizing the SR of
the secondary system and pays little attention to the primary
system since the interference constraints are likely satisfied
for all PUs. Accordingly, the SRs are quite similar in such
cases for different numbers of PUs as observed in Fig. 4. As
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Figure 5: Average sum rate of SUs with the total transmit
power for different numbers of antennas at PUs. The network
parameters are set to K = 3, nk = 2, ∀k, M = 1, I = 5 dB,
and N = 10.

the transmit power becomes sufficiently large, the BS needs to
avoid transmitting its signals over the spatial space of PUs. In
this case, the degree of freedom left for the secondary system
is reduced if the number of PUs increases, and this explains
the noticeable differences of SRs for large numbers of PUs.

In Fig. 5, we consider the case of a single PU (i.e., M = 1)
and examine the impact of the number of antennas at the PU
on the performance of the secondary system. All the remaining
parameters are set to the same values as those in Fig. 4.
Similarly, it is observed that increasing the number of antennas
at the PU severely deteriorates the average SR of the secondary
performance, especially for large transmit power at the BS. We
can intuitively explain this observation by simply treating each
transmit antenna of the PU as a single PU and recalling the
discussions presented for Fig. 4.

In the next numerical example, we plot the average SR
versus the number of transmit antennas and versus the transmit
power at the secondary BS in Fig. 6(a) and Fig. 6(b), respec-
tively. As expected, the average SR improves as the number of
transmit antennas increases since more degrees of freedom are
added to the secondary system. A large interference threshold
(i.e., I = 10 dB in Fig. 6(a)) allows the secondary system to
fully exploit the available degrees of freedom. In such a case,
more SUs result in more multiuser diversity in the secondary
system, which accordingly increases the average SR. On the
other hand, for a small interference threshold in both the Fig.
6(a) and Fig. 6(b), the average SR first decreases for small N
and then increases for large N when more SUs are served.
Another interesting point is that the gap between the curves
is reduced, as the number of antennas at the secondary BS
increases. We recall that for small N and small interference
threshold, the secondary system lacks degree of freedom for
leveraging multiuser diversity.

As mentioned earlier, interference from the secondary BS to
a PU is a matrix which is non-degrading and there are possibly
several ways to control the interference. Thus it is very
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Figure 6: Average sum rate of SUs, (a) versus the number
of transmit antennas, and (b) versus the transmit power at
the secondary BS. In the cognitive network, we choose M =
2, ñm = 2, ∀m, and nk = 2, ∀k.

interesting to investigate how different types of interference
constraints affect the performance of the primary system. In
this numerical experiment, we consider a primary system
where the primary BS is equipped with Ñ antennas and
employs ZF precoding with PAPCs [17]. The interference
from the secondary system is simply treated as background
thermal noise at the PUs. Under this setup, we plot the
average achieved SR of the primary system for two different
types of interference constraints, one considered in this paper
shown in (5c) and the other obtained by replacing (5c) with
λmax(

∑K
k=1 G̃mkSkG̃

H
mk) ≤ Im,∀m ∈ M. In other words,

we impose that the largest eigenvalue of the interference
matrix should be smaller than a predetermined threshold. As
can be seen from Fig. 7, the primary system achieves a higher
SR with the sum of all eigenvalues than with the largest
eigenvalue of the interference matrix. This implies that the new
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Figure 7: Average sum rate of PUs with the total transmit
power at the primary BS, Pp. For both the systems, we set
network parameters as Ñ = N = 10, K = 3, ñm = 2, ∀m,
nk = 2, ∀k, I = 1 dB, and P = 10 dB.
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Figure 8: Average sum rate of SUs as a function of the
correlation coefficient, r. The network parameters are set to
N = 10, K = 3, nk = 2, ∀k, M = 2, ñm = 2, ∀m, I = 5
dB, and P = 20 dB.

type of interference constraint is stricter than our considered
one. The gaps between the two schemes are negligible for
small number of receive antennas at the PUs (i.e., M = 2
in Fig. 7). The reason is that in such cases the number of
eigenvalues in the interference matrix is small and thus the
trace of the interference matrix is mostly contributed by the
largest eigenvalue. However, when M becomes large, the
impact of smaller eigenvalues of the interfering matrix can be
comparable to the largest one. Thus, imposing a constraint on
the maximum eigenvalue may not appropriately characterize
the interference situation. In other words, the interference can
be more severe that it is supposed to be. This leads to a
reduction on the achieved SR of the primary system as shown
in Fig. 7.

Finally, we study the SR of SUs as a function of the
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correlation coefficient r in Fig. 8. In particular, we compare
the performance of the proposed design with that of two sub-
optimal schemes. For suboptimal scheme 1, the ZF precoding
at the secondary BS is chosen to eliminate the interference at
both SUs and PUs. For suboptimal scheme 2, the ZF precoding
for the kth SU is given by Tk = V̄kV̇kΦ

1/2
k where V̇k

contains the nk singular vectors of H̃k, i.e., it comes from
a compact SVD of H̃k: H̃k = U̇kḊkV̇

H
k , and Φk ∈ Cnk×nk

is the solution of (5) [17]. The results show that the SR
of all the schemes decreases as the correlation coefficient
increases. This is because a high correlation coefficient reduces
the spatial diversity of the secondary system. Importantly, the
proposed design shows superior performance compared to the
others. Another interesting observation is that, in the strong
correlation regime, the sum rate of the suboptimal scheme
2 is larger than that of the suboptimal scheme 1 and vice
versa in the weak correlation regime. The reason is that as the
spatial correlation at the transmitter and receiver is stronger,
the channels become more directional and thus interference
isolation can be achieved physically. Accordingly, the effect
of the secondary system on the primary one will be small.
Consequently, the suboptimal scheme 2 has more degrees
of freedom when designing the precoders for the secondary
system as it does not force those precoders to be in the null
space of the PU channels.

V. CONCLUSIONS

In this paper, we have considered the sum rate maximization
problem for downlink transmission of MIMO CR networks in
the presence of multiple SUs and PUs. The design problem
is subject to per-antenna power constraints at the secondary
BS and interference constraints at the PUs. Adopting ZF
precoding technique and using a rank relaxation method which
is shown to be tight, we have transformed the problem of
SR maximization into the one of finding a saddle point of
a convex-concave program. Then a computationally efficient
algorithm has been proposed based on a barrier method to
solve the resulting convex-concave problem, exploiting its
special properties. The proposed algorithm was numerically
shown to have a superlinear convergence behavior which is
almost independent of the problem size. Through numerical
experiments, we have illustrated how the performances of the
secondary and the primary systems vary with the type of the
interference constraints considered in the paper. In particular,
we have shown that the performance of the secondary system
degrades significantly and reaches a saturated value when
either the number of primary users or the number of antennas
at the primary user is large. Also, we have discussed different
ways of controlling amount of the interference caused by the
secondary system. Specifically, we have concluded that using
the trace of the interference matrix may reflect the interference
situation better, compared to using the largest eigenvalue.

APPENDIX
PROOF OF THEOREM 1

To prove Theorem 1, we will follow the same steps as
those in [16] but customize them to our considered problem.

Particularly we show that (6) is the dual problem of the relaxed
problem of (5). Let us start by writing the partial Lagrangian
function of the relaxed problem of (5) as

L ({Sk}, {ηn}, {λm}) =

K∑
k=1

log |I + H̃kSkH̃
H
k |

+

N∑
n=1

ηn
(
Pn −

K∑
k=1

tr
(
SkB

(n)
k

))
+

M∑
m=1

λm
(
Im − tr

(
SkĠmk

))
(35)

where B
(n)
k , D̄H

k D̄k, D̄k = [0Tn−1 1 0TN−n]V̄k and
Ġmk , G̃H

mkG̃mk. {ηn} and {λm} are Lagrangian mul-
tipliers corresponding to the constraints in (5b) and (5c),
respectively. From the dual problem, the dual objective of (5)
is given by

D({ηn}, {λm}) = max
{Sk�0}

L ({Sk}, {ηn}, {λm}) . (36)

To solve the maximization in (36) for a given set of Lagrangian
multipliers ({ηn}, {λm}), we first rewrite the Lagrangian
function as

L ({Sk},η,λ) =

K∑

k=1

log |I + H̃kSkH̃
H
k |

−
K∑

k=1

tr
(
SkΩk

)
+ p̄Tη + Ī

T
λ

(37)

where Ωk ,
∑N
n=1 ηnB

(n)
k +

∑M
m=1 λmĠmk =

V̄H
k

(
diag(η) +

∑M
m=1 λmGH

mGm

)
V̄k, p̄ =

[P1, P2, · · · , PN ]T , η = [η1, η2, · · · , ηN ]T , Ī =
[I1, I2, · · · , IM ]T , and λ = [λ1, λ2, · · · , λM ]T . Since
Ωk is invertible4, let S̄k = Ω

1/2
k SkΩ

1/2
k . The maximization

in (37) is rewritten as

L
(
{S̄k},η,λ

)
=

K∑

k=1

log |I + H̃kΩ
−1/2
k S̄kΩ

−1/2
k H̃H

k |

−
K∑

k=1

tr
(
S̄k
)

+ p̄Tη + Ī
T
λ.

(38)

To compute the dual objective, let UkDkV
H
k be a SVD of

H̃kΩ
−1/2
k where Dk is square and diagonal. Then, we can

apply a result in [38, Appendix A] to find D(η,λ) as

D(η,λ) = max
{Qk}�0

K∑

k=1

log |I + Ω
−1/2
k H̃H

k QkH̃kΩ
−1/2
k |

−
K∑

k=1

tr
(
Qk

)
+ p̄Tη + Ī

T
λ (39)

where the relationship between S̄k and Qk is given by

S̄k = VkU
H
k QkUkV

H
k

Qk = UkV
H
k S̄kVkU

H
k .

(40)

4It implies that {ηn} or {λm} must be positive. This is because of all
power at the secondary BS should be used up or the interference constraint
should be met at the optimum, i.e., {η∗n} > 0 or {λ∗m} > 0.
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From (39) we can further write D(η,λ) as

D(ψ)= max
{Qk}�0

K∑

k=1

log |I + Ω
−1/2
k H̃H

k QkH̃kΩ
−1/2
k |

−
K∑

k=1

tr
(
Qk

)
+ pTψ

= max
{Qk}�0

K∑

k=1

log
|V̄H

k ΛV̄k + H̃H
k QkH̃k|

|V̄H
k ΛV̄k|

−
K∑

k=1

tr
(
Qk

)
+ pTψ (41)

where Λ = diag(η) +
∑M
m=1 λmGH

mGm, p = [p̄T Ī
T

]T ,
and ψ = [ηT λT ]T .

Now the dual problem of (5) is given by

minD(ψ)

s. t.ψ ≥ 0.
(42)

or equivalently

min
ψ≥0

max
{Qk}�0

∑K
k=1 log

|V̄H
k ΛV̄k+H̃H

k QkH̃k|
|V̄H

k ΛV̄k|

−∑K
k=1 tr

(
Qk

)
+ pTψ

(43)

To arrive at a minimax program given in (6), we introduce
another optimization variable ϑ ≥ 0 and rewrite (43) as

min
ψ≥0

max
ϑ≥0,{Qk}�0

∑K
k=1 log

|V̄H
k ΛV̄k+H̃H

k QkH̃k|
|V̄H

k ΛV̄k|

−ϑP + pTψ

s. t.
∑K
k=1 tr

(
Qk

)
≤ ϑP.

(44)

It is easy to see that (44) is equivalent to (43) since the
inequality (use subequation environment and give a label to
the trace(·) constraint) in (44) must hold with equality at
optimality; otherwise we can scale down ϑ to achieve a strictly
larger objective. Next we make a change of variables as

η̃ = η/ϑ

λ̃ = λ/ϑ

Q̃k = Qk/ϑ.

(45)

and define

ψ̃ = ψ/ϑ = [η̃T λ̃
T

]T

Λ̃ = Λ/ϑ = diag(η̃) +

M∑

m=1

λ̃mGH
mGm.

(46)

We now consider ψ̃ and Q̃k as new optimization variables.
Then, (44) can be equivalently expressed as

min
ψ̃≥0

max
ϑ≥0,{Q̃k}�0

∑K
k=1 log

|V̄H
k Λ̃V̄k+H̃H

k Q̃kH̃k|
|V̄H

k Λ̃V̄k|

+ϑ(pT ψ̃ − P )

s. t.
∑K
k=1 tr

(
Q̃k

)
≤ P.

(47)

Clearly, the optimal dual variable ϑ∗ can be obtained by
considering the minimization of (47) over ψ̃. Hence, (47) is

the dual of the following problem:

min
ψ̃≥0

max
ϑ≥0,{Q̃k}�0

∑K
k=1 log

|V̄H
k Λ̃V̄k+H̃H

k Q̃kH̃k|
|V̄H

k Λ̃V̄k|

s. t.
∑K
k=1 tr

(
Q̃k

)
≤ P

pT ψ̃ ≤ P.
(48)

Finally, putting (40), (45), (48) and Sk = Ω
−1/2
k S̄kΩ

−1/2
k

together finalizes the proof.
We now show how Theorem 1 can be modified to include

a SPC constraint which is written as
∑K
k=1 tr(TkT

H
k ) ≤ P ,

where P is the total transmit power at the secondary BS. By
following the same steps from (35) to (48), we can arrive at the
same convex-concave program as the one in Theorem 1, except
that Λ, ψ, and p are changed to Λ = ηI+

∑M
m=1 λmGH

mGm,
ψ = [η λT ]T , and p = [P Ī

T
]T , respectively. Conse-

quently, Algorithm 1 can be applied to handle this case.
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