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Abstract: The geographic and temporal origins of dogs remain controversial. Here, we generated 43 
genetic sequences from 59 ancient dogs and a complete (28x) genome of a late Neolithic dog 44 
(~4,800 calBP) from Ireland. Our analyses revealed a deep split separating modern East Asian 45 
and Western Eurasian dogs. Surprisingly, the date of this divergence (~14,000-6,400 years ago) 46 
occurs commensurate or several millennia after the first appearance of dogs in Europe and East 47 
Asia. Additional analyses of ancient and modern mitochondrial DNA revealed a sharp 48 
discontinuity in haplotype frequencies in Europe. Combined, these results suggest that dogs may 49 
have been domesticated independently in Eastern and Western Eurasia from distinct wolf 50 
populations. East Eurasia dogs were then possibly transported alongside people where they 51 
partially replaced European Palaeolithic dogs. 52 

One Sentence Summary: Genomics and archaeology reveal both a possible dual origin of 53 
domestic dogs and a subsequent translocation of East Asian dogs into Europe. 54 

Main Text: Dogs were the first domestic animal and the only animal domesticated prior to the 55 
advent of settled agriculture (1). Despite their importance in human history, no consensus has 56 
emerged with regard to their geographic and temporal origins, or whether dogs were 57 
domesticated just once or independently on more than one occasion. Though several claims have 58 
been made for an initial appearance of dogs in the early Upper Palaeolithic (~30,000 years ago; 59 
e.g. 2), the first remains confidently assigned to dogs appear in Europe ~15,000 years ago and in 60 
Far East Asia over 12,500 years ago (1, 3). While archaeologists remain open to the idea that 61 
there was more than one geographic origin for dogs (e.g. (4, 5), most genetic studies have 62 
concluded that dogs were likely domesticated just once (6) – disagreeing on whether this 63 
occurred in Europe (7), Central Asia (8), or East Asia (9). 64 

Recent palaeogenetic studies have had a tremendous impact on our understanding of 65 
early human evolution (e.g. (10, 11)).  Here we apply a similar approach to reconstruct the 66 
evolutionary history of dogs. We generated 59 ancient mtDNA sequences from European dogs 67 
(from 14,000 to 3,000 years ago) as well as a high coverage nuclear genome (~28x) of an ancient 68 

dog ~4,800 calBP (12) from the Neolithic passage grave complex of Newgrange (Sí an Bhrú) in 69 

Ireland. We combined our ancient sample with 80 modern publically available full genome 70 
sequences and 605 modern dogs (including village dogs and 48 breeds) genotyped on the 170k 71 
HD SNP array (12). 72 

We first assessed characteristics of the Newgrange dog by typing SNPs associated with 73 
specific phenotypic traits and by inferring its level of inbreeding, compared to other breed and 74 
village dogs (12). Our results suggest that the degree of artificial selection and controlled 75 
breeding during the Neolithic was similar to that observed in modern free-living dogs. In 76 
addition, the Newgrange dog did not possess variants associated with modern breed-defining 77 
traits including hair length or coat color. And though this dog was likely able to digest starch less 78 
efficiently than modern dogs, it was more efficient than wolves (12). 79 
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A phylogenetic analysis, based on 170k SNPs revealed a deep split separating the modern 80 
Sarloos breed from other dogs (Fig. 1a). This breed - created in the 1930s in the Netherlands - 81 
involved breeding German Shepherds with captive wolves (13), thus explaining the breed’s 82 
topological placement. Interestingly, the second deepest split (evident on the basis of both the 83 
170K SNP panel – Fig 1a - and genome-wide SNPs  - Fig. S4) separates modern East Asian and 84 
Western Eurasian (Europe and the Middle East) dogs. Moreover, the Newgrange dog clusters 85 
tightly with Western Eurasian dogs. We used Principal Component Analysis (PCA), D-statistics 86 
and TreeMix (12) to further test this pattern. Each of these analyses unequivocally placed the 87 
Newgrange dog with modern European dogs (Figs. S5, S6, S7). These findings demonstrate that 88 
the node separating the East Asian and Western Eurasian clades is older than the Newgrange 89 
individual; directly radiocarbon dated to ~4,800 years ago. 90 

Other nodes leading to multiple dog populations and breeds (including the basal breeds 91 
(1) such as Greenland Sledge dogs or Siberian Husky; Fig. 1a) are poorly supported, suggesting 92 
that these breeds likely possess mixed ancestry from both Western Eurasian and East Asian dog 93 
lineages. To further assess the robustness of the deep split and those nodes associated with the 94 
potentially admixed lineages, we defined Western Eurasian and East Asian “core” groups (Fig. 95 
1a) supported by the strength of the node leading to each cluster (12). We then used D-statistics 96 
to assess the affinity of each population to either Western Eurasian or East Asian core groups 97 
(12). The results of this analysis again revealed a clear East-West geographic pattern across 98 
Eurasia associated with the deep phylogenetic split (Fig. 1b). Breeds such as the Eurasier, 99 
Greenland Sledge dogs and Siberian Huskies (all basal breeds from Northern regions(1)), 100 
however, possess strong signatures of admixture with the East Asian core samples (Fig. S11), as 101 
do populations sampled in East Asia that clustered alongside Western Eurasian dogs (e.g. Papua 102 
New Guinean village dog; Fig. 1a).  103 

We used the Multiple Sequentially Markovian Coalescent (MSMC)(12, 14) to reconstruct 104 
the population history of East Asian and Western Eurasia dogs. An analysis of individual high 105 
coverage genomes demonstrated a long, shared population history between the Newgrange dog 106 
and modern dogs from both Western Eurasia and East Asia (Fig. S15). A reconstruction using 107 
two genomes per group improved the resolution for recent time periods (Fig. 2a) and revealed a 108 
bottleneck in the Western Eurasian population, following its divergence from the East Asian 109 
core. A similar bottleneck observed in non-African human populations has been interpreted as a 110 
signature of a migration out of Africa (15). We therefore speculate that the analogous bottleneck 111 
observed in our dataset could be the result of a divergence and subsequent migration from east to 112 
west; supporting suggestions drawn from recent analyses of modern dog genomes (8, 9, 16). 113 

We then used MSMC to compute divergence times as a mean to assess the time frame of 114 
the shared population history among dogs, and between dogs and wolves. To obtain reliable time 115 
estimates, we used the radiocarbon age of the Newgrange dog to calibrate the mutation rate for 116 
dogs (12)(Fig. S16). This resulted in a mutation rate estimate of between 0.3x10-8 and 0.45x10-8 117 
per generation - similar to that obtained with an ancient grey wolf genome (17). Using this 118 
mutation rate, we calculated the divergence time between the two modern Russian wolves (18) 119 
used in this study and the modern dogs to be 60,000-20,000 years ago (Fig. S17; Fig. 2b). 120 
Importantly, this date should not be interpreted as a time frame for domestication, since the 121 
wolves we examined may not have been closely related to the population that gave rise to dogs 122 
(6).  123 



These analyses also suggested that the divergence between the East Asian and Western 124 
Eurasian core groups (~14,000-6,400 years ago) occurred commensurate, or several millennia 125 
after the earliest known appearance of domestic dogs in both Europe (>15,000 years) and East 126 
Asia (>12,500 years) (1) (Figs. S17, 2b). In addition, admixture signatures from wolves into 127 
Western Eurasian dogs most likely pushed this estimated time of divergence deeper into the past 128 
(12) meaning that the expected time of divergence between East and Western cores is likely 129 
younger than our estimate. These results imply that indigenous populations of dogs were already 130 
present in Europe and East Asia during the Palaeolithic (prior to this genomic divergence). 131 
Under this hypothesis, this early indigenous dog population in Europe was replaced (at least 132 
partially) by the arrival of East Eurasian dogs.  133 

To investigate this potential replacement, we sequenced and analyzed 59 hyper-variable 134 
mtDNA fragments from ancient dogs spread across Europe and combined those with 167 135 
modern sequences (12). Each sequence was then assigned to one of four major well-supported 136 
haplogroups (A-D) (19). While the majority of ancient European dogs belonged to either 137 
haplogroup C or D (63% and 20%, respectively), most modern European dogs possess sequences 138 
within haplogroups A and B (64 and 22% respectively) (Fig. 2c, d, e). Using simulations, we 139 
showed that this finding cannot be explained by drift alone (12). Instead, this pattern arose from 140 
clear turnover in the mitochondrial ancestry of European dogs, most likely as a result of an 141 
arrival of East Asian dogs. This migration led to a partial replacement of ancient dog lineages in 142 
Europe that were present by at least 15,000 years ago (1). 143 

Though the mtDNA turnover is obvious, the nuclear signature reveals an apparent long-144 
term continuity. Assessments of ancestry in humans have demonstrated that major (nuclear) 145 
turnovers can be difficult to detect without samples from the admixing population (11). A 146 
genome-wide PCA analysis revealed that PC2 clearly discriminates the Newgrange dog from 147 
other modern dogs (Fig. S8), suggesting that this individual possessed ancestry from an 148 
unsampled population. 149 

Our MSMC analysis reveals that the population split between the Newgrange dog and the 150 
East Asian core (as measured by cross coalescence rate [CCR]) is older (on average) than the 151 
split between modern Western Eurasian and East Asian lineages (Fig. 2b). Simulations suggest 152 
that this pattern could be explained by a partial replacement model in which the Newgrange dog 153 
retained a degree of ancestry from an outgroup population (Fig. S20a,b), that was different from 154 
modern wolves (12). Alternatively, this pattern could also be explained by secondary gene flow 155 
from Asian dogs into modern European dogs (Fig. S20c). Nevertheless, simulations show that 156 
secondary gene flow has a smaller effect on CCR than the partial replacement model (Fig. 157 
S20b,d). Moreover, secondary gene flow cannot explain the placement of the Newgrange dog on 158 
our genome-wide PCA (Fig. S8). Overall, these observations are consistent with a scenario in 159 
which the Newgrange dog retained a degree of ancestry from an ancient canid population that 160 
falls outside of the variation of modern dogs, but that is also different from modern wolves. This 161 
pattern also suggests that the replacement of European indigenous Palaeolithic dogs may not 162 
have been complete.  163 

To assess the consilience between our results and the archaeological record, we compiled 164 
evidence for the earliest dog remains across Eurasia (Fig. 3a). We found that while dogs are 165 
present at sites as old as 12,500 years in Eastern Eurasia (China, Kamchatka and East Siberia) 166 
and 15,000 years in Western Eurasia (Europe and Near East) dog remains older than 8,000 years 167 
have yet to be recovered in Central Eurasia (Fig. 3a; Table S7). Combined with our DNA 168 



analyses, this observation suggests that two distinct populations of dogs were present in Eastern 169 
and Western Eurasia during the Palaeolithic.  170 

The establishment of these populations is consistent with two scenarios: a single origin of 171 
Eurasian dogs followed by early transportation, founder effects, isolation and drift, or two 172 
independent domestication processes on either side of Eurasia. In the first scenario, the 173 
archaeological record should reveal a temporal cline of the first appearance of dogs across 174 
Eurasia stemming from a single source. Given the current lack of dog remains prior to 8,000 175 
years ago in Central Eurasia, a scenario involving a single origin followed by an early 176 
transportation seems less likely. 177 

 Given our combined results, we suggest the following hypothesis: two genetically 178 
differentiated and potentially extinct wolf populations in Eastern (8, 9) and Western Eurasia (7) 179 
may have been independently domesticated prior to the advent of settled agriculture (Fig. 3a). 180 
The eastern dog population then dispersed westward alongside humans, between 6,400 and 181 
14,000 years ago, into Western Europe (10, 11, 20) whereupon they partially replaced an 182 
indigenous Palaeolithic dog population. Our hypothesis reconciles previous studies that have 183 
suggested domestic dogs originated in East Asia (9, 19) and Europe (7). For numerous reasons, 184 
the null hypothesis should be that individual animal species were domesticated just once (21). 185 
The combined genetic and archaeological results presented here, however, suggest that dogs, like 186 
pigs (22), may have been domesticated twice. Nevertheless, given the complexity of the 187 
evolutionary history of dogs and uncertainties related to mutation rates, generation times and the 188 
incomplete nature of the archaeological record, our scenario remains hypothetical. Genome 189 
sequences derived from ancient Eurasian dogs and wolves will provide the necessary means to 190 
assess whether dog domestication occurred more than once. 191 
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 358 

Fig. 1: Deep split between East Asian and Western Eurasian dogs.a. A neighbour-joining 359 
tree (with bootstrap values) based on Identity by State (12) of 605 dogs. Red and yellow clades 360 
represent the East Asian and Western Asian core groups respectively (12). b. A map showing the 361 
location and relative proportion of ancestry (mean D-values) of dogs (Fig. S10). Positive values 362 
(red) indicate that the population shares more derived alleles with the East Asian core while 363 
negative values (yellow) indicate a closer association with the Western Eurasian core. 364 

Fig. 2: Effective population size, divergence times and mtDNA. a. Effective population size 365 
through time of East and Western Eurasian dogs and wolves with MSMC. b. Cross-coalescence 366 
rate (CCR) per year for each population pair in Fig. 2a. The CCR represents the ratio of within 367 
and between population coalescence rates (CR). The ratio measures the age and pace of 368 
divergence between two populations. Values close to 1 indicate that both within and between CR 369 
are equal meaning the two populations have not yet diverged. Values close to 0 indicate that the 370 
populations have completely diverged. c. Bar plot representing the proportion of mtDNA 371 
haplogroups at different time periods. d. Locations of archaeological sites with haplogroup 372 
proportions. e. Location of modern samples with haplogroup proportions. 373 

Fig. 3: Archaeological evidence for the first appearance of dogs across Eurasia and a model 374 
of dog domestication. a. Map representing the geographic origin and age of the oldest 375 
archaeological dog remains in Eurasia (12). b. A suggested model of dog domestication under 376 
the dual origin hypothesis. An initial wolf population split into East and West Eurasian wolves 377 
that were then domesticated independently before going extinct (as indicated by the † symbol). 378 
The Western Eurasian dog population (European) was then partially replaced by a human-379 
mediated translocation of Asian dogs at least 6,400 years ago, a process that took place gradually 380 
after the arrival of the eastern dog population. 381 
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