
Crack propagation in non-homogenous materials: Evaluation of
mixed-mode SIFs, T-stress and kinking angle using a variant EFG
method
Muthu, N., Maiti, S. K., Falzon, B. G., & Yan, W. (2016). Crack propagation in non-homogenous materials:
Evaluation of mixed-mode SIFs, T-stress and kinking angle using a variant EFG method. Engineering Analysis
with Boundary Elements, 72, 11-26. DOI: 10.1016/j.enganabound.2016.07.017

Published in:
Engineering Analysis with Boundary Elements

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2016 The Authors

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74405628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/crack-propagation-in-nonhomogenous-materials-evaluation-of-mixedmode-sifs-tstress-and-kinking-angle-using-a-variant-efg-method(a71dcbf1-64fd-4335-a7e0-d48708ef908f).html


1 

 

Crack Propagation in Non-homogenous materials: 

Evaluation of Mixed-Mode SIFs, T-stress and Kinking 

angle using a variant of EFG Method  
 

N. Muthua,b,d, S.K. Maitib, B.G. Falzonc, Wenyi Yand 

 

a IITB-Monash Research Academy, CSE Building, 2nd Floor, IIT Bombay, Powai, 400076, 

India.  
b Department of Mechanical Engineering, IIT Bombay, Powai, 400076, India. Email id: 

skmaiti@iitb.ac.in, phone: +91-22-2576-7526, fax: +91-22-2572-6875.   
c School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 

5AH, UK.  
d Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 

3800, Australia.  
 

ABSTRACT 

 

A new variant of the Element-Free Galerkin (EFG) method, that combines the diffraction 

method, to characterize the crack tip solution, and the Heaviside enrichment function for 

representing discontinuity due to a crack, has been used to model crack propagation through 

non-homogenous materials. In the case of interface crack propagation, the kink angle is 

predicted by applying the maximum tangential principal stress (MTPS) criterion in conjunction 

with consideration of the energy release rate (ERR). The MTPS criterion is applied to the crack 

tip stress field described by both the stress intensity factor (SIF) and the T-stress, which are 

extracted using the interaction integral method. The proposed EFG method has been developed 

and applied for 2D case studies involving a crack in an orthotropic material, crack along an 

interface and a crack terminating at a bi-material interface, under mechanical or thermal 

loading; this is done to demonstrate the advantages and efficiency of the proposed 

methodology. The computed SIFs, T-stress and the predicted interface crack kink angles are 

compared with existing results in the literature and are found to be in good agreement. An 

example of crack growth through a particle-reinforced composite materials, which may involve 

crack meandering around the particle, is reported.  

  
KEY WORDS: EFG, SIF, T-stress, interface crack, MTPS, crack propagation. 

 

1. INTRODUCTION 

 

Composite materials are often subjected to extreme mechanical and thermal loading conditions 

that make them susceptible to damage through crack formation. Studies on the modelling of 

fracture in composites, range from nanoscale to macroscale analysis. Useful insight into the 

study of fracture may be gained through analysis at the microscale. At this level, the constituent 

materials are represented separately, i.e. the material is non-homogenous usually consisting of 

dissimilar materials or bi-materials separated by an interface [1].  

 

A propagating crack at the microscale may often impinge on the bi-material interface at an 

angle. The associated singular stress field consists of two different orders of singularity which 

may be either complex conjugates or real [2-3]. In addition, a crack tip that meets an interface 

of two materials may grow along it or penetrate into the neighbouring material. The criterion 

for such a crack to kink into the neighbouring material is different from the criterion governing 

the crack propagation in a homogenous material. The development of a proper numerical 
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method and an efficient approach to predict the angle of crack propagation, including kinking 

of an interface crack, can be very useful in the study of fracture of composites. 

 

Mesh-based methods like the finite element method (FEM) and the boundary element method 

(BEM) pose difficulties for crack propagation problems due to extensive meshing and re-

meshing. Although the extended finite element method (XFEM), based on the partition-of-unity 

approach, eliminated some of the difficulties, the enrichment functions depend on the crack tip 

location in non-homogenous materials [4-8]. Meshfree methods (MMs) [9-10] provide 

alternatives to study such problems. The EFG method [11], whose shape functions are higher 

order continuous, has been shown to be very useful for fracture mechanics applications [12-

17]. A variety of enrichment strategies [18-22], within the realm of EFG method, have been 

proposed to model crack in homogenous material. The choice of EFG method that can offer 

advantages in modelling crack propagation through non-homogenous materials is limited. 

Development of new schemes can be helpful. This has provided some motivation for the present 

study.     

    

Williams and Ewing [23], Finnie and Saith [24], Ewing and Williams [25], Ueda et al. [26], and 

Cotterell [27] proposed the use of T-stress of the power series expansion of the stress 

distribution due to a crack, to determine the crack paths in metals under pure mode I loading. 

Since then, many investigators [28-31], used the T-stress on top of the singular stress field to 

predict crack paths. Matvienko [32] reported good agreement between predicted fracture angles 

and experimental data for mixed-mode I/II crack growth through Guiting limestone. Ki [33] 

studied the existing criteria for crack kinking out of an interface and recommended the use of 

the T-stress. To the authors’ knowledge, no studies have been reported concerning the use of T-

stress on the crack propagation through non-homogenous materials, within the framework of 

MMs. 

 

There are several criteria to determine the instantaneous angle of crack propagation when the 

crack is in a homogenous medium. However only few criteria have been proposed to predict 

this kinking angle [33] in the case of an interface crack. He and Hutchinson [34] indicated that 

an interface crack would penetrate the adjoining material depending on the energy release rate 

(ERR) associated with the kinking direction and the relative toughness of the interface and the 

neighbouring material. The competition between penetration and deflection of a crack also 

depended on the ratio of kinked crack extension lengths. To overcome this difficulty, a revised 

energy based criterion was developed and applied to composite problems [35-41]. Akisanya 

and Fleck [42] explained the zigzag propagation of a crack within a layer sandwiched between 

two tougher materials in terms of the mode II stress intensity factor 0IIK  . The determination 

of the interface crack kinking angle, using the ERR criterion and 0IIK   criterion, requires 

multiple case studies, which is computationally costly. Amestoy and Leblond [43] have 

compared the differences between the energy release rate criterion and 0IIK   criterion. 

 

Yuuki and Xu [44] proposed a criterion based on the maximum tangential stress (MTS) given 

only by the singularity term and compared the results with experimental data. In the MTS 

criterion given in reference, the first term of the eigenfunction expansion, or the singularity 

term, is only used to determine the angle of crack propagation. This angle corresponds to the 

direction of maximum tangential principal stress. The crack propagation angle given by the 

MTS criterion does not correspond to a principal direction when higher order terms are also 

used. In such a case, the direction given by 0r   corresponds to a principal direction. This 

criterion, termed as zero shear stress criterion, or MTPS criterion [45], was implemented in the 

case of homogenous materials. Application of such a criterion is convenient and it helps to 

avoid analyses of multiple cases to determine the interface crack kinking angle. Its application 
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to bi-material interface cracks has not yet been reported. 

 

The present paper examines the possibility of developing a variant of the EFG method plus the 

applicability of the MTPS criterion, in conjunction with the ERR technique, for modelling crack 

propagation through non-homogenous materials.       

 

The outline of the paper is as follows: The proposed EFG method formulation with crack 

modelling techniques is detailed in Section 2. In Section 3, the interaction integral used to 

extract mixed mode SIFs and T-stress is described. The modified interaction integral, to handle 

the situation when the crack tip is close to a bi-material interface, is also presented. Section 4 

discusses the proposed criterion combining the concepts of a stress based criterion and the ERR 

to predict the kinking angle of an interface crack. The convergence study is presented in Section 

5. In Section 6, these schemes have been applied to a number of problems, including thermal 

load problems, to illustrate their performance. The influence of the T-stress on the kinking angle 

has been also examined. This is followed by some concluding remarks in Section 7. 

 

2. MODIFIED EFG METHOD 

  

In the displacement-based EFG method, the displacement at location x  within a support 

domain of n  nodes, ( )u x , can be represented as 

 
n

I=1

( ) = Φ ( )I Iu x x u  (1) 

where Φ ( )I x  are the nodal shape functions and Iu  are the nodal displacement vectors. The 

moving least squares (MLS) interpolation [46] technique is used to develop the shape functions 

in the EFG method. 

 
Fig. 1.  Nodal discretization for geometry with a crack and an inclusion. 

 

In this work, the Heaviside function is used to take care of the discontinuity between the crack 

edges and the diffraction method is used in the region around the crack tip. The diffraction 

method eliminates the need of enrichment functions that depend on the location of the crack 

tip, orientation of the crack to a material interface and material properties. The Heaviside 

function helps to avoid the need of adding additional nodes along the crack faces in a problem 

of mixed-mode crack propagation. Consequently, the displacement approximation in the 

proposed EFG method in the presence of a crack (strong discontinuity) and inclusion boundary 

(weak discontinuity) present in a given geometry (Fig. 1), takes the form 

 
( ) ( ) ( )

( ) = Φ ( ) Φ ( ){ H( ( ))}+ Φ ( ) ( )
j c

I I I I I I I

I w I w I w

f
  

   
x x x

u x x u x a x x c x  
(2) 

where function 
1 1( ) F ( ) F ( )I I  x x x  is employed for displacement continuity across the 
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interface with I

(x) (x)

F ( ) Φ ( ) Φ ( )
c c

I I I I

I w I w

ζ ζ
 

  x x x . Iζ  is the signed distance of node I from 

the interface [47]. The set ( )w x  consists of nodes in the support domain of x . The set ( )jw x  

and ( )cw x consist of Heaviside enriched and level set enriched nodes with a displacement 

continuity function. This method may not capture the order of the singularity exactly. However, 

the higher order nodal shape functions ensure an accurate and easier computation of the SIFs.   

 

The routinely used polynomial basis p [1 ]x y  needed for the development of shape 

functions of the EFG method through the MLS technique, is employed. The cubic B-spline 

weight function with circular domain of influence is used. For accurate integration purposes, 

the background mesh that intersects the crack is subdivided into triangles such that no mesh 

crisscrosses the crack [48], as shown in Fig. 2. In the present work, in addition to the sub-

triangulation, a 13th order Gauss quadrature has been used in each triangle close to the crack tip 

for integration.  

 
Fig. 2.  Sub-triangulation for the background mesh. 

 
3. INTERACTION INTEGRAL TO EXTRACT SIFs AND T-STRESS 

 

There exist variety of post processing techniques, within the framework of the EFG method, to 

compute the SIFs for a crack in isotropic and homogenous materials [48,49] and complex SIF 

for an interface crack [50-55]. The popular interaction integral/M-integral [56] technique is 

used to extract the complex SIF associated with an interface crack under mechanical and 

thermal loading. The same interaction integral is also used to extract the T-stress with the help 

of different auxiliary functions [57]. A modified interaction integral [58] is used to extract 

mixed-mode SIFs for a crack when it is close to material interfaces.  

 

For a crack in a homogenous material under thermal (ΔT ) field and crack face loading, the 

interaction integral is given by 

 

,1 ,1 1 , ,1 ,1
Γ Γ

( ) Γ (Δ )
c c

aux aux aux aux aux

ij i ij i ik ik j j cj j kk
A A

I σ u σ u σ ε δ q dA t u qd φ ε T qdA
 

      
 

/ (1 2 ) for plane strain

/ (1 ) for plane stress

Eη ν
φ

Eη ν





 

                               

(3) 

where A  is the area of integration as shown in Fig. 3(a). ,E η  and ν  are, respectively, Young’s 

modulus, thermal coefficient of expansion and Poisson’s ratio. q  is a scalar function which has 

the value of unity on the contour 1S  and zero on 2S . ij  is the Kronecker’s delta. The integration 

is carried out by shrinking the area oA  to zero.  In evaluating the energy release rate in the 
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absence of crack face tractions, the second term in Eq. (3) is omitted. 
aux

ijσ ,
aux

ikε  and 
aux

iu  are 

auxiliary state solutions; they correspond to the theoretical crack tip solution in a homogenous 

material. 

 

For a crack in an isotropic and homogenous material, the interaction integral/M-integral can be 

expressed in terms of mixed-mode SIFs as follows: 

 
*

(2 2 )aux aux

I I II IIK K K K
I

E


  

                               

(4) 

where *E  is E  for plane stress and 2/ (1 )E -ν  for plane strain. IK  is evaluated by setting 
aux

IK

to unity and 
aux

IIK  to zero. Similarly IIK  is evaluated by setting 
aux

IIK to unity and 
aux

IK  to zero. 

 
Fig. 3. (a) Area for domain integral; (b) Domain of integration consisting of material 

interfaces. 

The interaction integral, devoid of a crack face and thermal loading, consists of an extra term 

when the domain of integration consists of a bi-material interface, as shown in Fig. 3(b). This 

is given [58] by  

 ,1 ,1 1 , ,1( ) { ( )}aux aux aux tip aux

ij i ij i ik ik j j ij ijkl ijkl kl
A A

I σ u σ u σ ε δ q dA σ S S σ qdA      x                                 

(5) 

where 1 2A A A  . tip

ijklS  is the compliance tensor at the crack tip and ( )ijklS x  is the compliance 

tensor at a generic point x . The generic point can lie in domain 1A  or 2A .  

 

3.1 Mixed-Mode SIFs for Bi-materials  

 
Fig. 4. Interaction integral domain for interface crack. 

 
 

In the case of an interface crack in bi-materials (Fig. 4) subjected to mechanical and thermal 

load, ΔT , the interaction integral [59] is given by   

 
2 2

,1 ,1 1 , ,1

1 1

( ) (Δ )
m m

aux aux aux aux

ij i ij i ik ik j j m kk
A A

m m

I σ u σ u σ ε δ q dA φ ε T qdA
 

       
                               

(6) 
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aux

ijσ ,
aux

ikε  and 
aux

iu  are obtained from the crack tip solutions for an auxiliary state with an 

interface crack. The complex SIF can be computed through the following relation, 

 1 2 1 2 2 2

2

(1/ 1/ )(2 2 )

2cosh (π )

* * aux auxE E K K K K
I

ε

 


 

                               

(7) 

 

 
ε is the bi-material oscillatory parameter given by, 

 

1 2 1

2 1 2

1 1 1
ln ln

2 1 2

κ μ μβ
ε

π β π κ μ μ

   
    

    
 

1 2 2 1

1 2 2 1

1 (1 2 ) (1 2 )

2 (1 ) (1 )

μ ν μ ν
β

μ ν μ ν

   
  

     

                               

(8) 

where mμ  is the shear modulus and mκ  is the Kolosov’s constant, m = 1 and 2. mκ
 
is  3 4 mν  

in the case of plane strain and    3 / 1m mν ν   in the case of plane stress. β  is second 

Dundurs’ parameter. The stress intensity factor amplitudes, 1K  and 2K ,  associated with an 

interface crack are different from mode I and mode II SIFs for a crack in isotropic and 

homogenous material. The dimension of 1 2K iKK  
 
is 0.5MPa(m) iε ; the dimension of mode 

I ( IK  ) or mode II SIF ( IIK ) is 0.5MPa(m) .  

 

3.2 T-stress for bi-material interface crack 

 
The stress state for an interface crack is given by  

 1 1

( ) ( )
Re Im ( )

m m

ij ijm iε iε

ij m i j

F θ G θ
σ r r T δ δ O r

r r
K K         

 

                               

(9) 

where 1 2K iKK    (complex SIF) and mT  is the T-stress for material m, m = 1 and 2. T-stress 

represents the first non-singular stress term of the William’s eigenfunction expansion of a crack 

tip stress field. The angular functions ( )m

ijF θ  and ( )m

ijG θ  are given in refs. [60] and [58]. 

 
The same Eq. (6) is invoked to determine the T-stress. It is possible only through the selection 

of appropriate auxiliary stresses (
aux

ijσ ), strains (
aux

ikε ) and displacements (
aux

iu ) in the integral. 

The auxiliary functions are given in Appendix A. The T-stress is related to the interaction 

integral by  

 
*

m
m

IE
T

f


 

                               

(10) 

where mT  is the T-stress in the material m  and f is a point force applied. The auxiliary field 

corresponds to this force. The same auxiliary solution with 1m   can be used to determine the 

T-stress through Eq. (5) for a crack inside an isotropic material. 

 

 

 

4. CRITERIA FOR PREDICTION OF DIRECTION OF CRACK PROPAGATION 

 
He and Hutchinson [34] proposed that the kink angle ω  of an interface crack (Fig. 5(a)) is 

dictated by the maximum energy release rate (ERR) of the kinked crack. In order to find the 
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maximum energy release rate mωG , the crack is extended by Δa  in various direction, θ , as 

shown in Fig. 5(b). Δ da  and Δ pa  are deflected and penetrated kinked crack lengths 

respectively. The direction θ  corresponding to the maximum energy release rate mωG  is the 

angle of crack propagation, ω θ , into the material m  (#1 or #2).  

 
The tendency of the interface crack to kink out of the interface or to grow along it is determined 

by   

 
mω I

m I

f f

G G

Γ Γ


 

                               

(11) 

where m

fΓ  and I

fΓ  are the fracture toughness of material m and the interface, respectively. The 

crack is likely to penetrate the homogenous neighbouring material if the inequality in Eq. (11) 

holds. Otherwise, it is likely to extend along the interface.  
 

The ERR IG  along the interface and ERR mωG  along the kinking angle ω  are given by  

 

2 2

1

2

2 2

*

* * *

1 2

1

cosh ( )

1

2

1/ 1/ 1/

2
I *

I II
mω

m

K +K
G

E πε

K +K
G

E

E E E





   

                               

(12) 

where 
*

mE  is mE  for plane stress and 
2/ (1 )mE -ν  for plane strain for the material m . 

  

 

  
   (a)                                                                       (b) 

Fig. 5. (a) Interface crack; (b) Kinking of an interface crack. 

 

Although the energy-based criterion can be used to determine both the kinking angle and the 

load leading to initiation of kinking of an interface crack, it requires substantial computational 

effort. This is because the criterion requires multiple analyses to generate a variation of the ERR 

with possible kinking direction θ . In general, for an accurate computation of ERR, length Δa  

of the kinked crack is kept very small compared to the parent interface crack.  

 

Yuuki and Xu [44] proposed that the interface crack would extend in the direction of maximum 

tangential/hoop stress given by the singularity term; they did not consider T-stress in their 

analysis. For evaluation of tangential stress ( θθσ ), a circle of finite radius is considered (Fig. 

6). The θ  corresponding to 
max

θθσ  gives the kinking angle ω θ . However, this criterion alone 

cannot determine whether the crack will kink into the material m  or grow along the interface; 

this requires knowledge of the fracture toughness or fracture strength of the constitutive 

materials including the interface and the ERRs along possible kinking angle ω  and the 

interface.   
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The zero IIK  criterion, proposed by Akisanya and Fleck [42], stipulates that the interface crack 

kinks in the direction corresponding to 0IIK  . The mixed-mode SIF of a kinked crack of 

length Δa  is related to the parent crack by [34,42].      

 (Δ ) (Δ ) Δiε iε

I II mK iK c a d a gT a   K K
 

                               

(13) 

c , d  and g  are complex functions that are dependent on material parameters α , β  and kink 

angle ω . α  is first Dundurs’ parameter given by   

 
1 2 2 1

1 2 2 1

(1 ) (1 )

(1 ) (1 )

μ ν μ ν
α

μ ν μ ν

  


    

                               

(14) 

Given the complex functions c , d  and g , the complex SIF of the interface crack, calculated 

from the interaction integral or any other SIF extraction technique is substituted in Eq. (13) to 

determine ω . In the absence of c , d  and g  data, the kinked crack of length Δa  is extended 

in various directions, θ . The kink angle ω corresponds to the direction at which mode II SIF 

of the kinked crack is zero. This gives 0rθτ   for the kinked crack, not the original crack. This 

is in a sense a posteriori stress field criterion. Similar to the 
max

θθσ criterion, this criterion too 

cannot determine whether the crack will penetrate or deflect without the knowledge of the 

individual fracture toughness of the constituent materials and of the interface plus the ERRs 

along these directions. 

 
  Fig. 6. Kinking angle of crack in homogenous medium.   

 
In order to merge the advantages and overcome some of the difficulties, a criterion based on 

both the stress state and energy release rate is used here to predict the direction of kinking and 

the onset of crack propagation. The maximum tangential principal stress (MTPS) criterion is 

used as a stress criterion; according to the MTPS criterion, a crack extends in a radial direction 

corresponding to 0rθτ  [32,61]. The crack propagates when the maximum tangential stress at 

the location reaches a critical value, a property of the material. This is based on Rankine’s 

maximum principal stress theory. This is similar to the IIK  = 0 criterion, but with a difference. 

In the MTPS criterion, the determination of kink angle ω  is based on the a priori stress field 

due to the parent interface crack. However, in IIK  = 0 criterion, the kink angle ω  is based on 

the main crack plus a kinked crack of length Δa . 
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The MTS criterion gives the direction of crack extension MTSθ  corresponding to / 0θθσ θ   , 

while the MTPS criterion gives the direction MTPSθ  corresponding to 0rθτ  . There will be a 

small difference between MTSθ  and MTPSθ . θθσ  for MTSθ  is the maximum tangential stress but 

not a principal stress θpσ , but θθσ  for MTPSθ  is not the maximum tangential stress but is the 

maximum tangential principal stress.  
 
 

 

Although the condition in terms of stress may ensure breaking of material ligament ahead of 

the crack tip, the availability of energy must be sufficient for creation of the new surfaces. This 

implies that the stress criterion may indicate the direction of possible extension, the actual 

occurrence is decided by the energy release rate and the fracture toughness of the material.  

 

Eq. (11) is dependent on the ratio of kinked lengths - Δ da  and Δ pa . When Δ ,Δ 0d pa a  , the 

ERRs are unrealistic i.e. IG  and mωG  are zero or infinite depending upon the value of   [35]. 

The crack extension length scales could be atomic, or larger depending upon the structural 

defects in the neighbourhood of the crack tip, whose determination is very difficult. Since the 

scope of the present work is limited to the application of the EFG method, an assumption is 

made such that Δ Δ Δd pa a a  . 

 

The advantages of combining the two criteria are: (1) It reduces the need of multiple analysis. 

The potential kink angle ω  is obtained by the MTPS criterion. The ERR along the kink 

direction mωG  can be obtained by extending a small crack Δa  in the kink direction ω . Then, 

the ERR IG
 

associated with the in-plane extension for a parent interface crack and mωG
 
are 

substituted in Eq. (11) to predict the crack extension direction. (2) The effect of T-stress is 

included in the stress-based criterion. 

  

5. COVERGENCE STUDY 

 

A plate of width, 1w  m, and a length to width ratio, / 2L w  , with an edge crack ( 0.5a/w= ) 

is shown in Fig. 7(a). It is subjected to a traction of 1 MPa. The domain of influence is set at 

1.75 times the regular nodal spacing. The materials is isotropic with a Young's modulus,  

210GPaE  , and Poisson's ratio 0.3ν  . The theoretical SIF for this case is 3.543MPa m

[62]. 

 

The % error in SIF obtained using the M-integral is plotted for various nodal discretizations, 

using different EFG methods based on: (1) eXtended element-free Galerkin (XEFG) method, 

(2) visibility, (3) diffraction and (4) present EFG method (Fig.7(b)). Notably, the XEFG method 

incorporates enrichment functions to model the crack-tip stress field [48]. The visibility and 

diffraction method involves modified weight functions around the crack tip. Their details are 

given in [49]. This plot shows that the present method decreases the % error in SIF with 

increasing nodal density. It has better accuracy compared to the visibility and diffraction 

methods. The improvement in the accuracy may be attributed to the coupling of the diffraction 

method with the Heaviside enrichment function.  
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(a)                                                                       (b) 

Fig. 7. (a) A finite plate with an edge crack subjected to uniform tensile load; (b) SIF % error 

with nodal density.  

 

The XEFG method performs better compared to the proposed method owing to the crack tip 

enrichment functions for lower nodal densities. However, when a nodal refinement is used in 

the region around the crack tip as shown in Fig. 8(a), there is a significant improvement. 

 

Fig. 8(b) shows the convergence of SIF using a coarser nodal discretization of 21 41 , and the 

present EFG method with various refinements in the region around the crack tip. It is observed 

that even with the usage of very low refinement 7 7 , the SIF % error becomes less than 2%. 

As the refinement increases, the error decreases and the result converges to the exact solution. 

This is advantageous especially for modelling the crack propagation through non-homogenous 

materials because this eliminates the need of enrichment functions.    

 

 
 

(a)                                                                       (b) 

Fig. 8. (a) Local refinement at the crack tip; (b) % error in SIF with refinement in the region 

around the crack tip, using the proposed method. 

 

 

 

 

6. RESULTS AND DISCUSSIONS 
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6.1 Crack in an orthotropic material 

 
Fig. 9(a) shows a square plate of 0.1a/w=  with a centre crack aligned along its axis of 

orthotropy. The plate is subjected to a uniform tensile load of 1Pa. The material properties 

correspond to graphite-epoxy. A state of plane stress is assumed. 

 

        
    (a)           (b)     

Fig. 9. (a) Crack in an orthotropic square plate; (b) Crack in an orthotropic rectangular plate. 

 

A 9 9  nodal refinement is used at each crack tip. The mode I SIF obtained using the M-

integral is compared with the results published in the literature. The auxiliary functions for the 

M-integral are derived from Sih et al. [63]. A comparison of the normalized SIF 

( /I IK K σ πa ) is presented in Table 1.  

 

Table 1 show that the results obtained using the proposed method reduces the need for higher 

nodal density if higher order Gauss integration is used. The result does not show much 

improvement beyond Gauss quadrature involving 16 Gauss points in the background triangular 

cells. As expected, the FEM requires more degrees of freedom (DOF) to obtain accurate SIF. 

The usage of enrichment functions decreases the DOF in the XFEM. When compared to 

XFEM, XEFG method requires relatively lesser DOF. However, by using a lower nodal 

refinement at the crack tip, an accurate SIF is obtained using the present method. This is mainly 

attributed to the ability of the EFG method’s shape functions to reproduce higher order fields. 

The refinement process in the region around the crack tip is not computationally cumbersome 

as in the case of the FEM.   

 

Fig. 9(b) shows an inclined crack in a rectangular plate of 2L/w   and 2a= . Table 2 shows 

a good comparison between the mixed mode SIFs obtained by the present method and existing 

results in the literature. 

 

 

 

Table 1. Normalized mode I SIF for a centre crack in a finite orthotropic plate. 
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Method DOFs Elements 
Background 

cells 

Gauss points in the 

triangular cells IK  

FEM [64] 11702 2001 - - 0.997 

XFEM [65] - 4278 2025 - - 1.018 

XFEM [66] – 

Orthotropic 

enrichment 

4278 2025 - - 1.020 

XEFG [67] 4035 - 1849 13 1.0045 

Present 

Method – I 
3644 - 1614 7 1.0416 

Present 

Method - II 
3644 - 1614 13 1.0161 

Present 

Method - III 
3644 - 1614 16 1.0072 

Present 

Method - IV 
3644 - 1614 37 1.0075 

Present 

Method - V 
3644 - 1614 48 1.0071 

 

Table 2. Normalized mode I and II SIF for an inclined crack in a finite orthotropic plate. 

Normalized 

SIF 

Ref. 

[63] 

Ref.[64] 

FEM 

Ref.[66] 

XFEM 

Ref. [67] 

XEFG 

Ref. 

[68] 

FEM 

Ref. 

[69] 

FEM 

Present 

Method 

IK  0.5 0.506 0.514 0.512 0.484 0.485 0.509 

IIK  0.5 0.495 0.519 0.530 0.512 0.498 0.510 

 

6.2 Bi-material disk subjected to thermal loading 

 
Fig. 10 shows a bi-material disk subjected to cooling i.e. T =-5oC. The radius ( r ) of the disc 

is 20 mm and the crack length ( 2a ) is 0.5r . The upper material (1) is glass with 
o

1 173GPa, 8e -6 / CE    and 1 0.22ν  ; and the lower material (2) is epoxy with 

o

2 22.9GPa, 73e -6 / CE    and 2 0.29ν  . A state of plane strain is assumed.  

 

 
Fig. 10. Bi-material disc with central crack subjected to temperature change T . 

 
The complex SIF is calculated using the thermal interaction integral, Eq. (6). For the evaluation 

of the integral, a square domain with edge length of 0.25a  is considered. The SIF obtained is 
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normalized as per = /iεL σ πaK K ;  1 2K iKK    where 1 1 2 2

* *

2 1

(1 ) (1 )

1/ 1/

ν ν
σ = T

E E

 


  


 and

L a.   
 

The reference results are: (1) 1K  =-0.3466 and 2K = 0.2389 by FEM [59]; (2) 1K  =-0.3523 and 

2K = 0.2342 by the enriched EFG method [70]. The normalized SIFs obtained by the present 

method are 1K  = -0.3574 and 2K  = 0.2387. The results show that the present method, devoid 

of enrichment functions, is able to give the SIFs close to the results of [70] based on enrichment. 

 

6.3 Bi-material interfacial edge crack in a finite plate 
 

The dimensions of the plate studied (Fig. 11(a)) are: width 1w  m and / 3L w  . The normal 

traction at the top and bottom edges is 1MPa. The plate is discretized with 21 61  nodes. The 

domain of influence is set at 1.75 times the nodal spacing. The material properties employed 

are as follows: 
2 205.8GPaE  ; three ratios of 1 2/ 2 and 100E E   are considered. The 

Poisson's ratio, 0.3ν  , is set for both materials. A state of plane stress condition is assumed. 

The region around the crack tip is refined with 13 13  nodes (Fig. 11(b)). 

 

Fig. 12 shows the convergence of 1K  and 2K  for an edge crack of length / w 0.5a   for 

1 2/ 2E E  . As the refinement increases around the crack tip, the solution converges indicating 

that the present EFG method is sufficient to analyze bi-material interface crack. 

 

The normalized SIFs ( / σ πaK ) based on the proposed EFG method obtained for crack ratios 

( / wa ) varying from 0.1 to 0.7 are compared (Fig. 13) with results available in the literature 

[62, 71-72]. These are also compared with those obtained by the XEFG method. Since the 

XEFG method incorporates special functions, the region around the crack tip was not refined 

with additional nodes.   

 

 
       (a)         (b) 

Fig. 11. (a) Interfacial edge crack in bi-material plate; (b) Nodal discretization. 

The SIFs are obtained using the interaction integral involving crack tip auxiliary functions for 

the interface crack. A square domain of side length 0.125a  centered on the crack tip is 

considered as the domain for the interaction integral. The results show that there is an excellent 

agreement with the published results and with those obtained by the XEFG method. 
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Fig. 12. % error in SIF with refinement in the region around the crack tip, using the present 

EFG method. 

 
    (a)                                                                      (b) 

Fig. 13. Comparison of normalized SIFs for (a) 1 2/ 2E E  and (b) 1 2/ 100E E  . 

Fig. 13 (a) and (b) show the similar comparisons of the normalized SIFs for 1 2/ 2E E   and 

1 2/ 100E E   respectively. The results obtained by the proposed EFG method are in slightly in 

better agreement [71, 72] with those obtained through the XEFG method. This may be due to 

the refinement in the region around the crack tip. It is observed that the computed SIFs deviate 

slightly from the published results, as the ratio of 1 2/E E  increases. The average error when 

compared with the published results [71] is less than 5%. 

  

6.4 Orthogonal crack near material interface 

 
Fig. 14 shows a bi-material panel with an internal crack where 

0.1, 3, 10m, ln(10) / 2a/w = L/w = w = w   and 1MPa=  . Material 1 is a functionally 

graded material and material 2 is an isotropic and homogenous material. A state of plane strain 

is assumed. Poisson's ratio 0.3ν  is set for both the materials. The value of oE  is 1MPa . Two 

cases are considered: In case (1), a sharp material discontinuity (Young’s modulus) exists at

0x  . While material 1 has modulus of oE  very close to left side of the interface, material 2 

has modulus of o2E . In case (2) there is no material property discontinuity at 0x  , but their 

derivatives are discontinuous. The modulus of material 1 and 2 are oE , just left and right to the 
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interface. The moduli of material 1 varies exponentially in both the cases 

 

 

 

 

 

 

 

 

 

   
Fig. 14. Crack terminating normally to material interface. 

 

For a crack tip at the interface, ij 
1r  where  is the order of the singularity;   can have a 

single real value or two real or complex values depending on the material combination and 

angle of orientation of the crack with the interface. A method of calculating the SIF with good 

accuracy, using the proposed variant of the EFG method through the displacement method 

when the crack tip is at the interface, was presented in [73]. The usual interaction integral 

cannot be of any help in this case. 

 

The normalized mode I SIFs ( I /( )K σ πa ) for crack tip at A and B are plotted in Fig. 15(a) and 

Fig. 15(b) respectively as the location of crack centre C is varied. Crack tip A and crack tip B 

meet the interface when A / 0x w=  and B / 0x w=  respectively. The interface is indicated by the 

dotted line. 

 
 

 

(a)                                                                       (b) 
 

Fig. 15. Variation of normalized mode I SIFs (a) crack tip A; (b) crack tip B. 

 
Case (1) – Interface with sharp material discontinuity: The mode I SIF for crack tip A increases 

gradually as the tip approaches the interface from the left. When the tip is at a distance of about 

A / 0.2x w  , i.e., tip is away from the interface by the crack size, the SIF starts dropping slowly, 

then rises rapidly because of the influence of the stiffer material 2. It picks up the maximum 
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value when A / 0x w  . As soon as it moves into the material 2, its SIF has a sharp jump because 

of the material influence. Subsequently it drops. For the tip B, the SIF reaches maximum when 

it is almost away from the interface by A / 0.1x w  . On further movement towards the 

interface, it drops to a lower level. As it crosses the interface, the SIFs jump to higher level and 

it continues until it is away from the interface by a distance equal to the crack size. Then it 

drops.   

 

Case (2) – FGM Interface: In the case of an interface characterized by FGM behaviour, the 

SIFs for both the crack tip A and B increase until they meet the interface. As the crack cross 

the interface, the SIFs at both the tips starts dropping. Such a case study was reported earlier in 

[74]. The observations in the SIF variation, for both the cases, are consistent with the results of 

reference [58].      

 

6.5 Crack meeting at an oblique angle to the material interface 

 
Fig. 16 shows an edge crack inclined at an angle 20o to the x-axis with 3, 0.5mL/w = w =  and 

1MPa=  . A state of plane strain is assumed. Poisson's ratio, 0.3ν  , is set for both the 

materials. The ratio of Young’s moduli ( 1 2/E E ) is set to 100. In this case, there are two orders 

of singularity: 1 0.114   and 2 0.071  . A set of eight enrichment functions are needed for 

accurate modelling using XFEM or XEFG method.   

 

The crack opening displacement ( CODv ) profiles, obtained using the proposed EFG method and 

FEM are compared in Fig. 17(a). There is a good agreement between the two for 0.01r  . The 

results are obtained using 2860 DOF in the present method. In the case of FEM, 995596 DOF 

with 165794 eight-node quadrilateral elements are employed in ANSYS to obtain a converged 

solution. In the case of the FEM, a very fine mesh near the crack tip (crack tip element size – 

0.005a ) and a coarse mesh away from it is employed. The improvement in performance in the 

case of the proposed EFG method is attributed to its higher order continuous shape functions.  

 

 
Fig. 16. Crack meeting at an angle to the bi-material interface. 

In order to find the instantaneous angle of crack propagation, the ratio of the ERR ( mωG ) along 

the kinking angle ω  and the ERR ( IG ) along the interface is plotted for various direction θ  

in Fig. 17 (b). As θ  increases, /mω IG G
 
increases until 

o20θ=- . Afterwards, it decreases 
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steadily until at 
o70θ=  when the crack is an interface crack . This plot shows that the crack 

will propagate at 
o- 20ω=θ= , as the /mω IG G  ratio is maximum for this direction, if the 

interface is tough. This is in agreement with the results published in the case of a tough interface 

[75]. That means it will extend perpendicular to the applied load provided the interfacial 

fracture toughness is more than 0.36 times the material #2 fracture toughness (
2

1

2.814

I

f

f

Γ

Γ
 ).  

 
 (a)                                                                       (b) 

Fig. 17. (a) Crack opening displacement for crack meeting the interface. (b) Variation of the 

ERR ( mωG )/ERR ( IG ) with kink angle ω .  

 
6.6 T-stress for crack in bi-materials 

 
Two cases have been considered to illustrate the effectiveness of the proposed approach in 

evaluating T-stress. A state of plane strain condition is assumed in both the cases.  
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                                      (a)                                                                        (b) 

Fig. 18. (a) Centre crack in bi-material plate; (b) Edge crack in a bi-material strip. 

 

 

Case (a): A bi-material plate with a centre crack (Fig. 18(a)) is considered. The dimensions are: 

/ = 2L w , =1mw and 1 2 0.3   . The ratio of Young’s moduli ( 1 2/E E ) is varied from 1 to 

10. The T-stress is computed for three different crack length ratios ( /a w): 0.15, 0.25 and 0.35. 

The plate is subjected to a uniform tensile load σ . The results obtained are compared with the 

results obtained by Sladek and Sladek [60]. The computed T-stress is normalized ( T / oB = σ ) 

by oσ , where 

 
2 2 1/ 2

1 2[( ) / ]oσ K K πa   
                               

(15) 

 
The T-stress is obtained using the interaction integral using the appropriate auxiliary solutions. 

Taking note of the suggestion of a bigger integral domain [57] for T-stress calculation, a square 

domain with edge length of crack length a , is used. Fig. 19 shows that the normalized T-stress 

obtained by the proposed approach is in good agreement with the published results for various 

1 2/E E  ratios. 

 
Fig. 19. Comparison of normalized T-stress for centre crack in bi-material plate subjected to 

uniaxial tension. 
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Case (b): A bi-material strip with an edge crack (Fig. 18(b)) is examined. The dimensions are: 

/ = 0.5a L , / = 0.1h L  and =10mL . The strip is subjected to point loads, =1MNP , as shown 

in the figure. The right end of the strip is fixed. Table 3 presents comparisons of normalized T-

stress, T /( / )P h , for different material combinations with the published results [57,76]. The 

comparison shows a good agreement with the reference results.      

 

Table 3. Comparison of normalized T-stress for different material combinations for crack in 

bi-material strip.  

1 2/E E  1  2  α  β  

T /( / )P h  

Present 

EFG 

method 

Ref [57] Ref [76] 

7/3 1/3 1/3 0.4 0.1 0.0709 0.0702 0.0709 

20/9 1/4 1/8 0.4 0.2 0.0778 0.0773 0.0784 

4 2/5 2/5 0.6 0.1 0.1301 0.1317 0.1310 

4 1/4 1/4 0.6 0.2 0.1419 0.1410 0.1424 

 

6.7 Interface crack kinking angle 

 
Fig. 20. Bi-material disc subjected to diametrical compression by point loads. 

 
To predict the kink angle ω  for an interface crack, a bi-material disc subjected to point loads,

P , oriented at angle γ  to the crack plane, is considered (Fig. 20). The dimensions are: r = 

40mm and a/r  = 0.25. The material properties are appropriately chosen to vary α  and β . The 

mode-ratio (ψ ) is defined as  

 
-1

2 1= tan ( / )ψ K K
 

                               

(16) 
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  (a)                                                                      (b) 

Fig. 21. Variation of mode-ratio ψ̂  with compression angle γ  for (a) 0α   and various ε (b) 

0ε   and various α . 

 
Fig. 21 shows the variation of mode-ratio ( ψ̂ ), where ˆ =ψ -ψ , with the compression angle ( γ ) 

for different material combinations. The variation pattern of ψ̂  with oscillation index ε , for 

0α  , as shown in Fig. 21(a), is similar to that of the results based on FEM reported in [77]. 

This shows that, as γ  increases, the crack experiences higher mode-ratio ψ̂ . ψ̂  for a particular 

γ  is found to depend on ε  and it decreases as ε  decreases. When 0ε  , ψ̂  does not depend 

on Dundurs’ parameter, α , (Fig. 21(b)). This suggests that the kink angle ω  is primarily 

dependent on ε . By means of extrapolation it is found that oˆ 90ψ= at around o28γ  , for small 

ε  ( 0.01ε  ). This is in close agreement with fracture test results of Atkinson et al. [78].    

 

The variation of interface crack kink angle, ω , with ψ  for various α  when 0β   is shown in 

Fig. 22 (a). This is plotted without consideration of the T-stress. The present results are in good 

agreement with the results obtained using the stress criterion by Yuuki and Xu [44]. They too 

showed that ω  depended on ψ  alone when 0ε  . However, He and Hutchinson [34], using 

the energy-based approach, showed that ω  was a function of ψ  and α  when 0ε  . It is to be 

emphasized that the stress field in the region close to the crack tip is determined using the 

computed SIFs and the T-stress.  The shear stress is then plotted along a circle of finite radius 

cr  to determine the direction of kink angle ω .  

 

As expected, when the T-stress is included to predict ω , for the material combination 0α   

and 0β  , ω  is found to change with /r a  ratio (Fig. 22 (b)). There is a maximum difference 

of around 25o between the kinking angle at / = 0.0001r a  and / = 0.05r a . The T-stress is 

negative in this case and it decreases the magnitude of the kinking angle. Such a pattern was 

observed earlier for bi-materials [33] and functionally graded materials [79]. 
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(a)                                                                     (b) 

Fig. 22. Predicted kinking angle for (a) various α  without T-stress for 0β   without T-stress 

and (b) various /r a  ratios with T-stress for 0α β  . 

 

Another factor that contributes to the varying kinking angle, ω , with /r a  ratios is the 

oscillation index ( ε ). To illustrate the effect of ε , ω  versus 10log ( / )r a  is plotted (Fig. 23 (a)) 

for different ε  at o15γ   without considering the effect of T-stress. It is observed that the slope 

of the plot is higher for a higher oscillation index indicating that ε  plays an important role in 

determining the kinking angle.    

 

The predicted kinking angle changes much more with the /r a  ratio when the effect of T-stress 

is included, as shown in Fig. 23 (b). Both T-stress and ε  affect the kink angle ω  at a particular 

/r a  ratio. It is observed that the crack does not kink for certain /r a  ratios for 0.1ε   
( 0.125ε  and 10log ( / ) 3r a   , 0.175ε   and 10log ( / ) 2r a   ). This is because on a circle 

of radius r around the crack tip, at which tangential and shear stresses are computed to 

determine ω , the maximum tangential stress is compressive. This is according to the corollary 

by Swedlow [80], who suggested that a crack propagates in the direction corresponding to the 

tensile stress. However, as /r a  increases, the maximum tangential stress becomes tensile. The 

kink angles vary significantly with /r a  when ε  is large  0.1ε  , which was also showed in 

[44]. 

 
(a)                                                                        (b) 

Fig. 23. Variation of kinking angle with /r a  ratios for different material combinations (a) 

without considering T-stress and (b) with considering T-stress. 
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6.8 Crack growth in the presence of particle reinforcement 

 
A crack of length a  is assumed to be present in a square plate of side 2mL= . The particle is 

of radius, 2 / = 0.15r L . The geometry is subjected to uniform tension of =1MPaσ . Two 

arrangements of particles, Fig. 24(a) and Fig. 24(b), are studied. A state of plane strain is 

assumed. The particle material modulus is 6.43p mE E . The particle and matrix Poisson’s ratio 

are: 0.17pν   and 0.33mν  respectively. These values correspond to silicon carbide (SiC) 

particle reinforcement in aluminum (Al) matrix.  

 

                                         
          (a)                                                                          (b) 

Fig. 24. (a) Cracked geometry with two particles. (b) Cracked geometry with single particle. 

 

In the first case (Fig. 24(a)), the normalized energy release rate ( / oG G ) is plotted as the crack 

propagates towards the particle starting from a crack size of 0.4a  . Such a crack size is chosen 

based upon previous work [81], which showed that the particle effect on the crack is 

insignificant when the distance of the crack tip from the particle centre is more than 4r. It is to 

be noted that the ‘visibility method’ is used to model the crack tip in the previous work. G  is 

the energy release rate (ERR) for a propagating crack and oG  is the ERR for the same geometry 

in the homogenous matrix of aluminium. 

 
Fig. 25. Variation of normalized energy release rates with /x r  for various S/ r  ratios for 

mode I crack in presence of two particles. 

 

Inter-particle distance, S , is varied to show its effect on the propagation of a mode I crack. As 
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the crack approaches the particle, the effect of shielding and amplification is observed to vary 

with S . The shielding implies a decrease in G . Both the shielding and amplification effects 

are found to enhance with decreasing inter-particle distance (Fig. 25). The crack advancement 

length and the finite radius cr  at which the shear stress is plotted are the same ( 0.04cr  ).   

 
In the case of single particle reinforcement (Fig. 24(b)), the crack paths have also been 

determined. As the crack approaches the stiff particle, it gets repelled. The MTPS criterion, 

which includes the effect of the T-stress, has been employed to find the instantaneous angle of 

crack propagation and the crack path (Fig. 26(a)).  

 

          (a)                                                                          (b) 

Fig. 26. (a) Crack paths for various /d r  ratios. (b) Variation of normalized energy release 

with /x r  for various /d r  ratio. 

 

The variation of normalized ERR ratio ( / oG G ) is plotted with normalized crack tip position 

( /x r ) with respect to the particle centre in Fig. 26 (b). The normalized ERR variation as the 

crack propagated shows the shielding and the amplification effect. It was observed that the 

shielding effect was more pronounced than the amplification effect in the material combination 

and the properties considered. 

 

This plot, for / 0.6d r  , matches closely with results presented in [82,83]. The crack 

experiences a shielding effect, i.e. a decrease in / oG G , as it approaches the particle and 

amplification effect, i.e. an increase in / oG G , as it moves away from the particle. As /d r  

decreases, these effects increase. The shielding effect can lead to a toughening mechanism. The 

inter-particle distance and/or proximity of the crack to the particle can be adjusted to result in 

a toughening mechanism.  

 

The shielding effect is highly enhanced, for / 0d r= , when  a mode I crack approaches the 

particle. When this crack reaches the interface, it is likely to penetrate the particle if the 

interface fracture toughness is greater than 0.63 times the particle fracture toughness  

 0.63I SiC

f fΓ Γ  along 
o0ω= . Otherwise, it would propagate along the interface. It may or 

may not kink into the aluminium matrix depending on the /I Al

f fΓ Γ  ratio. The effect of the 

particle on the crack is reduced as it moves away from the particle.   

 

For / 0.3d r= (Fig. 26(a)), the crack propagates in the aluminium matrix up to the interface and 

then along the interface. It is observed that the crack approaches the particle at an angle close 

to 00  with respect to the interface. The crack then propagates along the interface and kinks out 
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of the particle-matrix interface. This kinking out is governed by the MTPS criteria in 

conjunction with the maximum energy release rate. If 0.37I Al

f fΓ Γ , the crack kinks into the 

relatively compliant ( 0.71α  ) aluminium and extend as a normal crack in an isotropic and 

homogenous medium. The composite is assumed to contain no flaws. In reality, there may be 

flaws near the particle-matrix interface which will influence the evolution of the crack. Crack 

growth in a bi-material medium is complex and governed by many factors.  

 

The crack propagation in this particle-reinforced composite involves a wide spectrum of 

possibilities. Depending on the relative interface fracture toughness ( I

fΓ ) with respect to the 

toughness of the two materials and relative position of the crack with respect to the particle, 

fracture patterns may vary from interface cleavage/particle-matrix decohesion to particle 

breakage. The fracture toughness of the interface I

fΓ  varies with the contact time between the 

SiC particle and the molten Al matrix during the manufacturing stage [84]. The possibility of 

occurrence of various patterns of crack propagation studied here may have some 

correspondence to the practical situations. 

 

CONCLUSION 

The proposed variant of the Element-Free Galerkin (EFG) method guarantees results of 

satisfactory accuracy with a reduced number of degrees of freedom. It is a feasible method to 

model crack propagation in any material, as it does not require enrichment functions to model 

the crack tip. It can be employed for evaluation of LEFM parameters accurately. The SIFs 

obtained for a crack in the orthotropic material and bi-material interface crack under 

mechanical or thermal loading are in good agreement with the published results. The stress 

based MTPS criterion, that included T-stress, together with the energy-based approach reduces 

computational effort to determine the direction of kinking of an interface crack. The 

compressive T-stress is found to decrease the magnitude of the kinking angle. Both the T-stress 

and radial distance cr , from the crack tip, affect the determination of the kinking angle. In the 

case of particle-reinforced composites, a wide spectrum of crack propagation possibilities 

exists. The important factors are relative positions of initial crack with respect to the particle 

centre, inter particle distance and fracture toughness of the interface and the toughness of the 

leading material. The tendency for a crack to grow along the interface or kink out of it depended 

on the relative standing of fracture toughness of the interface and the constituent materials. 

Appendix A  

The auxiliary displacement (
aux

iu ), stresses ( aux

ij ) and strains ( aux

ij ) to determine T-stress are 

defined [60,58] by  
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where f is a point force applied for auxiliary fields, d is a reference length and 
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The auxiliary strains are obtained using  

 ( )aux aux

ij ijkl klS  x  (A.3) 

where ( )ijklS x  is the compliance matrix at the point x .  
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