
Secure Multiple Amplify-and-Forward Relaying with Co-Channel
Interference

Fan, L., Lei, X., Yang, N., Duong, T. Q., & Karagiannidis, G. K. (2016). Secure Multiple Amplify-and-Forward
Relaying with Co-Channel Interference. IEEE Journal of Selected Topics in Signal Processing. DOI:
10.1109/JSTSP.2016.2607692

Published in:
IEEE Journal of Selected Topics in Signal Processing

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74406001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/secure-multiple-amplifyandforward-relaying-with-cochannel-interference(5a9dfe18-a8f3-478d-bfa4-68f6a52299b4).html


Secure Multiple Amplify-and-Forward Relaying
with Co-Channel Interference

Lisheng Fan, Xianfu Lei, Nan Yang, Member, IEEE, Trung Q. Duong, Senior Member, IEEE, and George K.
Karagiannidis, Fellow, IEEE

Abstract—We investigate the impact of co-channel interference
on the security performance of multiple amplify-and-forward
(AF) relaying networks, where N intermediate AF relays assist
the data transmission from the source to the destination. The
relays are corrupted by multiple co-channel interferers, and
the information transmitted from the relays to destination can
be overheard by the eavesdropper. In order to deal with the
interference and wiretap, the best out of N relays is selected
for security enhancement. To this end, we derive a novel lower
bound on the secrecy outage probability (SOP), which is then
utilized to present two best relay selection criteria, based on
the instantaneous and statistical channel information of the
interfering links. For these criteria and the conventional max-
min criterion, we quantify the impact of co-channel interference
and relay selection by deriving the lower bound on the SOP.
Furthermore, we derive the asymptotic SOP for each criterion, to
explicitly reveal the impact of transmit power allocation among
interferers on the secrecy performance, which offers valuable
insights into practical design. We demonstrate that all selection
criteria achieve full secrecy diversity order N , while the proposed
in this paper two criteria outperform the conventional max-min
scheme.

Index Terms—Secure communications, co-channel interfer-
ence, relay selection, secrecy diversity order.

I. INTRODUCTION

Due to its broadcast nature, wireless transmission may be
overheard by eavesdroppers in the network, which brings out
the risk of information leakage. To prevent this leakage, secure
techniques, such as encryption and physical-layer security
(PLS) [1], have been widely investigated in the literature. In
the pioneering work by Wyner [2], the classical wiretap model
was proposed to analyze the secure communication. Then the
study on PLS has been extended over fading channels, such
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as Rayleigh and Nakagami-m [3]–[6]. In these works, impor-
tant metrics of secrecy performance, such as secrecy outage
probability (SOP) and secrecy capacity, have been studied. To
enhance the transmission security for multi-antenna systems,
antenna selection technique can be used to exploit the dynamic
nature among the multi-antenna fading channels [7].

Relaying technique has attracted increasingly attention in
the literature, since it extends the radio coverage and improves
the system capacity, without raising the transmit power [8]–
[11]. Hence, it is of vital importance to study the PLS in
relay networks [12]–[15]. There are two fundamental relaying
protocols: amplify-and-forward (AF) and decode-and-forward
(DF). For DF-aided relay networks, the system secure commu-
nication has been extensively studied, by deriving analytical
expressions for the SOP in [16]–[18]. In order to enhance
the security for multi-DF relay networks, these works [16]–
[18] used relay selection techniques to exploit the dynamic
nature among multi-relay fading channels. Compared with DF
relaying, it is, however, much more complicated to obtain
analytical SOP expressions for AF relay networks, since the
received signal-to-noise ratios (SNRs) at the destination and
eavesdroppers are represented in complex forms. In order
to deal with this issue, the authors in [19] analyzed the
intercept probability, which depends on the second-hop relay
channels only. However, this probability is just a special case
of the SOP, where the target secrecy data rate is set to
zero. Furthermore, the authors in [20] investigated the PLS
of multiuser multi-AF relay networks, and presented closed-
form expressions for the limiting behavior of SOP, assuming
a large transmit power.

One of the utmost concerns arising in wireless networks
is the existence of co-channel interference, due to the exces-
sive frequency reuse [21]–[25]. In [26], the authors studied
a relay network in the presence of co-channel interference
and analyzed the effect of interference power distribution1

on the network performance. For multi-AF relay networks
with co-channel interference, the relay selection aided by the
interfering channel parameters can be used to improve the
network transmission performance [27]. Recently, the impact
of co-channel interference on the secure communications has
received much attention. In [28], the authors studied the PLS
of multi-DF relay networks in the presence of co-channel
interference, by deriving the analytical and asymptotic SOP
expressions. To the best of our knowledge, no prior work

1As shown in [26], the interference power distribution refers to the transmit
power allocation among interferers, for a given total transmit power.
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has considered the secure communications of multi-AF re-
lay networks, taking into account the impact of co-channel
interference and relay selection.

In this paper, we study the secure communications of
multi-AF relay networks in the presence of an eavesdropper,
assuming that the N relays are disturbed by multiple co-
channel interferers. To tackle with the co-channel interference
and wiretap, relay selection is performed, such that the best
relay is chosen to enhance the network security. We study
the network secrecy performance by deriving the analytical
and asymptotic SOP expressions. The key contributions of this
paper are summarized as follows,

• To facilitate the secure performance evaluation, we derive
a novel lower bound on the SOP, which is valid for an
arbitrary transmit power.

• Besides the traditional max-min criterion, we utilize the
newly derived lower bound on the SOP to present two
relay selection criteria, based on the instantaneous and
statistical channel information of the interfering links,
respectively.

• For each criterion, we derive an analytical lower bound
on the SOP, in order to investigate the system secrecy
performance.

• We present novel asymptotic results for the SOP with
high main-to-eavesdropper ratio (MER), which can be
efficiently used to determine the factors governing the
secrecy performance.

• Based on these asymptotic expressions, we provide key
insights into the network secrecy diversity order and the
impact of interference power distribution on the network
security.

The rest of the paper is organized as follows. Section II
introduces the system model of the secure multi-AF relay
networks in the presence of co-channel interference. In Section
III, we first derive a novel lower bound expression for the
SOP, and then we present the relay selection criteria. For each
criterion, Section IV provides the analytical lower bound of
SOP as well as the asymptotic expression, assuming high value
of MER. Simulations and numerical results are presented in
Section V to show the impact of co-channel interference and
relay selection on the network security. Finally, conclusions
are drawn in Section VI.

Notations: The notation CN (0, σ2) denotes a circularly
symmetric complex Gaussian random variable (RV) with zero
mean and variance σ2. We use fX(·) and FX(·) to represent
the probability density function (PDF) and cumulative density
function (CDF) of the RV X , respectively. The function,
E1(x) =

∫∞
x

e−t

t dt, is the exponential integral function [29],
while Pr[·] returns the probability, and E[·] denotes statistical
average.

II. SYSTEM MODEL

Fig. 1 depicts the system model of a two-phase multiple
AF relay network with co-channel interference, where the
source S communicates with the destination D with the help
of N intermediate AF relays, {Rn|1 ≤ n ≤ N}. Apart from
the additive white Gaussian noise (AWGN), the relays are

E
RN

S D

Eavesdropper link
Main link

Interfering link

R1

IMI1

Fig. 1. A network consisting of multiple AF relays with co-channel
interference and an eavesdropper.

corrupted by M co-channel interferers, {Im|1 ≤ m ≤ M}.
An eavesdropper, E, can overhear the message forwarded from
relays, which indicates a great threat to the communication
from S to D. Note that the network secrecy performance
becomes worse if multiple eavesdroppers exist in the network,
no matter whether the eavesdroppers decode the messages
in a colluding or non-colluding manner [20]. However, the
relay selection criteria and the secrecy performance analytical
framework proposed in this work can be easily extended to
the case of multiple eavesdroppers. We assume that D and
E are disturbed by the AWGN only. A severe shadowing
environment is considered, so that there is no direct link from
S to D or from S to E. Due to the size limitation, all nodes
in the network are equipped with a single antenna. To deal
with the wiretap channel and co-channel interference, the best
relay, Rn∗ , needs to be selected among N relays for enhancing
the network security. Before presenting the relay selection
criterion, we first formulate the two-phase data transmission
with co-channel interference at relays.

Suppose that Rn is selected for data transmission. In the
first phase, S sends signal xS to Rn in co-channel interference
environments. The received signal at Rn is given by

yRn =
√
PhS,RnxS +

M∑
m=1

√
PImhIm,RnxIm + nR, (1)

where P is the transmit power at S, hS,Rn ∼ CN (0, α) is
the channel coefficient of the S–Rn link, PIm and xIm are
the transmit power and signal of the interferer Im, hIm,Rn ∼
CN (0, ε) is the channel coefficient of the interfering Im–Rn

link, and nR ∼ CN (0, No) is the AWGN at Rn. As per the
rules of AF relaying, Rn amplifies yRn using the factor

κn =

√
P

P |hS,Rn |2 +
∑M

m=1 PIm |hIm,Rn |2 +No

. (2)
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The received signals at D and E from Rn in the second phase
can be respectively written as

yD = hRn,DκnyRn + nD, (3)
yE = hRn,EκnyRn + nE , (4)

where hRn,D ∼ CN (0, β1) and hRn,E ∼ CN (0, β2) denote
the channel coefficients of the Rn–D and Rn–E links, re-
spectively, and nD ∼ CN (0, No) and nE ∼ CN (0, No) are
the AWGN at D and E, respectively. Note that D and E only
receive signals, but not transmit. Hence, there is no channel
link between D and E. Using (1)–(4), the end-to-end signal-
to-interference-plus-noise ratios (SINRs) at D and E can be
written as

γD
n =

P̃un

1+
∑M

m=1 P̃Imwmn
P̃ v1n

1 + P̃un

1+
∑M

m=1 P̃Imwmn
+ P̃ v1n

, (5)

γE
n =

P̃un

1+
∑M

m=1 P̃Imwmn
P̃ v2n

1 + P̃un

1+
∑M

m=1 P̃Imwmn
+ P̃ v2n

, (6)

where P̃ = P/No and P̃Im = PIm/No denote the average
SNR at the source and interferer Im, respectively. For the
simplification of notation, let us denote un = |hS,Rn |2,
v1n = |hRn,D|2, v2n = |hRn,E |2, and wmn = |hIm,Rn |2 as
the associated channel gains.

The SOP with Rn is defined as the probability that the
difference of the data rate between the main and eavesdropper
links falls below a given threshold Rs, which is formulated as

Pn,out = Pr

[
1

2
log2(1 + γD

n )− 1

2
log2(1 + γE

n ) < Rs

]
(7)

= Pr

[
1 + γD

n

1 + γE
n

< γs

]
, (8)

where the term 1
2 in (7) is due to the two-phase data trans-

mission, and γs = 22Rs denotes the secrecy SNR threshold.

III. RELAY SELECTION

A. A Novel Lower Bound on the SOP

As observed from (5) and (6), the received SINRs, γD
n and

γE
n , share two common RVs, namely, un and wmn. As such,

it is not trivial to derive an exact analytical expression for the
SOP, since γD

n and γE
n are correlated RVs. To deal with this

issue, we note that the authors in [20] presented simplified
expressions for γD

n and γE
n , by assuming large transmit power

P . However, this is not applicable in practical scenarios, where
the terminals are limited powered, e.g., mobile devices or
sensor nodes. Next, we derive a novel lower bound on the
SOP. We first write Pn,out as

Pn,out = Pr

1 +
P̃un
1+zn

P̃ v1n

1+ P̃un
1+zn

+P̃ v1n

1 +
P̃un
1+zn

P̃ v2n

1+ P̃un
1+zn

+P̃ v2n

< γs

 , (9)

where zn =
∑M

m=1 P̃Imwmn. Based on the following equali-
ties

1 +
P̃un

1+zn
P̃ v1n

1 + P̃un

1+zn
+ P̃ v1n

=
(1 + P̃un

1+zn
)(1 + P̃ v1n)

1 + P̃un

1+zn
+ P̃ v1n

, (10)

1 +
P̃un

1+zn
P̃ v2n

1 + P̃un

1+zn
+ P̃ v2n

=
(1 + P̃un

1+zn
)(1 + P̃ v2n)

1 + P̃un

1+zn
+ P̃ v2n

, (11)

we rewrite Pn,out in a more compact form as

Pn,out = Pr

[
(1 + P̃ v1n)(1 +

P̃un

1+zn
+ P̃ v2n)

(1 + P̃ v2n)(1 +
P̃un

1+zn
+ P̃ v1n)

< γs

]
,

= Pr

[
1 +

P̃un

1+zn

1 + P̃ v2n
< γs(1 +

P̃un

1+zn

1 + P̃ v1n
)

]
,

= Pr

[
P̃un

1+zn

1 + P̃ v2n
< (γs − 1) +

γs · P̃un

1+zn

1 + P̃ v1n

]
. (12)

Since
1

1 + P̃ v2n
<

γs − 1
P̃un

1+zn

+
γs

1 + P̃ v1n
, (13)

we further rewrite Pn,out as

Pn,out = Pr

 1
γs−1
P̃un
1+zn

+ γs

1+P̃ v1n

< 1 + P̃ v2n

 . (14)

By applying the inequality2 [30]

1
1
x1

+ 1
x2

=
x1x2

x1 + x2
≤ min(x1, x2) (15)

into (14), a new lower bound expression of Pn,out is obtained
as

PLB
n,out = Pr

[
min

(
P̃ un

(γs − 1)(1 + zn)
,
1 + P̃ v1n

γs

)
< 1 + P̃ v2n

]

= Pr

[
min

(
un

(γs − 1)(1 + zn)
,
P̃r + v1n

γs

)
< P̃r + v2n

]
,

(16)

where P̃r = 1
P̃

. It is worthwhile to note that the lower bound
derived above can be used for the entire regime of transmit
power, thus being more applicable than the method given by
[20] for secrecy performance evaluation.

B. Selection Criterion

Relying on the newly derived lower bound on Pn,out in (16),
we next present the relay selection criterion to choose the best
relay Rn∗ in order to deal with the co-channel interference and
wiretap. In practical communication scenarios with passive
eavesdroppers, it is hard to acquire the instantaneous chan-
nel coefficients of eavesdropper links, and only the channel
coefficients of main and interfering links can be utilized to

2Note that the accuracy of the bound in (15) depends on the values of x1

and x2. Specifically, it is quite accurate when x1 is far from x2, while the
accuracy becomes worse when x1 is close to x2.
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perform relay selection. From (16), the best relay, Rn∗ , is
selected according to

n∗ = arg max
1≤n≤N

min
( un

(γs − 1)(1 + zn)
,
P̃r + v1n

γs

)
. (17)

According to this criterion, the system needs to know the in-
stantaneous channel coefficients of the interfering links, which
can be obtained in some communication systems through
dedicated feedback channels from the interferers. However, in
some other communication systems without such feedback, the
system is only able to know the statistical channel information
of interfering links. In this case, the best relay Rn∗ is selected
according to

n∗ = arg max
1≤n≤N

min
( un

(γs − 1)(1 + E(zn))
,
P̃r + v1n

γs

)
.

(18)

Apart from the proposed selection criteria, the conventional
max-min criterion can also be used to select the best relay.
This criterion is mathematically expressed as

n∗ = arg max
1≤n≤N

min(un, v1n), (19)

which maximizes the minimum channel gain of the dual-hop
main link.

After relay selection, the lower bound on the SOP with
selected Rn∗ is given by

PLB
out = Pr

[
min

(
un∗

(γs − 1)(1 + zn∗)
,
P̃r + v1n∗

γs

)

< P̃r + v2n∗

]
. (20)

For the reader’s convenience, we next refer to the selection
criterion in (17), (18) and (19) as criterion I, II, and III, re-
spectively. For these three criteria, we will derive the analytical
expression for the SOP and the asymptotic SOP in the high
regime of MER.

IV. SECRECY OUTAGE PROBABILITY

A. Lower Bound for Criterion I

Based on the selection criterion in (17), we write the lower
bound on the SOP as

PLB
out = Pr

[(
max

1≤n≤N
min

( un

(γs − 1)(1 + zn)
,
P̃r + v1n

γs

))

< P̃r + v2n∗

]
. (21)

By defining θn as,

θn = min
( un

(γs − 1)(1 + zn)
,
P̃r + v1n

γs

)
, (22)

we rewrite PLB
out as

PLB
out = Pr

(
max

1≤n≤N
θn < P̃r + v2n∗

)
. (23)

Note that both un and v1n follow exponential distribution with
mean α and β1, respectively. The PDF of zn is given by [31]

fzn(z) =
∑
(i,j)

χi,j
(εPI<i>)

−j

(j − 1)!
zj−1e

− z
εPI<i> , (24)

where ∑
(i,j)

=

ρ(A)∑
i=1

τi(A)∑
j=1

, (25)

and A = diag(εP̃I1, εPI2, · · · , εP̃IM ). We denote ρ(A) as the
number of distinct diagonal elements, εP̃I<1> > εP̃I<2> >
· · · > εP̃I<ρ(A)> as the distinct diagonal elements in decreas-
ing order, τi(A) as the multiplicity of εP̃I<i>, and χi,j as
the (i, j)-th characteristic coefficient of A. From the above,
we obtain the CDF of θn∗ = max1≤n≤N θn in the following
theorem.

Theorem 1: The CDF of θn∗ is

Fθn∗ (θ) = 1−
N∑

n=1

∑
(i,j)

nτi(A)∑
k=1

(
N

n

)
(−1)n−1di,ke

n
P̃β1

× exp

[
−
(
−(

γs
β1

+
γs − 1

α
)nθ

)](
θ +

α

(γs − 1)εP̃I<i>

)−k

,

(26)

where

di,k =
1

[nτi(A)− k]!

dnτi(A)−k

dxnτi(A)−k

[
g(x)

×
(
x+

α

(γs − 1)εP̃I<i>

)k]
|x=− α

(γs−1)εP̃I<i>

, (27)

with

g(x) =
[∑
(i,j)

χi,j

[
1 +

(γs − 1)εP̃I<i>

α
θ
]−j
]n

. (28)

Proof : See Appendix A.
From Theorem 1 and (23), we can write the lower bound on

the SOP for criterion I in eqs. (29)-(30), as shown at the top of
the next page, where [24, eq.(3.352.4)] and [24, eq.(3.353.2)]
are used to achieve the last equality and Ξ(a, b, k) is given by

Ξ(a, b, k) =


eabE1(ab), k = 1

1
(k−1)!

∑k−1
n=1(n− 1)!(−a)k−n−1b−n

+ (−a)k−1

(k−1)! e
abE1(ab), k ≥ 2

.

(31)

B. Lower Bound for Criteria II and III

We firstly express criterion II of (18) and III of (19) in a
unified way as

n∗ = arg max
1≤n≤N

min(un,
v1n + c1

c2
), (32)

where c1 = P̃r and c2 = γs

(γs−1)(1+εPIA) correspond to
criterion II, while c1 = 0 and c2 = 1 correspond to criterion
III. Note that in the existing works such as [20] and [32],
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PLB
out = 1−

N∑
n=1

∑
(i,j)

nτi(A)∑
k=1

(
N

n

)
(−1)n−1 di,k

β2
exp

[
−
(
−n(γs − 1)

P̃
(
1

α
+

1

β1
)

)]
×
∫ ∞

0

e−[ 1
β2

+n( 1
β2

+ γs−1
α )]v2 1(

v2 + P̃r +
α

(γs−1)εP̃I<i>

)k dv2 (29)

= 1−
N∑

n=1

∑
(i,j)

nτi(A)∑
k=1

(
N

n

)
(−1)n−1 di,k

β2
exp

[
−
(
−n(γs − 1)

P̃
(
1

α
+

1

β1
)

)]
Ξ
[ 1

β2
+ n(

1

β2
+

γs − 1

α
), P̃r +

α

(γs − 1)εP̃I<i>

, k
]
,

(30)

PLB
out =1− b1b3e

− γs−1

P̃
( 1
α+ 1

β1
)
∑
(i,j)

χi,j

(
α

ϑi

)j

Ξ

[
γs − 1

α
+

γs
β1

, P̃r +
α

ϑi
, j

]
−

N−1∑
n=0

∑
(i,j)

b2nb3χi,je
− γs−1

P̃
( 1
β1

+n+1
ζ )

(
ζ

(n+ 1)ϑi

)j

× Ξ

[
γs
β1

+
(n+ 1)(γs − 1)

ζ
, P̃r +

ζ

(n+ 1)ϑi
, j

]
−

N−1∑
n=0

∑
(i,j)

b1b4nχi,je
− γs−1

P̃
( 1
α+n+1

c2ζ )

(
α

ϑi

)j

× Ξ

[
γs − 1

α
+

(n+ 1)γs
c2ζ

, P̃r +
α

ϑi
, j

]
−

N−1∑
n1=0

N−1∑
n2=0

∑
(i,j)

b2n1b4n2χi,je
− γs−1

P̃ ζ
(1+n1+

n2+1
c2

)
(

ζ

(n2 + 1)ϑi

)j

× Ξ

[
(n1 + 1)(γs − 1)

ζ
+

(n2 + 1)γs
c2ζ

, P̃r +
ζ

(n2 + 1)ϑi
, j

]
, (43)

un∗ and v1n∗ were selected when c1 = 0, which means that
they are special cases of the present work. Using (32), we can
obtain the CDFs of un∗ and v1n∗ in the following theorem.

Theorem 2: The CDFs of un∗ and v1n∗ are given by

Fun∗ (x) = 1− b1e
− x

α −
N−1∑
n=0

b2ne
− (n+1)x

ζ , (33)

Fv1n∗ (x) = 1− b3e
− x

β1 −
N−1∑
n=0

b4ne
− (n+1)x

c2ζ , (34)

where

ζ =
αβ1

c2α+ β1
, (35)

b1 =

N−1∑
n=0

N

(
N − 1

n

)
(−1)n

c2ζ

c2ζ + nβ1
e−

c1n
c2α , (36)

b2n = N

(
N − 1

n

)
(−1)n

( 1

n+ 1
− c2ζ

c2ζ + nβ1

)
e

(n+1)c1
β1 ,

(37)

b3 = 1−
N−1∑
n=0

N

(
N − 1

n

)
(−1)n

( 1

n+ 1
− ζ

ζ + nα

)
e−

c1(n+1)
c2α ,

(38)

b4n = N

(
N − 1

n

)
(−1)n

( 1

n+ 1
− ζ

ζ + nα

)
e−

c1(n+1)
c2α .

(39)

Proof : See Appendix B.

From Theorem 2, we write the lower bound on the SOP for
criteria II and III as

PLB
out = Pr

[
min

( un∗

(γs − 1)(1 + zn∗)
,
P̃r + v1n∗

γs

)
< P̃r + v2n∗

]
(40)

= 1− Pr[un∗ ≥ (γs − 1)(1 + zn∗)(P̃r + v2n∗),

v1n∗ ≥ γs(P̃r + v2n∗)− P̃r] (41)

= 1−
∫ ∞

0

∫ ∞

0

[
1− Fun∗ [(γs − 1)(1 + zn∗)

× (P̃r + v2n∗)]
][
1− Fv1n∗ (γs(P̃r + v2n∗)− P̃r)

]
× fv2n∗ (v2n∗)fzn∗ (zn∗)dv2n∗dzn∗ . (42)

By using the PDF of zn∗ in (24) and fv2n∗ (v2n∗) = 1
β2
e−

v2n∗
β2 ,

and solving the integral, we obtain the analytical lower bound
on the SOP for criteria II and III in (43), as shown at the top
of this page, where ϑi = (γs − 1) εPI<i>. By setting c1 = P̃r

with c2 = γs

(γs−1)(1+εPIA) and c1 = 0 with c2 = 1 into the
above equation, we obtain the lower bound on the SOP for
criteria II and III, respectively.

C. Asymptotic SOP for Criterion I
In order to get insights into the system behavior for criterion

I, we present an asymptotic expression for the SOP, when high
MER is assumed. By applying the approximation of e−x ≃
1 − x and (1 + x)−n ≃ 1 − nx for small value of |x|, we
obtain the asymptotic CDF of θn as

Fθn(θ) ≃
(γs
β1

+
(γs − 1)(1 + εP̃IA)

α

)
θ, (44)
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where we also assume a large transmit power P , and P̃IA =∑M
m=1 P̃Im denotes the total transmit power of interferers.

From the asymptotic Fθn(θ), we write the asymptotic SOP
for criterion I as

Pout ≃
(γs
β1

+
(γs − 1)(1 + εP̃IA)

α

)N ∫ ∞

0

vN2 fv2(v2)dv2

(45)

=
N !

λN

(
γs +

β1(γs − 1)(1 + εP̃IA)

α

)N
, (46)

where λ = β1

β2
is the MER, defined as the average channel

gain ratio of the main to the eavesdropper link. From (46),
we conclude that the secrecy diversity order is equal to the
number of relays, where the secrecy diversity order can be
defined as limλ→∞

− logPout

log λ . Hence, the network security can
be profoundly enhanced by increasing the number of relays.
Moreover, it is find that the asymptotic SOP depends on the
total transmit power of interferers, but not on the interference
power distribution.

D. Asymptotic SOP for Criteria II and III

We now provide the asymptotic SOP for criteria II and III
with high MER. By applying the approximation of e−x ≃∑N

n=0
(−1)n

n! xn [29] for small value of |x|, we obtain the
asymptotic distributions of un∗ and v1n∗ as

Fun∗ (x) ≃
(x
ζ

)N β1

β1 + c2α
, (47)

Fv1n∗ (x) ≃
( x

c2ζ

)N c2α

β1 + c2α
, (48)

where we also assume a large transmit power P . Then the
asymptotic SOP for criteria II and III can be written by

Pout ≃ Pr
[
min

( un∗

(γs − 1)(1 + zn∗)
,
v1n∗

γs

)
< v2n∗

]
(49)

= 1− Pr
[
un∗ ≥ (γs − 1)(1 + zn∗)v2n∗ , v1n∗ ≥ γsv2n∗

]
(50)

=
(γs − 1)N

ζN
β1

β1 + c2α

∫ ∞

0

∫ ∞

0

(1 + zn∗)NvN2n∗

× fv2n∗ (v2n∗)fzn∗ (zn∗)dzn∗dv2n∗

+
γN
s

ζN
α

(β1 + c2α)c
N−1
2

∫ ∞

0

vN2n∗fv2n∗ (v2n∗)dv2n∗ . (51)

By applying the PDFs of zn∗ and v2n∗ , and then solving the
integral, we obtain the asymptotic SOP for criteria II and III
as

Pout ≃
N !

λN

(β1 + c2α

α

)N−1(β1(γs − 1)N

α
Tz +

γN
s

cN−1
2

)
,

(52)

where Tz = E{(1 + zn∗)N} =∑N
n=0

∑
(i,j)

(
N
n

)
χi,j

(n+j−1)!
(j−1)! (εPI<i>)

n. By setting c2
to γs

(γs−1)(1+εPIA) and 1, we obtain the asymptotic SOP of
criteria II and III, respectively.

From the asymptotic expression, it is evident that criteria II
and III achieve the full secrecy diversity of order N . Hence,
the system secrecy performance is significantly enhanced by
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Fig. 2. Secrecy outage probability versus the transmit power P : Criterion I

increasing the number of relays. Moreover, it is found from
[33]–[35] that Tz is a Schur-convex function with respect to
the interference power vector [PI1 , PI2 , · · · , PIM ]. Hence, the
interference power distribution affects the SOP of criteria II
and III as follows: for a given total interference power, the
optimal secrecy performance is achieved with equal-power
interferers, while only one effective interferer3 leads to the
worst secrecy performance.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we present some simulation and numerical
results to demonstrate the impact of co-channel interference
and relay selection on the secrecy performance. All links in
the network experience Rayleigh flat fading. Without loss of
generality, the distance between the source S and destination
D is normalized to unity, and the relays are in between. Let
D denote the distance between the relays and D, so that α =
(1−D)−4 and β1 = D−4, where the path loss model with the
exponent of 4 is used. Note that the path loss model can be
used for the average channel gains of eavesdropping links. Let
DE denote the distance between the relays and E. Then ε is set
to D−4

E , and the associated MER is (D/DE)
−4. Since MER

is related to DE , and is a key factor that regulates the secrecy
performance, we prefer to use MER as a key parameter in the
simulations, which can actually reflect the value of DE since
DE = D · MER1/4. The average channel gain of interfering
links is set to one, and the target secrecy data rate Rs is set
to 0.5 bps/Hz, so that the associated secrecy SNR threshold
γs is 2.

Figs. 2-4 illustrate the effect of transmit power P on the
SOP with λ = 30dB, where D = 0.5, No = 1, M = 3, and
N varies from 1 to 4. Specifically, Figs. 2, 3 and 4 correspond
to criteria I, II and III, respectively. The total transmit power
of interferers PIA is set to 10 dB, and un-equal interference
power distribution is used with PI1 = 7, PI2 = 2 and PI3 = 1.
In this work, we consider the transmit power of the source

3As shown in [26], one effective interferer indicates that one interferer uses
the total interference power to transmit signal, while the other interferes do
not transmit signals.



7

0 10 20 30 40 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Transmit power P (dB)

S
e
cr
e
cy
 o
u
ta
g
e
 p
ro
b
a
b
il
it
y

 

 

Simulation

Lower bound

N=4

N=3

N=2

N=1

λ=30 dB

D=0.5

M=3

PIA=10dB 

No=1

Fig. 3. Secrecy outage probability versus the transmit power P : Criterion II

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Transmit power P (dB)

S
e
cr
e
cy
 o
u
ta
g
e
 p
ro
b
a
b
il
it
y

 

 

Simulation

Lower bound

N=4

N=3

N=2

N=1

λ=30 dB

D=0.5

M=3

PIA=10dB 

No=1

Fig. 4. Secrecy outage probability versus the transmit power P : Criterion
III

and interferers normalized by the noise power, and hence
the relative unit of PIA is dB. As it is observed from these
figures, for each criterion and each number of relays, the lower
bound on SOP is close to the simulation results in the entire
region of P . This validates the effectiveness of the derived
lower bound expression. Moreover, the SOP for each criterion
is profoundly improved by increasing the number of relays,
as more relays can help strengthen the secure transmission.
The SOP can be also improved by increasing P . However,
this improvement is almost saturated for large P , since the
fixed main-to-eavesdropper ratio becomes the bottleneck of
the network security.

Figs. 5-7 demonstrate the impact of relay selection and
MER on the SOP with P = 40 dB, where M = 2 and the un-
equal interference power distribution is used with PI1 = 7,
PI2 = 2 and PI3 = 1. Specifically, Figs. 5, 6 and 7
correspond to criteria I, II and III, respectively. As can be
seen, for each criterion, the lower bound on SOP matches well
with the simulation result in the entire region of MER. This
also validates the effectiveness of the derived lower bound
expression. Moreover, the asymptotic result approaches the
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exact result with high MER, which corroborates the derived
asymptotic expression for each criterion. Furthermore, the
curve slope of SOP is in parallel with the number of relays,
indicating that the network secrecy diversity order is equal to
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N for each criterion.
Figs. 8-10 show the impact of interference power distri-

bution on the network SOPs of the three selection criteria,
where N = 4, M = 3 and the total interference power PIA is
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Fig. 11. Performance comparison among relay selection schemes.

fixed to 10 dB. Specifically, Figs. 8, 9 and 10 correspond to
criteria I, II and III, respectively. For comparison, we consider
three interference scenarios: the equal-power interferers with
PI1 = PI2 = PI3 = 10

3 , the distinct-power interferers with
[PI1 , PI2 , PI3 ] = [7, 2, 1], and the only one effective interferer
with [PI1 , PI2 , PI3 ] = [10, 0, 0]. As can be clearly observed
from Figs. 8-10 that the SOP of criterion I remains almost
unchanged with the three interference scenarios, indicating
that the network security is not affected by the interference
power distribution. In contrast, the secrecy outage probabilities
of criteria II and III are both affected by the interference
scenarios. In particular, the optimal secrecy performances
of criterion II and III can be achieved for the equal-power
interferers, while the secrecy performances become worst for
the only one effective interferer. Such observation validates the
insights into the asymptotic SOP expressions of criteria II and
III. We note that the interference power distribution imposes
a noticeable impact on the secrecy performance of criteria II
and III only in the high MER regime. This motivates us to
use the asymptotic SOP to evaluate the impact of interference
power distribution on the secrecy performances.

Fig. 11 compares the secrecy performances of the three
selection criteria versus MER, where N = 4, M = 3 and
the total interference power PIA is set to 10 dB. The un-equal
interference power distribution with PI1 = 7, PI2 = 2 and
PI3 = 1 is used. For comparison, we also present the simulated
SOP result of the relay selection scheme in [22]. As observed
from Fig. 11, we find that criterion I outperforms criterion II
by achieving lower secrecy outage probability, since the former
employs the instantaneous information of interfering links in
the relay selection. We then find that criterion II outperforms
criterion III, since the former incorporates different impact
from the two hops into the network security. Furthermore,
the selection scheme in [28] achieves higher secrecy outage
probability than the three selection investigated in this work.
This is because that the selection scheme proposed in [28] is
a partial relay selection scheme that relies on the second-hop
main channel only, for the sake of low complexity.

Fig. 12 illustrates the secrecy outage probabilities of the
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three selection criteria with respect to the number of interferers
M , where N = 3, P = 40 dB and λ = 30 dB. The number
of interferers varies from 1 to 5, and each interferer has the
equal transmit power of 3 dB. From this figure, we find that
for different number of interferers, criterion I outperforms cri-
terion II, and criterion II outperforms criterion III, which is in
accordance with the results in Fig. 11. Moreover, the network
secrecy performance becomes worse when M increases, since
more interferers deteriorate the forwarding ability of relays.

VI. CONCLUSIONS

In this paper, we studied the communication security of
multi-AF relay networks with co-channel interference. A novel
lower bound expression was developed for the network secrecy
outage probability, and then three selection criteria were
presented to select the best relay among multiple ones, in
order to deal with the co-channel interference and wiretap. For
each criterion, we derived an analytical lower bound on SOP
and also provided an asymptotic expression in the high MER
region. From this expression, we found that each criterion
achieves the full secrecy diversity order, and the interference
power distribution affects the SOP of criterion II and III.
Simulations and numerical results were presented to validate
the proposed studies and verify the obtained insights on the
system.

APPENDIX A
PROOF OF THEOREM 1

The CDF of θn = min
(

un

(γs−1)(1+zn)
, P̃r+v1n

γs

)
is given by

Fθn(θ) = Pr
[
min

( un

(γs − 1)(1 + zn)
,
P̃r + v1n

γs

)
≤ θ
]
(A.1)

= 1− Pr
[ un

(γs − 1)(1 + zn)
> θ,

P̃r + v1n
γs

> θ
]
.

(A.2)

Since v1n is independent of un and zn, we can further write
Fθn(θ) as

Fθn(θ) = 1− Pr
[
un > (γs − 1)(1 + zn)θ

]
× Pr

[
v1n > (γsθ − P̃r)

]
(A.3)

= 1−
[ ∫ ∞

0

∫ ∞

(γs−1)(1+zn)θ

fun(un)fzn(zn)dundzn

]
×
∫ ∞

γsθ−P̃r

fv1n(v)dv. (A.4)

By applying the PDFs of un, zn and v1n into the above
equation and then solving the integral, we can obtain the CDF
of θn as

Fθn(θ) = 1− e
1

P̃β1
−
(

γs
β1

+ γs−1
α

)
θ∑
(i,j)

χi,j

[
1 +

θ(γs − 1)εP̃I<i>

α

]−j

.

(A.5)

Since θn is independent of each other, we can write the CDF
of θn∗ = max1≤n≤N θn by using the order statistics as,

Fθn∗ (θ) =
[
1− e

1
P̃β1 e−( γs

β1
+ γs−1

α )θ̃
∑
(i,j)

χi,j

×
[
1 +

(γs − 1)εP̃I<i>

α
θ
]−j
]N

(A.6)

= 1−
N∑

n=1

(
N

n

)
(−1)n−1e

n
P̃β1 e−( γs

β1
+ γs−1

α )nθ

×
[̃∑
(i,j)

χi,j

[
1 +

(γs − 1)εP̃I<i>

α
θ
]−j
]n

. (A.7)

By applying [24, eq. (2.102)] into the above equation, we can
arrive at the CDF of Fθn∗ (θ), as shown in (26) of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

From the selection criterion in (32), we now compute the
CDF of un∗ as

Fun∗ (x) =

N∑
n=1

Pr
[
un ≤ x,min(un,

v1n + c1
c2

) ≥

max
1≤m≤N,m̸=n

ϕm

]
, (B.1)

where ϕm = min(um, v1m+c1
c2

). Due to the symmetry among
N relays, we can rewrite Fun∗ (x) as

Fun∗ (x) = N Pr
[
u1 ≤ x,min(u1,

v11 + c1
c2

) ≥ ϕm∗

]
,

(B.2)

where ϕm∗ = max2≤m≤N ϕm. The CDF of ϕm is derived as

Fϕm(ϕ) = Pr
[
min(um,

v1m + c1
c2

) ≤ ϕ
]

(B.3)

= 1− Pr(um > ϕ) · Pr(v1m > c2ϕ− c1). (B.4)

We now consider the two cases of 0 < ϕ < c1
c2

and ϕ ≥ c1
c2

,
respectively. When 0 < ϕ < c1

c2
, c2ϕ − c1 < 0 and hence

v1m > c2ϕ− c1 always holds. In this case, Fϕm(ϕ) becomes

Fϕm(ϕ) = 1− e−
ϕ
α . (B.5)
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On the other hand, when ϕ ≥ c1
c2

, c2ϕ − c1 ≥ 0 holds, and
Fϕm(ϕ) becomes

Fϕm(ϕ) = 1− e−
ϕ
α e−

c2ϕ−c1
β1 . (B.6)

From the above CDF of ϕm, we can write the CDF of ϕm∗

as

Fϕm∗ (ϕ) =



(1− e−
ϕ
α )N−1 =

N−1∑
n=0

(
N − 1

n

)
(−1)ne−

nϕ
α ,

0 < ϕ < c1
c2

(1− e−
ϕ
α e−

c2ϕ−c1
β1 )N−1 =

N−1∑
n=0

(
N − 1

n

)
×(−1)ne

nc1
β1 e−

nϕ
ζ , ϕ ≥ c1

c2

,

where ζ is defined in (35). From (B.2), we can further write
Fun∗ (x) as

Fun∗ (x) = N

∫ c1
c2

0

fϕm∗ (ϕ)

∫ x

ϕ

fu1(u1)du1dϕ

+N

∫ ∞

c1
c2

fϕm∗ (ϕ)
[ ∫ x

ϕ

fu1(u1)du1 ·
∫ ∞

c2ϕ−c1

fv1(v1)dv1

]
dϕ.

(B.7)

By applying the distributions of ϕm∗ , u1 and v1 into the above
equation, and then solving the integral, we can arrive at the
CDF of un∗ , as shown in (33) of Theorem 2. Similarly, we
can obtain the CDF of v1n∗ , as shown in Theorem 2. In this
way, we have completed the proof of Theorem 2.
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