
Characterization of High-Performance Organic Dyes for Dye-
Sensitized Solar Cell: A DFT/TDDFT Study

 Lambert, C., Mao, Y., Zheng, Y-Z., Tao, X., Hu, P., & Huang, M. (2016). Characterization of High-Performance
Organic Dyes for Dye-Sensitized Solar Cell: A DFT/TDDFT Study. CANADIAN JOURNAL OF CHEMISTRY-
REVUE CANADIENNE DE CHIMIE. DOI: 10.1139/cjc-2016-0294

Published in:
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© Copyright 2014 – Canadian Science Publishing

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queen's University Research Portal

https://core.ac.uk/display/74405614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/characterization-of-highperformance-organic-dyes-for-dyesensitized-solar-cell-a-dfttddft-study(6993c8b2-7516-42cc-a9b1-8474153d1663).html


 
 

1 
 

Characterization of High-Performance Organic Dyes for Dye-Sensitized Solar Cell: 

A DFT/TDDFT Study 

Christopher Lambert1#, Yu Mao1#, Yan-Zhen Zheng2, Xia Tao2, P. Hu1, Meilan Huang1* 

1. School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir 

Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom 

2. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical 

Technology, Beijing 100029, China 

 

In honour of Prof Arvi Rauk and Prof Russell Boyd 

 

# These two authors contribute equally to this paper  

* Corresponding author: Meilan Huang  

E-mail: m.huang@qub.ac.uk 

Tel: +44(0)28-9097-4698 

Fax: +44(0)28-9097-6524 

 

 

 

 

 



 
 

2 
 

Abstract 

Dye-sensitized solar cell (DSSC) is currently a promising technology that makes solar energy 

efficient and cost-effective to harness. In DSSC, metal free dyes, such indoline-containing D149 

and D205, are proved to be potential alternatives for traditional metal organic dyes. In this work, 

a DFT/TDDFT characterization for D149 and D205 were carried out using different functionals, 

including B3LYP, MPW1K, CAM-B3LYP and PBE0. Three different conformers for D149 and 

four different conformers for D205 were identified and calculated in vacuum. The performance 

of different functionals on calculating the maximum absorbance of the dyes in vacuum and five 

common solvents (acetonitrile, chloroform, ethanol, methanol, and THF) were examined and 

compared to determine the suitable computational setting for predicting properties of these two 

dyes. Furthermore, deprotonated D149 and D205 in solvents were also considered, and the 

highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) 

were calculated, which elucidates the substitution effect on the rhodanine ring of D149 and D205 

dyes on their efficiency. Finally, D149 and D205 molecules were confirmed to be firmly 

anchored on ZnO surface by periodic DFT calculations. These results would shed light on the 

design of new highly efficiency metal-free dyes. 

 

Key words 

Dye molecule, metal-free, DSSC, DFT, TDDFT, excitation 

 

 



 
 

3 
 

Introduction 

The sun is projected to give out 10,000 times the global energy demand and this abundance as 

well as environmentally friendliness make it the ideal energy source and promising alternative 

for fossil fuels. All that remains is to make the collection and conversion of the solar radiation 

efficient and cost-effective to harness.1 Many different variants of solar cells have been reported 

and are in use currently. Among that, the dye sensitized solar cell (DSSC) from the thin film 

solar cell family has attracted much attention in the research community for its development and 

efficiency improvement.2-5 The modern day version of this technology was originally invented 

by Grätzel et al, who achieved an energy conversion yield of 7.1% 6 and further elevated its 

efficiency to 13%. 7 Perovskite solar cell stemming from DSSC has reached the efficiency of 

22% rapidly since its inception by replacing the liquid electrolyte in DSSC with solid hole 

conductor. 8 

A DSSC is typically employed via light being absorbed by a monolayer of dye molecules which 

are anchored to a mesoporous nanocrystalline metal oxide semiconductor, such as TiO2, which 

then proceeds via photoexcitation to undergo electron injection into the conduction band of the 

oxide followed by trap-limited diffusion.  Upon photoexcitation and subsequent injection of 

sensitizer molecule electrons from their excited states into the conduction band of the 

semiconductor, the electrons migrate through the external load which in turn enables electricity 

generation.  The dye is then regenerated, returned to its neutral state, by an oxidation-reduction 

pair such as I- /I3
- , with which the porous oxide layer is permeated.8,9   

Traditionally, most DSSC dyes include metal centre like ruthenium, e.g. the N3 and N719 dyes 

(Fig. 1 a and b). With the demand for these source-limited noble metals going up in other sectors 

of industry it is desirable to find cheaper, more efficient and more environmentally friendly 
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metal-free organic dyes. 10,11 Most of organic dyes involve a ‘push-pull’ architecture and have 

been shown to be very effective as efficient sensitizers. 12 They typically include a D-π-A 

structure; the donor group (D) is the electron rich species which donates through a π bridge 

spacer to an electron accepting group (A). Indeed, it has been shown that electronic 

delocalization along the π-bridge ensures overlap between the ground and excited states, which is 

crucial for good molar extinction coefficients.11 Arylamine derivatives are well-known organic 

dyes. 13 A variety of arylmaine donor structures have been reported such as coumarin,14 binary π-

conjugated triphenylamines,15 phenyl-conjugated oligoeenes,16 merocyanines17 and 

hemicyanines. 18 

Among organic dyes, indoline dyes have showed great promise in the forms of D149 and more 

recently D205 (Figure 1 c and d). The D149 dye has been of keen interest over the past years. It 

has been found to exhibit remarkable performance in DSSC systems in conjunction with ionic-

liquid or AcCN based electrolytes, exhibiting conversion efficiencies of 9.03 and 6.67%, 

respectively.19 Furthermore, a derivative molecule denoted D205 was designed via introduction 

of an n-octyl group substitute onto the rhodanine ring of D149 . This molecule has shown a 

promising efficiency of 9.52%. 20 Although it is not as efficient as the ruthenium-containing dye 

N719, which has currently shown an efficiency of 10.29%, 21 it should also be noted that the long 

alkyl chain in D205 prevents recapture of photoinjected electrons by ions in the electrolyte. This 

accounts for the higher Voc value associated with D205 compared with N719.22  

Theoretical studies have been conducted along with experimental work in the development of 

DSSCs, in order to understand the electronic properties such as structure, electronic and 

absorption properties of the dyes as well as adsorption of the dyes on surfaces. 23 Despite the 

promising electron-donating ability of indoline, the theoretical insights into indoline-containing 
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dyes such as D149 and D205, however, are far from enough. Currently, no consensus had been 

achieved on the proper computational setting on calculating these two dyes. Since the 

characterization of D149 and D205 involves the calculations of excited states, time-dependent 

density functional theory (TDDFT) has to be used. In addition, it is imperative to decide which 

of the several commonly used functionals, B3LYP, MPW1K, CAM-B3LYP and PBE0, would be 

most suitable for predicting the properties of organic dyes like D149 and D205. Zhang et al. 

tested the maximum absorbance of one conformers of D149 and D205 in vacuum and 

tetrahydrofuran (THF); 24 however, a more detailed and comprehensive study with different dye 

conformers and solvents are required. In this work, three possible conformers of D149 and four 

conformers of D205 were identified and investigated using four different functionals with 

DFT/TDDFT calculations, followed by calculations of their maximum absorbance in both 

vacuum and five different solvents (acetonitrile, chloroform, ethanol, methanol, and THF). The 

performance of different functionals is investigated for the neutral forms of D149, D205 as well 

as their deprotonated states. Moreover, the viability of these two dyes was confirmed by their 

HOMO and LUMO energies. Finally, periodic DFT calculations were carried out for simplified 

model of D149 and D205 on the ZnO )0110( surface, which confirms that the dye molecules can 

be firmly anchored by the surface.  Our work theoretically characterizes D149 and D205 dyes 

and provides a general guidance on the performance and choice of functionals in both vacuum 

and different solvents, which would shed light on the design of novel highly efficient metal-free 

dyes in the field of the dye-sensitized solar cell. 

Computational Methods 

The computations of geometries, electronic structures and relevant energies of dyes in vacuum 

and solvents were performed using DFT with the Gaussian 09 package.25 The polarized split-
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valence 6-31G* basis sets were used throughout the study unless otherwise specified. Several 

density (DFT) functionals, including B3LYP,26,27 MPW1K28, CAM-B3LYP29 and PBE030, were 

employed for comparison, which will help dictate the computational expense and accuracy of 

results. The default convergence criteria for maximum step size and RMS force was used in 

geometry optimizations, and tight convergence was employed in SCF. The most important 

conformers of the dyes was considered by rotating around the crucial bonds related to the 

electron transfer, i.e. the C-N bond between the triphenyl group and the five-membered N 

hetercycle of the electron donor indoline, and the C-C bond between the phenyl ring of the 

indoline and the ethenyl group attached to the electron acceptor rhodanine. Only the lowest-

energy conformation for each of these rotations was reported (con1-con3). For D205, we also 

considered the extended conformation of the n-octyl chain in addition to the wiggled ones 

(con4).  

The electronic absorption spectra calculated based on allowed excitations and oscillator strengths 

were carried out by TDDFT method 31 in gas phase and solvent. Time-dependant DFT (TDDFT) 

method, although associated with great complexity and computational expense, can be employed 

to calculate interesting properties related to excited states. It allows for accurate derivation of 

HOMO and LUMO energy values for excited states, as well as recording the absorbance of a 

molecule. The Polarizable Continuum Model (PCM)32 using the CPCM polarizable conductor 

calculation33 was adopted for considering the solvent effects. The average density of integration 

points on the surface was set to the default value of 5.0 Å-2. The solute was placed in a sphere 

with the UFF radii scaled by a factor of 1.1. In solvation calculations, single point energy 

calculations were performed based on the optimized geometries in vacuum using respective 

calculation methods. 
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The maximum absorbance wavelengths were determined from the maximum absorbance in UV-

VIS spectrums that generated by Gaussview 5.0.34 (Supporting information Fig. S1-S10). 

The two dyes were then modelled on the ZnO )0110(  surface and spin-polarized calculations 

were carried out using the Vienna ab initio simulation package (VASP)35,36 with PBE37 

functional. The project-augmented wave (PAW) method was used to represent the core–valence 

interaction.38,39 In total energy calculations, a cut-off energy of 450 eV was set for plane wave 

basis sets to expand the valence electronic states. All atoms were optimized using the Broyden–

Fletcher–Goldfarb–Shanno minimization scheme until the force of each atom was lower than 

0.05 eV/Å. In the modelling of ZnO )0110( surface, a (2×3) supercell was used with a vacuum of 

12 Å to avoid interactions between neighbouring images. The surface was represented by four 

atomic layers with the bottom two layers fixed, and a 2 × 2 × 1 k-point was used to sample in the 

Brillouin zone of the surface. The adsorption energy (Ead) of dyes is defined as: 

Ead = E(dye in the solvent/surface) - E(dye in the solvent) - E(surface) 

where a more negative Ead value corresponds to a stronger adsorption. 

Results and Discussions 

D149 and D205 dyes in vacuum 

Three different conformers of D149 and four different conformers of D205 were considered in 

the calculations, namely D149con1-3 (Fig. 2) and D205con1-4 (Fig. 3); starting from con1, a 

new conformer con2 was generated by rotating the C-N bond between the indoline ring and 

benzene ring connected to it; con3 was also derived from con1 by rotating the C-C bond between 

the indoline phenyl ring and rhodanine ethenyl group. For D205, a fourth conformer was derived 
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from con3 by rotating the C-C singe bond in the octyl chain. It should be noted that the 

conformers previously investigated for D149 and D205 correspond to our D149con3 and 

D205con4, and therefore they are used as comparison in this work. 

Geometry optimization of all different conformations of D149 and D205 and the relative 

energies of the conformers were calculated (Table 1). It shows that the energy of con2 is slightly 

higher than con1 whereas the energy difference between con3 and con1 is negligible for both dye 

molecules. The energy of D205con4 is almost same as that of D205con3, indicating the rotation 

within the octyl chain only has marginal effect on the dye stability. Thus D205con3 and 

D205con4 are interchangeable without overcoming energy barrier. Because D149con3 and 

D205con4 have been reported in the previous research,24 we will focus on D149con1, D149con3, 

D205con1 and D205 con4 hereafter. 

Maximum absorbance wavelengths of D149 and D205 in vacuum were calculated (Table 1). For 

D149, the values of excitation energy and absorbance of con1 and con3 match well with the 

results of Zhang et al,24 whereas the result for con2 deviates to some extent. This is because con1 

and con3 are the most stable conformations that D149 can adopt, as indicated by their close 

energies. Also it is noticeable that the difference in the conformations of D149con1 and 

D149con3 do not seem to have a large impact on the excitation energy of the molecule. In both 

conformers, LUMO is located around the anchoring carboxylate group and HOMO is 

delocalized toward opposite end of the dye, which makes electron injection facile. Interestingly, 

despite of the different spacial arrangement of the electron donor indoline in relation to the 

electron acceptor rhodanine, both conformers display similar orbital occupancy indicating the 

delocalization around the D-π-A moiety is not affected by rotating around the rhodanine (Fig. 4).  
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D205con1 and D205 con4 also have similar absorbance and excitation energies, comparable to 

the literature value. This again indicates that the rotation of the rhodanine ring has little effect on 

electron excitation. D205con2, similar to D149con2, deviates from the rest conformers 

significantly and indicates the rotation around the indoline group has a greater effect on 

maximum absorbance wavelengths and excitation energies (Fig. 3). It should be noted that in the 

case of D205con3, the octyl group is more perpendicular to the D-π-A moiety of the molecule 

which would make dye adsorption onto a semiconductor more difficult. 

In addition to the default functional B3LYP, two additional functional CAM-B3LYP and 

MPW1K were also applied for the various conformers of D149 and D205. From the results in 

Table 1, both of their values are well below the results from B3LYP, which indicates that neither 

of CAM-B3LYP and MPW1K may be suitable for calculating D149 and D205. It is known that 

the MPW1K method deteriorates as the degree of charge transfer increases which may explain 

why the results obtained from this method are off the mark.40  

D149 and D205 dyes in solvents 

After examining the absorbance by TDDFT calculations in vacuum for the possible conformers 

of D149 and D205, the two low-energy conformations were chosen for further analysis in 

solvents using the CPCM solvation model. The results of D149con3 and D205con4 are listed in 

Table 2 and 3. The solvent analyses were also conducted for D149con1 and D205con1, which 

show a similar trend and listed in the supporting information (Table S1 and Table S2). CPCM 

model is a polarization continuum model which treats the solvent as a polarizable continuum. It 

corrects the ground-state molecular orbitals and energies of solutes in solvents and has been 

shown to be effective in modelling solvent effects. 32,33 
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The results using four different functionals (B3LYP, MPW1K, CAM-B3LYP and PBE0) are 

listed in Table 2. Using B3LYP functional, our computed absorbance value in ethanol as well as 

in chloroform is in good agreement with the experimental results (566 vs. Exp. 564 in ethanol, 

557 vs. Exp. 550 in chloroform). However, the calculated values in acetonitrile (566), methanol 

(566) and THF (561) using the B3LYP hybrid functional are all higher than the experimental 

values (Exp. 526, 527 and 526, respectively). The results show that in these solvents the 

absorption bands shift to higher wavelengths, which is a result of solvatochromism. The results 

of both MPW1K and CAM-B3LYP deviate considerably from the experimental values. This is 

not surprising as these functionals were suggested to seriously underestimate the absorbance for 

large indoline dyes such as D149.41 Moreover, the PBE0 functional, which involves the 

combination of the PBE exchange energy and Hatree-Fock in a 3 to 1 ratio,30 were employed for 

calculating the maximum absorbance for dyes. On the contrary to B3LYP, PBE0 give rise to 

quite good predictions for acetonitrile (536), methanol (535) and THF (532) solvent, 

corresponding well with the experimental values of 526, 527 and 526, respectively. However, 

PBE0 overestimated those for chloroform and ethanol (529 and 539 vs. Exp 550 and 564, 

respectively). These results indicate that both B3LYP and PBE0 functionals are within a 

reasonable margin of error from one another and either could be complementary to each other 

when they are employed to predict the absorbance in various solvents. It is worth mentioning that 

the absorbance in the THF solvent was calculated using CAM-B3LYP and PBE0 functionals 

with 6-31+G(d, p) basis set in previous study.24 Our results in THF using same functionals with 

6-31G(d) basis set are in line with their calculated absorbance data. This indicates that little 

difference is introduced when polarization and diffuse effect were considered and 6-31G(d) basis 

set may be sufficient to predict the absorbance in various solvents. 
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The results of D205 in various solvents are displayed in Table 3. The accuracy in predicting the 

maximum absorbance using different functionals shows similar trend as we observed for D149. 

It is obvious that MPW1K and CAM-B3LYP still underestimate the maximum absorbance 

values compared with the experimental values as well as those predicted by B3LYP, PBE0 

functionals. B3LYP shows a reasonable accuracy in the prediction in chloroform, whereas PBE0 

performs better in THF. Similar to D149, larger basis set, 6-31+G(d, p) combined with CAM-

B3LYP and PBE0 give rise to similar results as those calculated using  the 6-31G* basis set. 

Deprotonated D149 and D205 dyes 

D149 and D205 could be deprotonated in a DSSC in order to interact with the catalytic surface. 

Therefore, an analysis using the 6-31G(d) basis set, B3LYP hybrid functional, and the CPCM 

solvation model was carried out on the representative low-energy conformers D149con3 and 

D205con4, respectively. Comparable data have previously been calculated by Fakis et al. 42 The 

structure of deprotonated D149con3 and D205con4 are shown in Fig. 5, and their corresponding 

maximum absorption are listed in Table 4. It can be seen that the absorbance values of 

deprotonated D149con3 and D205con4 are comparable with the experimental results, although it 

can be noted that blue shifts of the absorbance maxima are observed for the deprotonated dye 

molecules. This is understandable as the deprotonation would give way to a negative charge on 

the molecule making it more polar. Interestingly, the values of D149con3 in each solvent are 

very close to those of D205con4 in its equivalent solvent. It can also be noted that for both 

D149con3 and D205con4, their absorbance values calculated by B3LYP functional in THF are 

very comparable to the experimental data. Thus, B3LYP appears to be sufficient for predicting 

the absorbance in THF. Generally, B3LYP results show better agreements on chloroform, 

ethanol and THF solvent, while PBE0 functional performs better on acetonitrile and methanol. 
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Viability of the Dye Molecules  

In DSSCs there are several key factors which influence their effectiveness and efficiency upon 

irradiation. One of the factors is the ability of electron injection of photoexcited electrons into the 

metal oxide conduction band. Another is the electron coupling between the lowest unoccupied 

molecular orbital (LUMO) of the dye and the conduction band of the metal oxide. The LUMO of 

the dye must be higher (more negative) than the conduction band edge of the metal oxide and it 

should be located at the acceptor part of the dye to provide efficient electron injection.43,44 The 

HOMO energy of the dye should be lower (more positive) in comparison to the redox potential 

of electrolyte for efficient dye regeneration. Therefore, it is worth exploring the ability of the 

molecules to be used as dyes, in terms of HOMO and LUMO levels in relation to the conduction 

band of metal oxides and electrolyte redox potential. 

Specifically, in order for these dye molecules to be effective, the HOMO energy levels of D149 

and D205 must be above the valence band but below the conduction band of the semiconductor. 

Also, the LUMO must lie above the conduction band. These conditions must be met in order to 

facilitate electron injection from the dye to the metal oxide. Two common DSSC materials, ZnO 

and TiO2, have valence band energies of -7.39 and -7.41 eV as well as conduction band energies 

of -4.19 and -4.21 eV, respectively.345 The HOMO and LUMO orbitals of D149con3 and 

D205con4 were calculated and shown in Fig. 4. We also calculated the ionization potentials (IP) 

of D149 and D205, based on the respective energy difference between the neutral dye and the 

oxidized dye, D-D+. The energies of the neutral and oxidized dyes were obtained from fully 

optimized geometries using B3LYP/6-31G(d) method (Table 5). The ionization potentials were 

estimated with respect to normal hydrogen electrode (εNHE = -4.43V). A schematic energy 

diagram is shown in Scheme 1exhibiting the relative positions of HOMO and LUMO, in relation 
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to the conduction band edge of the semiconductor ZnO or TiO2. As can be seen in Scheme 1, the 

LUMO of both dyes are higher than the conduction edge of ZnO or TiO2, and LUMO is lower 

than the electrolyte redox potential (~0.4 V). This is in line with their ability to function as 

effective sensitizers for a DSSC. The IP of D205 (1.56 V) is closer to the electrolyte redox 

potential than D149 (1.65 V), as a result electron is easier to transfer from electrolyte to HOMO, 

facilitating dye regeneration. We can conclude the IP order of the two dyes estimated by the 

current DFT calculations is in accordance with the trend in their conversion efficiency. 

Interestingly, rotation around the rhodanine ring has little impact on the excitation energies and 

the absorbance maxima of the dyes. As mentioned previously, this is related to the features of the 

HOMO and LUMO, with LUMO being located around the rhodanine acceptor and HOMO 

populated around the opposite end. Whereby it has been noted that such orbital configuration is 

not affected by rotating around the rhodanine ring and decreases the possibility for charge 

recombination by “hole trapping”.41  

Periodic DFT calculation of dyes on metal oxides  

A DSSC device is typically employed via light being absorbed by a monolayer of dye molecules 

which are anchored to a metal oxide semiconductor of mesoporous nanocrystalline, such as TiO2 

and ZnO, which then proceeds via photoexcitation to undergo electron injection into the 

conduction band of the oxide by trap-limited diffusion. Therefore, together with the properties of 

the dyes in vacuum and different solvents, it is also of great interest to explore their behaviours 

on the surfaces of metal oxides. Recently ZnO, which has similar band gap as TiO2 and therefore 

similar physical chemical properties, has become an emerging alternative semiconductor 

material to traditional TiO2 because of its outstanding properties in high electron mobility, facile 

fabrication and easy adjustability of size and morphology. 46,47  
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Here, we investigated the interaction between the dyes and ZnO )0110( , which is common 

surface for ZnO modelling.-48-50  

Since the original D149 and D205 molecules are too large to be treated by periodic DFT 

calculations on the surface, a simplified model was used that contains the atoms that interact 

directly with the surface, i.e. the anchoring carboxylic acid group and the attached rhodanine 

ring(Fig. 6). This is reasonable since the carboxylic acid group is usually regarded as strong 

adsorption group on metal oxides surfaces. In order to consider the solvent effect, we employed 

the VASPsol model, an implicit solvation model that describes the effect of electrostatics, 

cavitation, and dispersion on the interaction between a solute and solvent. 51 The model, now 

implemented into the plane-wave DFT code VASP, 52 has been successfully applied in metal and 

semiconductor surfaces with standard ultrasoft pseudopotential and projector-augmented wave 

potential libraries. 53 The adsorption energy of the dye model on ZnO surface was calculated in 

acetonitrile, a common solvent used in DSSC.54  

The dye model was positioned on the surface with its carboxylic acid group attached to the zinc 

atom of the ZnO surface. Two stable adsorption structures of the dye model are identified (Fig. 

6) with adsorption energy of -1.48 and -2.06 eV, respectively. The figure clearly indicates that 

the dye model indeed interacts with the surface with good adsorption strength. In both adsorption 

structures, the ketone group binds with a surface Zn atom, while the hydroxyl remains free (Fig. 

6a) or interacts with a surface O atom (Fig. 6b). When the hydroxyl interacts with a surface O, 

the OH bond is significantly elongated (Fig. 6b), which can be regarded as dissociative 

adsorption. As a result, its adsorption energy increases from -1.48 to -2.06 eV. Our periodic DFT 

calculations confirm that the dyes (D149 and D205) can be anchored by the surface of the metal 

oxide. 
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Conclusions  

In this work, a DFT/TDDFT investigation towards two indoline-containing DSSC dyes, D149 

and D205 was carried out with the consideration of different conformers of D149 and D205. 

Several different functionals, including B3LYP, MPW1K, CAM-B3LYP and PBE0 were used 

when calculating the maximum absorbance of the dyes in vacuum and five common solvents 

(acetonitrile, chloroform, ethanol, methanol, and THF). Following results were obtained: 

1. The most important conformers of the dyes was considered by rotating around the crucial 

bonds related to the electron transfer. Three possible conformers of D149 and four 

possible conformers of D205 were identified using B3LYP method and 6-31G* basis set. 

Both dye molecules can exist in the two low-energy conformations, con1 and con3. D205 

can exit in a fourth low-energy conformation where the n-octyl chain attached on the 

rhodanine ring extends away from the D-π-A system. The most stable conformation of 

the dye molecules can be used to guide the design of new metal-free dyes to have 

admirable electronic and absorbance properties, i.e. by mimicking the spatial 

arrangement of electron donor indoline in relation to electron acceptor rhodanine, as 

shown in the two low-energy conformations con1 and con3 in the congeneric dyes; high-

efficient dye may be achieved by tweaking the substitution group on the rhodanine into 

the conformations adopted by D205con3 and D205con4. 

2. The electron donor feature of the indoline group and electron acceptor feature of the 

rhodanine group by frontier HOMO and LUMO analysis accounts for the experimental 

observations that the akyl substitution on the rhodanine ring has little impact on the 

excitation energies and absorbance spectrum. 
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3. The absorbance data predicted by B3LYP method and 6-31G* basis set in vacuum are in 

good agreement with the experimentally obtained maximum absorbance, indicating that 

B3LYP/6-31G* is adequate for calculating absorbance properties of the indoline dyes. 

MPW1K and CAM-B3LYP, on the other hand, seriously underestimated the maximum 

absorbance of the indoline dyes in vacuum.  

4. In solvents, MPW1K and CAM-B3LYP do not perform as well as B3LYP and PBE0 

methods. B3LYP shows a good prediction for chloroform and ethanol, while PBE0 gives 

better results for acetonitrile, methanol and THF. Thus PBE0 and B3LYP methods could 

be complementary on calculating the properties of indoline dyes in polar solvents. 

5. The deprotonated D149 and D205 are also considered in solvents and show a similar 

trend compared with the neutral dyes. 

6. Periodic DFT calculations of the dyes on a ZnO surface disclose two stable structures at 

adsorption and confirm that D149 and D205 molecules can be firmly anchored by the 

surface.   
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Figures and Tables 

Figures 

 

Figure 1. Structures of the organometallic dyes (a, b) and metal-free organic dyes (c, d). 
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Figure 2. 3D geometries of (a) D149con1 (b) D149con2 (c) D149con3. The grey, white, blue, 

yellow and red balls represent C, H, N, S and O, respectively. 
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Figure 3. 3D geometries of (a) D205con1, (b) D205con2, (c) D205con3 and (d) D205con4. The 

grey, white, blue, yellow and red balls represent C, H, N, S and O, respectively. 
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Figure 4. HOMO and LUMO orbitals of (a) D149con1 (b) D149con3 (c) D205con1 (d) 

D205con4.  
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Figure 5. 3D geometries of (a) deprotonated D149con3 and (b) D205con4. The grey, white, 

blue, yellow and red balls represent C, H, N, S and O, respectively. 
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Figure 6. Illustration of two adsorption structures of a dye model that is composed of the 

anchoring carboxylic acid group and the attached rhodanine ring. The inserts are the top views. 

White, grey, red, blue, yellow and blue grey balls represent H, C, O, N, S and Zn atoms, 

respectively. The dye model is shown by stick-and-ball, the top layer of the surface is shown by 

CPK mode and the rest layers of the surface are shown by line representation. The adsorption 

energy of the dye model on ZnO surface was calculated in acetonitrile (relative dielectric 

constant ε= 36.6). 
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Scheme 1. Schematic energy diagram for DSSC using D149 as the sentizing dye. HOMO and 

LUMO energies were calculated based on the optimized geometries of D and D+ using 

B3LYP/6-31G(d) method. ZnO or TiO2 is used as the semiconductor. The ionization potentials 

were estimated with respect to normal hydrogen electrode (NHE) potential. 
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Tables 

Table 1. Maximum absorbance wavelengths and relative energies of D149 and D205 by TD-

DFT calculations in gas phase. Three hybrid functionals B3LYP, CAM-B3LYP and MPW1K are 

employed.  

molecule 
Absorbance / nm Relative energy 

/ eV (B3LYP) B3LYP CAM-B3LYP MPW1K 

D149con1 505 413 423 0.00 

D149con2 539 - - 0.14 

D149con3 508 (505)* 414 424 0.11 

D205con1 505 414 423 0.05 

D205con2 516 - - 0.19 

D205con3 504 - - 0.03 

D205con4 504 (501)* 414 423 0.00 

* The values in parentheses are results calculated using the B3LYP functional in Ref.24 
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Table 2. Maximum absorbance wavelengths of D149con3 in five solvents by TDDFT 

calculations. Four different functionals (B3LYP, MPW1K, CAM-B3LYP and PBE0) are used.  

Solvation 
Absorbance / nm Exp. 

Absorbance / 

nm B3LYP MPW1K CAM-B3LYP PBE0 

Acetonitrile 566 457 443 536 526  Ref.55 

Chloroform 557 454 441 529 550  Ref.56 

Ethanol 566 457 442 536 564  Ref.57 

Methanol 566 456 442 535 527  Ref.58 

THF 561 (571)* 455  442 (444)** 532 (535)** 526  Ref.59 

* The values in parentheses are the DFT results in Ref.24  

** These values in parentheses was calculated with 6-31+G(d,p) basis set in Ref.24 
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Table 3. Maximum absorbance wavelengths of D205con4 in five solvents by TDDFT 

calculations. Four different functionals (B3LYP, MPW1K, CAM-B3LYP and PBE0) are used.  

Solvation 
Absorbance / nm Exp. 

Absorbance / 

nm B3LYP MPW1K CAM-B3LYP PBE0 

Acetonitrile 557 453 440 529 - 

Chloroform 549 451 439 523 554  Ref.60 

Ethanol 557 453 441 529 - 

Methanol 556 453 440 528 - 

THF 552 (552)* 452  440 (442)** 525 (527)** 532  Ref.59 

* The values in parentheses are the DFT results in Ref.24  

** These values in parentheses was calculated with 6-31+G(d,p) basis set in Ref.24 
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Table 4. Maximum absorbance wavelengths (nm) of deprotonated D149con3 and D205con4 in 

solvents by TDDFT calculations with B3LYP and PBE0 functionals.  

Solvation 

D149con3 D205con4 

Absor. 

B3LYP 
Absor. 

PBE0 

Calc.  

Absorb.* 

Exp.  

Absorb. 

Absor. 

B3LYP 
Absor. 

PBE0 

Exp.  

Absor. 

Acetonitrile 546 518 521 526  Ref.48 545 519 - 

Chloroform 533 505 512 550  Ref.49 533 612 554  Ref.60  

Ethanol 544 517 - 564  Ref.50 543 520 - 

Methanol 545 517 - 527  Ref.44 544 519 - 

THF 531 507 517  526  Ref.51 532 564 532  Ref.59 

* Absorbance previously calculated by PBE0 functional with 6-311+G(d, p) basis sets in Ref.42 
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Table 5. Calculated HOMO and LUMO energies of D149con3 and D205con4 using B3LYP and 

the 6-31G* basis set. 

Molecule LUMO/eV HOMO/eV ELUMO- EHOMO /eV D-D+/eV 

D149 (con3) 
-2.41  

 

-5.12 

 
2.71 

6.08 

(1.65 V) a 

D205 

(con4) 

-2.30 

 
-5.03 2.73 

5.99 

(1.56 V) 

a: the values in brackets are the relative ionization potentials versus normal hydrogen electrode 
(NHE). 
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