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a b s t r a c t

An increasing number of empirical studies are challenging the central fundamentals on which the
classical soil food web model is built. This model assumes that bacteria consume labile substrates twice
as fast as fungi, and that mycorrhizal fungi do not decompose organic matter. Here, we build on emerging
evidence that points to significant consumption of labile C by fungi, and to the ability of ectomycorrhizal
fungi to decompose organic matter, to show that labile C constitutes a major and presently underrated
source of C for the soil food web. We use a simple model describing the dynamics of a recalcitrant and a
labile C pool and their consumption by fungi and bacteria to show that fungal and bacterial populations
can coexist in a stable state with large inputs into the labile C pool and a high fungal use of labile C. We
propose a new conceptual model for the bottom trophic level of the soil food web, with organic C
consisting of a continuous pool rather than two or three distinct pools, and saprotrophic fungi using
substantial amounts of labile C. Incorporation of these concepts will increase our understanding of soil
food web dynamics and functioning under changing conditions.

© 2016 Published by Elsevier Ltd.

1. Introduction

It has long been acknowledged that interactions in the soil food
web are crucial for processes of soil carbon (C) and nitrogen (N)
cycling. In the first complete soil food web, Hunt et al. (1987),
identified the presence of a separate fungal and bacterial energy
channel, as well as a root energy channel, formed by saprotrophic
fungi and their consumers, bacteria and their consumers, and
mycorrhizal fungi and root-feeding nematodes and their con-
sumers, respectively. While the fungal and bacterial energy chan-
nels can be considered ‘brown’ because the bottom trophic
levelsdfungi and bacteriadobtain their energy from dead organic
matter (detritus), the root energy channel can be considered ‘green’
becausemycorrhizal fungi and root-feeding nematodes obtain their
energy directly from living plants. Both modelling and empirical
studies have consistently found more efficient C and N cycling in
the fungal energy channel than in the bacterial energy channel
(Hunt et al., 1987; De Ruiter et al., 1993; De Vries et al., 2011;
Holtkamp et al., 2011; De Vries et al., 2012a). In addition,

theoretical and empirical work has shown that the presence of a
‘slow’ fungal energy channel with weak interactions strengths, and
coupling of the two energy channels by higher-level consumers,
confers stability to the soil food web (Rooney et al., 2006; De Vries
et al., 2012b; Rooney andMcCann, 2012). Shifts in the ratio between
the fungal and bacterial energy channel (often measured as the
shift in fungal/bacterial biomass ratio) are generally attributed to
changes in agricultural management and plant community
composition, and consequently in the quantity and quality of
organic substrates, which primarily consist of plant inputs, i.e. leaf
and root litter and root exudates (Bardgett and McAlister, 1999;
Wardle et al., 2004; Bardgett and Wardle, 2010; De Vries et al.,
2012d).

Despite its conceptual advances, some of the fundamental as-
sumptions in the classical food web model that support these
modelled and observed patterns are now being challenged by an
increasing number of experimental and theoretical studies. In
particular, evidence is mounting that feeding interactions in the soil
are not restricted to the traditional energy channels (e.g. de Boer
et al., 2005; Heidemann et al., 2011; Geisen et al., 2015). In addi-
tion, the original assumption that mycorrhizal fungi do not
decompose organic matter has been revised in recent years by* Corresponding author.
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evidence that, in particular, ectomycorrhizal (EM) fungi can
decompose organic matter (Read and Perez-Moreno, 2003; Phillips
et al., 2013). However, the classical soil food web does not distin-
guish between arbuscular mycorrhizal (AM) and EM fungi. More-
over, the classical soil foodweb distinguishes between a labile and a
recalcitrant pool of organic matter, and assumes that “bacteria use
labile substrates twice as fast, per unit biomass, as do fungi and that
(saprotrophic) fungi use resistant substrates twice as fast per unit
biomass as do bacteria” (Hunt et al., 1987). This concept of different
pools of organic matter has been challenged recently by the argu-
ment that soil organicmatter forms a continuum of states and pools
(Lehmann and Kleber, 2015). Here, we will focus on emerging ev-
idence that challenges the traditional model of C inputs and their
use by the bottom trophic levels, and the implications these may
have for the traditional soil food web model.

2. C flow in soil food webs

The first food web models assumed that the C that fuels the
detrital fungal and bacterial energy channels, consisting of a labile
and a recalcitrant pool, predominantly originated from above-
ground inputs such as leaf litter. This viewwas updated by Pollierer
et al. (2007), who showed that soil fauna predominantly derived
their C from root litter and exudates and not from leaf litter. At the
time, the prevailing hypothesis was that only bacteria used labile C,
and that it was unlikely that the highly labile C in root exudates
would contribute energy to the fungal energy channel and higher
tropic levels. However, recent work shows that root exudates
constitute a major pathway of belowground C inputs (Nguyen,
2009) and are fundamental to food web controls on C and N
cycling in response to climate change (Phillips et al., 2011). More-
over, recent evidence shows that both bacteria and fungi rapidly
consume and respire root exudate C (De Deyn et al., 2011; Rousk
and Frey, 2015), thus challenging the view that fungi primarily
consume recalcitrant litter. Supporting these findings, Eissfeller
et al. (2013) found root-derived recent photosynthate C in higher
trophic levels of both the fungal and the bacterial energy channel.

Another important source of belowground labile C inputs is the
transfer of recent plant photosynthate C to mycorrhizal fungal hy-
phae, which can occur extremely quickly (De Deyn et al., 2011;
Hannula et al., 2012). Although it is assumed that the ability of
AM fungi to decompose organic matter is limited, EM fungi have
been shown to be able to decompose or cleave organic substrates to
meet their nutrient demand (Read and Perez-Moreno, 2003; Talbot
et al., 2008; Cheng et al., 2012). Recent work shows that this ability
of EM fungi to decompose organic matter can increase soil C pools
through competition for organic N between EM fungi and the
decomposer community, supposedly resulting in a reduction in soil
organic matter nutrient concentrations and increased soil C inputs
through greater plant growth (Orwin et al., 2011; Averill et al.,
2014). While empirical mechanistic research into the exact mech-
anisms underlying this increase in soil C pools is sorely needed, EM
decomposition of organic matter also has the potential to increase
the availability of labile substrates for bacteria and fungi and the
energy channels they support (sensu Moore et al., 2004). In addi-
tion, AM fungi can prime the decomposition of organic matter by
supplying plant-derived C to saprotrophic fungi and bacteria
(Herman et al., 2012). Thus, the root energy channel can contribute
to the labile C pool that is used by fungi and bacteria via two
mechanisms: decomposition of organic matter by EM fungi, and
direct transfer of recent root-derived photosynthate C by AM fungi.
Importantly, this root-derived C in AM hyphae can enter this labile
litter pool relatively quickly, for example when hyphae are pierced
by fungal-feeding nematodes, similar to bacteria and fungi leaking
their internal solutes as a waste product of grazing (Hunt et al.,

1987; Koller et al., 2013). Therefore, AM fungi can connect the
three energy channels at the bottom of the soil food web, providing
a rapid pathway through which recently photosynthesised C enters
the soil food web.

3. A new central role for labile C and its consumption in soil
food webs

Despite its relatively small pool size, fluxes of labile (dissolved
organic) C are large because of continuous production (through
decomposition and root exudation) and consumption (van Hees
et al., 2005; Boddy et al., 2007). For example, van Hees et al.
(2005) estimated that heterotrophic respiration of root exudate C
constitutes 10e20% of total soil respiration. Despite slight modifi-
cations in soil food web models to represent the complex role of C
inputs (e.g. the inclusion of a water soluble sugar pool in Holtkamp
et al. (2008)), current food web models do not represent the
importance of this C pool, and its consumption by the bottom
trophic levels of the soil food web. Here, we propose the following
modifications to existing food web models:

1. Despite the usually small standing pool size of labile C, inputs of
labile C are the dominant source of C for the bottom trophic
levels in the soil food web on short tomedium timescales (hours
to seasons) (Bardgett et al., 2005).

2. Saprotrophic fungi use more labile C than previously assumed.
Using the model fromMoore et al. (2004) (Fig. 1a), we show that
fungal and bacterial populations can coexist in a stable state
with large inputs into the labile C pool, a high fungal use of labile
C, and high fungal mediated transfer of C from the recalcitrant to
the labile pool (Fig. 1, Supplementary Methods). By increasing
inputs into the labile C pool and the consumption of this pool by
fungi (Fig. 1b), we show that fungi can achieve high consump-
tion of the labile pool while also consuming the recalcitrant
pool. Our model shows that both fungi and bacteria increase
with increased input to the labile pool and increased rates of
fungal mediated transfer of labile C (Fig. 1c, e).

3. In addition to their well-established role in protecting soil C
through increasing soil aggregation (Rillig and Mummey, 2006;
Wilson et al., 2009), EM fungi can decompose organic matter to
meet their nutrient demands, thereby potentially increasing the
amount of labile substrate available for saprotrophic fungi and
bacteria.

4. The role of labile C is enhanced further through the contribution
of mycorrhizal fungi to this C pool, through EM fungal organic
matter decomposition by extracellular enzymes, and through
AM fungi supplying saprotrophic fungi and bacteria with recent
photosynthate.

This proposed role of labile C as amajor C input into the soil food
web has important implications for our understanding of soil C
cycling and the role of the soil food web. Intuitively, the high use of
labile C by saprotrophic fungi and bacteria might result in higher
microbial turnover and respiration, priming of the decomposition
of soil organic matter, and lower soil C pools. However, following
theMicrobial Efficiency-Matrix Stabilization (MEMS) framework by
Cotrufo et al. (2013), labile C substrates are used more efficiently by
microbes than recalcitrant litter, and are thus the most important
source of microbial products and the main precursor of stable soil
organic matter. Our proposed modifications are in line with the
MEMS framework and suggest a highermicrobial C use efficiency of
labile C substrates than previously assumed. In particular, EM
decomposition of organic matter would increase the availability of
labile C, and high labile C use by fungi would increase soil organic
matter formation because of their intrinsically higher substrate use
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Fig. 1. Simple model incorporating the effects of two C pools on saprotrophic fungal and bacterial dynamics, as in Moore et al. (2004). Grey arrows represent the creation of new
detritus from external and internal sources, black arrows represent the flow of detritus derived energy, and the dashed line represents ontogenetic change of detritus and the effects
fungi and bacteria have on this process. In the original model (a), fungi mostly consumed recalcitrant material, supplemented by a small amount of labile detritus, while bacteria
only consumed labile detritus. In our proposed model (b), inputs into the labile detritus pool are increased, as well as fungal consumption of this pool (note that in our model, the
arrow via which bacteria affect the ontogenetic production of labile C from recalcitrant C has been removed, since no bacterial consumption of recalcitrant litter exists in the model).
After initial model exploration, (see Supplementary Methods), we created a number of scenarios to investigate the behaviour of the model under our proposed modifications. In
panels c to f, each dot shows the long term equilibrium value of one scenario. Scenarios differ only for four parameters (which all consist of intrinsic rates per unit biomass): the
labile pool input rate (arrow 1), the labile pool consumption rate of both bacteria (arrow 2) and fungi (arrow 3), and the transfer rate of material from the recalcitrant to the labile
pool by fungi (arrow 4). Low rates scenarios (light shades) had low values for all four parameters, while high rate scenarios (dark shades) had high values: as the external input to
the labile pool increases, both fungi and bacteria increase the consumption rate of the labile pool. Fungi can achieve high consumption of the labile pool while also consuming the
recalcitrant pool. These increased rates also correspond to increased fungal mediated transfers from the recalcitrant to the labile pools. The scenarios were designed to cover a broad
range of parameter variation while keeping the ratios within reasonable values. Fungi increase with increased input to the labile pool (c) but bacteria do too as shown by the
variation of the fungal to bacterial ratio in relation to the pools ratio (d and e). These dynamics also create a positive relationship between the fungal to bacterial ratio and return
time to equilibrium after perturbations (f), implying that communities dominated by fungi are less resilient to perturbation than those dominated by bacteria. For all parameters
and modelling details see Supplementary Methods.
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efficiency compared to bacteria (Six et al., 2006; but see Thiet et al.,
2006). These ideas also support the idea that soil organic matter
consists of a continuum of states that are continuously processed by
decomposers, and highlight the need to put a greater emphasis on C
fluxes than stocks (Lehmann and Kleber, 2015).

This prominent role of labile C use by the bottom trophic levels
has implications for higher trophic levels in the soil food web and
soil food web dynamics. Root exudates are an important constitu-
ent of the labile C pool in soil, and form a continuous but highly
dynamic C source, in contrast to the pulsed, seasonal, but slowly
fluctuating supply of leaf and root litter. The release of root exu-
dates and the transport of plant C to mycorrhizal hyphae are tightly
coupled with plant photosynthetic activity (Heinemeyer et al.,
2006), and fluctuate with changes in temperature, moisture, and
light availability. Thus, populations and communities of fungi and
bacteria that use labile C as their main C source will fluctuate over
short, within-seasonal, timescales (Bardgett et al., 2005) and, as a
consequence, so might higher trophic levels that feed on them
(Moore et al., 2014). In addition, the diffusion of exudates from
roots into the soil is highly spatially patterned and results in hot-
spots of microbial populations and their consumers. Importantly,
higher fungal consumption of labile C might result in a more ho-
mogenous distribution of C in soil through translocation of this C
via hyphal networks, as shown by Muller et al. (2016).

High use of labile C in the form of root exudates by bacteria and
fungi also has the potential to affect trophic interactions in the soil
food web. Where the classical models assumed that fungi and
bacteria mostly consume particulate organic matter, the inclusion
of an additional significant labile C pool would increase microbial
populations (see Fig. 1). While the importance of fungi for sup-
plying bacteria with labile C has been recognised (Moore et al.,
2004; de Boer et al., 2005), higher fungal consumption of labile C
would increase competition between fungi and bacteria. In our
model (Fig. 1) we show that bacterial and fungal populations can
coexist under these scenarios. This coexistence might be facilitated
by antifungal strategies employed by bacteria (de Boer et al., 2005),
or through spatial or temporal niche separation. For example, it is
well known that fungi are more resistant to drought than bacteria
(De Vries et al., 2012b; Guhr et al., 2015), and might thus outcom-
pete bacteria for labile C during dry spells, or in dry microsites. In
addition, the spatial patterning of high inputs of labile C, as is the
case with root exudates, has been shown to promote top-down
control of microbial populations by their consumers (Moore et al.,
2014). Importantly, microbial grazers can affect levels of labile C
by affecting biomass and activity of microbial prey (Moore et al.,
2014). These mechanisms likely form a negative feedback to keep
increasing fungal and bacterial populations, as found in our model
without microbial grazers, in check.

The increased use of root exudates by fungi and bacteria has
important implications for the response of soil food webs to
disturbance. Soil food web recovery after a disturbance typically
occurs from the bottom up and has been shown to be positively
affected by the quantity of labile belowground plant C inputs (De
Vries et al., 2012c; De Vries and Shade, 2013). It is well known
that root exudation increases under elevated atmospheric con-
centrations of CO2, but plant physiological processes also rapidly
respond to disturbances such as changes in temperature and
moisture, thereby affecting belowground response (Bardgett et al.,
2013). For example, it has been shown that warming stimulates
root exudation, which in turn stimulated microbial activity (Yin
et al., 2013). Therefore, plant physiological response to distur-
bance likely has an equally important effect on belowground
response as shifts in plant community composition (Bardgett et al.,
2013). Importantly, ourmodelled results support the general notion
that fungi recover slower after a perturbation than do bacteria

(Fig. 1f). Thus, if the labile C pool drives soil food web dynamics,
aboveground-belowground linkages are stronger than previously
assumed, especially on short timescales, and soil food web dy-
namics will have stronger and more immediate feedbacks to global
change dynamics.

4. Conclusion

We propose a new conceptual model, in which labile C inputs,
and specifically root exudates, form a significant C source for the
bottom trophic level of the soil food web. Here, organic C inputs
consist of a continuous pool rather than two or three distinct pools,
and saprotrophic fungi use substantial amounts of labile C (Fig. 2).
Modelling organic C input and quality as a continuous pool may
have far reaching consequences for C dynamics, for example in
terms of temperature dependence of decay rate under climate
change scenarios (Bosatta and Agren, 1999; Agren and Bosatta,
2002; Lehmann and Kleber, 2015). EM fungi in particular are able
to decompose organic matter and contribute to the labile C pool,
while AM fungi can transport recent plant-derived labile C back
into it and prime the decomposition of recalcitrant organic matter.
These findings give scope to a trait-based rather than a taxonomic
separation of functional groups in the soil food web. While much
work is underway classifying microbes and their consumers on the
basis of their functional traits (e.g. Crowther et al., 2014; Treseder
and Lennon, 2015; da Silva et al., 2016), and feeding relationships
in the soil food web are being revised (see other articles in this
issue), a detailed understanding of these traits is needed to revise
the classical soil food web. To validate our proposed role of root
exudates for the soil food web, measurements of root exudation
and soil food web C use and population dynamics are needed at
high temporal resolution. Although not an easy task, novel methods
such as metabolomics, compound-specific isotope ratio analyses,
and high-throughput sequencing and barcoding approaches are
available to facilitate this. Incorporation of the concepts we propose
here in existing food web models will increase our understanding
of mechanistic links between aboveground communities and soil
food webs, with implications for soil food web dynamics and
functioning under changing conditions.

Fig. 2. Conceptual model depicting the role of C inputs for the bottom trophic level of
the soil food web, and the overlapping, fluent C use abilities of mycorrhizal fungi,
saprotrophic fungi, and bacteria. Shading of boxes and arrows indicates the quality of
C, with lighter shades indicating highly labile C. Solid arrows indicate C flow. Dashed
arrows indicate mycorrhizal and decomposer fungi mediated decomposition and
transfer of labile C (see text for details on the different mechanisms). Note that for
clarity, no distinction is made between ectomycorrhizal fungi and arbuscular mycor-
rhizal fungi.
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