Improving Smartphones Battery Life by Reducing Energy Waste
of Background Applications

Bolla, R., Khan, R., Parra, X., & Repetto, M. (2014). Improving Smartphones Battery Life by Reducing Energy
Waste of Background Applications. In 2014 Eighth International Conference on Next Generation Mobile Apps,
Services and Technologies: Proceedings. (pp. 123-130). (International Conference on Next Generation Mobile
Apps, Services and Technologies). DOI: 10.1109/NGMAST.2014.10

Published in:
2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies:
Proceedings

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/improving-smartphones-battery-life-by-reducing-energy-waste-of-background-applications(80576ea2-b771-40c3-bbd9-ee9e15a95895).html

Improving Smartphones Battery Life by Reducing
Energy Waste of Background Applications

Raffaele Bolla * , Rafiullah Khan * , Xavier Parra T and Matteo Repetto i
* DITEN Dept. University of Genoa, Genoa, Italy, Email:{raffaele.bolla, rafiullah.khan} @unige.it
t Universitat Politecnica de Catalunya, Vilanova i la Geltru, Spain, Email: xavier.parra@upc.edu
Y CNIT, Research Unit of University of Genoa, Genoa, Italy, Email: matteo.repetto@cnit.it

Abstract—Smartphones have undergone a remarkable evolu-
tion over the last few years, from simple calling devices to full
fledged computing devices where multiple services and applica-
tions run concurrently. Unfortunately, battery capacity increases
at much slower pace, resulting as a main bottleneck for Internet
connected smartphones. Several software-based techniques have
been proposed in the literature for improving the battery life.
Most common techniques include data compression, packet ag-
gregation or batch scheduling, offloading partial computations to
cloud, switching OFF interfaces (e.g., WiFi or 3G/4G) periodically
for short intervals etc. However, there has been no focus on
eliminating the energy waste of background applications that
extensively utilize smartphone resources such as CPU, memory,
GPS, WiFi, 3G/4G data connection etc.

In this paper, we propose an Application State Proxy (ASP)
that suppresses/stops the applications on smartphones and main-
tains their presence on any other network device. The applica-
tions are resumed/restarted on smartphones only in case of any
event, such as a new message arrival. In this paper, we present
the key requirements for the ASP service and different possible
architectural designs. In short, the ASP concept can significantly
improve the battery life of smartphones, by reducing to maximum
extent the usage of its resources due to background applications.

Index Terms—Green networking, smartphone, energy effi-
ciency, battery life, application state proxy.

I. INTRODUCTION

Today, smartphones are equipped with high memory and
processing capabilities. They offer high speed Internet con-
nectivity through EDGE, 3G/4G or WiFi interfaces and embed
different type of sensors, including GPS, compass, gyroscope,
proximity and health related sensors [1]. Due to enormous
popularity with over 2 billion devices in use, the number
of applications exploded (especially on Android and Apple
stores) over the last few years. Most of the interesting appli-
cations such as Voice-over IP (VoIP) and Instant Messenging
clients: Viber, Vonage, Whatsapp, Skype, Facebook messenger
etc run in background and periodically transmit/receive status
messages; they not only utilize resources such as CPU and
memory, but also demand full time Internet connectivity,
thus resulting in much reduced battery life. Previous studies
revealed that the Internet connectivity constitutes about 62%
of power consumption for a mobile device in idle state (with
LCD and backlight in OFF state) [2]. Further, 3G/HSDPA
data connectivity is more power hungry compared to WiFi
(as shown in Fig. 1) especially when the small size packets
are more frequently exchanged [3].

100
90

[%]

80 ®Downloading data using HSDPA
ODownloading data using WLAN
mSending an SMS

60 B Making a voice call

70

50 BPlaying an MP3 file

W Display backlight
40
30
20
10 l
0

Figure 1. Power consumption of different types of services normalized to
the HSDPA on Nokia N95 [3].

power

Nor

Several strategies have been proposed in the literature for
improving the battery life of smartphones. Most of them
focuses on compressing data or shaping network traffic to
create short idle periods during which network interfaces can
stay in the low power states [1]. However, no strategy has
been proposed till now to eliminate the energy waste due to
background applications which periodically transmit/receive
presence or heartbeat messages. Although, Internet interfaces
usually have different operational states; the frequent heartbeat
messages from many background applications force them to
stay always in active state. It is important to note that frequent
states switching between high power active and low power idle
incur significant additional energy overhead [4]. Fig. 2 shows
the distribution of consecutive packets inter-arrival times on
a typical smartphone [1]. About 40% of the packets have 0.5
ms inter-arrival time or even less. The energy consumed by
Internet interfaces mainly depend on the size and frequency of
heartbeat messages transmitted/received by applications. Thus,
an Internet connected smartphone normally consumes battery
3 to 4 times faster depending on the number of application
running in the background.

In this paper, we present an Application State Proxy (ASP)
that suppresses/stops the background Internet-based applica-
tions on smartphones and maintains their presence on any
other network device. This way, the energy consumption
significantly decreases, due to reduced CPU and memory
utilization and network interfaces (such as WiFi or 3G/4G)
mostly stay in low power states. The ASP concept is different
from the commonly adopted strategy of partial offloading
of heavy computational tasks to the cloud (thin client-server

L
o
2
@ 60
-
&0
" B
s
2 +
g 20
3
o
04 ’ v .
e\ e v e g9 e o e a9 o e o
°°""°“"’9§%88°8§°
Fmvg—%og
Packet Inter-arrival Time (millisec) - @

Figure 2. Analysis of packets inter-arrival time on a typical smartphone [1].

scenario). The ASP offloads complete applications to another
network device to extensively reduce the load on smartphone
resources. The ASP concept is basically the extension of our
previous work on the Network Connectivity Proxy (NCP) for
desktop computers [5], [6]. The NCP maintains presence of
desktop computers during their sleeping periods. Unlike the
NCP, the ASP only needs to maintain the applications presence
on behalf of smartphones. The ASP maintains the applications
presence as long as there are no events, such as new mes-
sage arrival. When any event occurs, the ASP immediately
returns/resumes the application back on the smartphone to
timely inform the user. In this work-in-progress paper, we have
mainly addressed the key requirements for the ASP service and
proposed different possible architectural designs.

The rest of our paper is organized as follows. Section
IT briefly addresses previous work in literature. Section III
presents the ASP concept and addresses basic requirements.
Section IV describes the possible architectural designs. Section
V presents different techniques for proxying the presence of
applications. Section VI describes the design of our commu-
nication protocol. Section VII addresses the expected benefits.
Finally, Section VIII concludes the paper.

II. RELATED WORK

A brief survey on the energy consuming entities on the
smartphone platform has been presented in [7]. The au-
thors have taken into consideration the components including
CPU, display, memory, mp3 player, wireless interfaces (e.g.,
bluetooth, WiFi, 2G, 3G) etc to give an understanding of
the most power-hungry parts in a smartphone. One of the
most accurate method to measure the energy consumption on
Android platform by a specific application has been presented
in [8]. The proposed approach is based on the kernel activity
monitoring to determine the accurate usage of different hard-
ware components by an application. A detailed analysis of
advances in the battery capacities and understanding of more
energy-hungry aspects of an application have been presented in
[9], [10]. The authors have pointed out that the Internet-based
applications usually consume a major share of the smartphone
battery life.

The random data transmission by recurrent applications
significantly limits the smartphone battery life. M. Calder
et al. in [11] presented a batch scheduling mechanism for

smartphones. The authors have quantified the possible energy
savings through batch scheduling on real mobile platforms
(e.g., Android) with particular focus on maximizing phone’s
sleep time or minimizing the frequency of wake-up by recur-
rent applications. Some further work in this domain for delay
tolerant applications has been addressed in [1], [12] and [13].

Data offloading from 3G/4G network to WiFi is another
strategy for improving the smartphone’s battery life. From
the perspective of energy required for data transfer, the WiFi
is much more efficient than 3G/4G. This domain has been
explored by N. Ristanovic et al. in [14] and K. Lee et al. in
[15]. A useful strategy for improving the smartphones battery
life is the computational load offloading to the cloud (thin
client-server scenario). However, this strategy was basically
proposed to execute complex applications on any smartphone
even with low computational capabilities. Microsoft office 365
and Matlab for portable devices are based on this strategy.
Some interesting work in this domain is published in [16] and
[17].

Until now, no strategy has been proposed for smartphones
to eliminate the energy waste due to applications running
in the background which not only utilize CPU and memory
but also extensively use the Internet interfaces. In this paper,
we propose the ASP concept to achieve this objective. The
ASP is the continuation of our previous work on NCP, which
impersonates the presence of desktop computers during their
sleeping periods [5], [6]. Unlike the NCP, the ASP maintains
only the applications presence as the smartphones are always
powered-up devices.

III. APPLICATION STATE PROXYING

Many Internet-based applications on smartphone run in the
background to send/receive periodic presence or heartbeat
messages. These periodic messages keep the application state
up-to-date and inform the user on time in case of any event.
Further, these messages also update the remote peers about
the user presence. The smartphone Internet interfaces (such as
WiFi and 3G/4G) mostly stay in active mode due to frequent
heartbeat messages generated by many background applica-
tions (depending on the number of applications installed on
smartphone and their heartbeat message periods). The best
option to reduce energy waste is to reduce the usage of
smartphone’s resources by the background applications. This
objective can be achieved if the smartphone suppresses/stops
the background applications from utilizing its resources while
still maintaining their presence. A proxy can be the optimal
solution to achieve this objective.

A. Overview

We propose the ASP as the optimal solution to improve the
smartphone battery life. The ASP is a software entity running
on any device in the home network (e.g., Home Gateway
(HG)) and maintains the presence for smartphone applications.
The ASP resumes the specific application back on smartphone
only when any event is received e.g., a new message. Thus,
the applications run most of the time on ASP hosting device

Smﬁone
o
—

ASP

Internet

©)

)

=

Application Server

Figure 3. The ASP functional view: (1) Application state maintained by
the smartphone, (2) Smartphone requests ASP to impersonate its application
presence, (3) The ASP impersonate the application presence, (4) The ASP
receives application event and transfers the application presence back to
smartphone.

and run on smartphone for very short periods (only when any
event is received). Since the smartphone is a mobile device,
it should be able to request ASP service both from inside and
outside the home network. However, to access the ASP service
from outside the home network will require addressing the
NAT and Firewall issues. The optimal location for ASP service
is the HG which is a low power device and always remains
powered-up, thus resulting in very low incremental network
energy consumption. The benefits that can be achieved from
the ASP service include: (i) longer battery life due to much
reduced utilization of smartphone’s hardware components such
as CPU, memory, WiFi, 3G, 4G etc, and (ii) lower utilization
of 3G/4G data which is usually limited by service providers.

The generic functional diagram for ASP is shown in Fig. 3.
It consists of four main steps:

1) The application is active on the smartphone and directly
communicates with the application service provider. This
can be a short interval during which the user answers a
call or reads a new received message.

2) The user requests the ASP to maintain its application
presence. Meanwhile, it stops the smartphone application
to reduce utilization of hardware resources such as CPU,
WiFi, 3G/4G etc. This step can be based on the user
command or inactivity timer expiry for the application.

3) Now the ASP maintains the application presence directly
with the application service provider on behalf of the
smartphone. The ASP impersonates the application pres-
ence as long as no event is received.

4) The ASP resumes the application back on smartphone
when any event is received. Now all steps in Fig. 3 repeat
over and over again.

Fig. 4 gives a more clear understanding of the ASP concept.
It can be observed (in Fig. 4(a)) that the smartphone is running
concurrently many different applications in the background
which periodically exchange heartbeat messages with their
respective application server. Thus, the WiFi or 3G/4G mostly
stays in the active state to transmit very large number of
packets on the communication medium. The Internet interfaces
may also have frequent operational state switching which
results in significant additional energy overhead. Fig. 4(b)
depicts the scenario where smartphone is taking benefit from
the ASP service. It can be observed that very few packets

Smartphone

WiFi/3G/4G
TX/RX

i APpl Server g,
i App2 Serve; =S
Communication Medium »[»&_) -<—-—>'| H

; ; i
O min 1'min 2'min AL X/RX
3 e
AppN |
Client | S

(a)

:

Appl App2 App3
Client___Client _Client

ASP Device

i WiFi/36/4G
H TX/RX

Smartphoné
WiFi/3G/4G
ek iactive mode

WiFi/3G/4G
Active mode

Communication Mediu

t +
min 1min 2'min

WiFi/36/46
Sleep/OFF mode

i
WiFi/36/4G
Sleep/OFF mode

(b)

Figure 4. The ASP concept: (a) Normal scenario of background running
applications, (b) The ASP scenario by efficiently controlling background
applications (communication medium between the ASP server and each
application server is not shown but will be similarly congested as in (a)).

are exchanged over the communication medium between the
smartphone and ASP hosting device. These few packets may
correspond to infrequent ASP client advertisements to ensure
the smartphone availability to the ASP server or may indicate
effective communication between the ASP client and server
to stop or resume a specific application on either side. Now
the ASP server manages these background applications and
periodically exchange their heartbeat messages with their
respective application server. It is quite obvious in Fig. 4(b)
that the smartphone can find long idle periods during which
its hardware components (e.g., WiFi or 3G/4G) may switch
to low power states or the smartphone operates at lower CPU
rate due to less processing requirements when no background
applications are running. Generally speaking, Fig. 4(b) gives
the idea of using a common server which is responsible for
managing heartbeat messages for all applications.

B. Basic Requirements

We divided the requirements into three categories: (i) smart-
phone requirements, (ii) ASP requirements and (iii) commu-
nication requirements.

1) Requirements for the Smartphone: The following are
some of the basic requirements for the smartphone:

1) Have the capability to stop/resume the applications. This
can be based on inactivity timer expiry or based on the
request of user or ASP service.

2) Be able to resume an application in smallest possible
time. This is especially true for applications requiring
immediate user response/attention in a limited time span
e.g., a call on Viber. However, the delay will not cause
any adverse effects for events such as a new message
arrival Facebook messenger, Viber, Whatsapp, Vonage or
updates for Dropbox, Box etc.

3) Have the ability to scale CPU performance based on
required level of processing and/or putting the hardware
components such as WiFi, 3G/4G etc into low power
idle state. This step is critically important to significantly
extend the smartphone battery life.

4) Ability to detect and prevent an application from stopping
if it is actively performing some online activity e.g., a user
chatting with his friend.

5) Should have unique identity and should be accessible by
ASP service at any time.

2) Requirements for the ASP Service: The following are
some of the basic requirements for the ASP service:

1) Should be always available. It is necessary to run the
ASP service on a device that is always powered ON and
connected to the Internet e.g., HG.

2) Should have the ability to maintain presence for different
applications on behalf of smartphone. This includes gen-
erating/responding to routine application specific periodic
heartbeat messages.

3) Should have the ability to detect the events for different
application and timely resume the applications back on
smartphone.

4) Should provide proper user privacy and data security.
Isolation of data from different users is quite important.

5) Should be able to provide services to more than one user
or smartphone. The scalability is important as the home
network may have many smartphones.

6) Should have unique identity and should be easily acces-
sible by the smartphone at any time.

3) Communication Requirements: We have proposed a
cooperative approach that allow the smartphone and ASP
to communicate with one another. The following are some
of the basic requirements for communication between the
smartphone and the ASP service:

1) The communication protocol should have proper security
measures. This is especially important when the smart-
phone is outside the home network and the communica-
tion passes through public infrastructure.

2) The communication link should be established in shortest
possible time and should have low latency and overhead.

3) Autonomous seamless communication requiring no or
minimal configurations can be the optimal choice. This
requirement can be easily met if both the smartphone and
ASP lie in the home network, however special techniques
or strategies need to be adopted for communication over
Internet.

4) Both the smartphone and the ASP needs to have unique
identity to be able to communicate. This requirement can
be easily met if both the smartphone and ASP lie in the
home network, however NAT and Firewall issues need
to be addressed if the smartphone is located outside the
home network.

IV. POSSIBLE ARCHITECTURAL DESIGNS
The ASP for smartphones can have three possible designs
based on its location.
A. Local Deployment of ASP

The generic design for the Local ASP (L-ASP) deployment
is shown in Fig. 5. The ASP and smartphone both are located

Application Service
Provider

Application Service
Provider

= Application Service
Provider

Figure 5. The L-ASP architecture: The purple line depicts the transfer
of applications control between the smartphone and the ASP. The red lines
depict the maintenance of different applications presence by ASP on-behalf
of smartphone.

in the same network. This is the typical scenario when the
user is at home and his smartphone is connected with the ASP
service provided by a local device. The ASP service may be
provided by the switch/router, HG or a standalone device such
as desktop computer, laptop, tablet etc. Switch/Router can be
the optimal place for the ASP service as it is a low power
entity and always stays powered ON and connected to the
Internet. A standalone device will provide higher memory and
processing capabilities but will result in the network energy
wastage if it is kept powered-up 24/7 just for the purpose of
ASP service. The L-ASP deployment also offers the advantage
of easy communication between the smartphone and ASP.
There are many techniques that can be adopted for zero-
configuration, auto discovery/communication and seamless
networking between the smartphone and ASP without any
need of user configurations. Two most common techniques
are multicast DNS (mDNS) (mostly used by Apple devices)
and Universal Plug & Play (UPnP) (fast emerging standard for
network devices).

Besides the benefits offered by the L-ASP deployment, there
are two main issues:

1) The smartphones are usually at home for very less time
e.g., almost 10 hours at night or outside work hours.
Since the main purpose of smartphone is mobility and
portability, it will not be able to benefit much from the
ASP service unless the L-ASP deployment is available
everywhere (also at work places).

2) The switch or router usually have limited memory and
processing capabilities which makes difficult for the
ASP service to implement proxying for large number of
complex applications.

B. General Internet-wide ASP

The design of General Internet-wide ASP (GI-ASP) is
shown in Fig. 6. It can be observed that the ASP and
smartphone are located in the different networks. The GI-
ASP deployment is the typical scenario when the smartphone
is benefiting from the ASP service located anywhere in the
world. The ASP service will be provided by a powerful device
that is highly scalable and capable to proxy large number
of complex applications. The power consumption of the ASP
hosting device is not a concern as it will spread over very large
number of smartphones resulting in negligible incremental

Application Service
Provider

S =->
>

Application Service
= ‘ Provider
=

o Application Service
Provider
-
|

Figure 6. The GI-ASP architecture: The purple line depicts the transfer
of applications control between the smartphone and the ASP. The red lines
depict the maintenance of different applications presence by ASP on-behalf
of smartphone.

power per smartphone. Further, the ASP service will be always
accessible from everywhere and smartphones can benefit from
it 24/7.

Besides many benefits that can be achieved by the GI-ASP
deployment, there are also some issues and challenges. The
communication between the smartphone and ASP will be quite
challenging as the smartphones are usually behind NAT and
Firewall (preventing ASP to connect with smartphone in case
of an application event). Also, there will be no autonomous
discovery or seamless communication and a minimal user
configurations may be required.

C. Application Specific Internet-wide ASP

The design of Application Specific Internet-wide ASP (ASI-
ASP) is shown in Fig. 7. It can be observed that each
application service provider also offers the ASP service to
its clients. In other words, each ASP offers proxying for one
specific application. The smartphone can request each ASP
separately to maintain specific application presence on its
behalf. The ASI-ASP deployment will not face any privacy
concerns as the proxying service is provided by the actual
application developers. Thus, this deployment is quite suitable
for closed-source proprietary applications. Instead of using the
ASP, the application service provider may include application
freeze functionality that will contact the application client on
smartphones only when there is any event.

The ASI-ASP scenario is quite simple and has no complex
requirements. The application developers need to support
proxying for their clients and include an extra feature in
the client applications on smartphones to stop or resume the
proxying service. When the user wants to save energy on
his smartphone, he will request the application end-point for
proxying. The application service provider will apparently
disconnect the connection with smartphone but preserve its
presence. Based on user request or any application event, the
application service provider will return the application control
back to smartphone. Further, the ASI-ASP scenario is suitable
because the smartphone can access it from anywhere. Security,
privacy, flexibility and scalability will be the concerns for
application developers in general but not specific to the ASP
service.

Application Service

Provider
-,

)

__________ ication Service
Rrovider

5 Application Service

ﬁ Provider
Al

Figure 7. The ASI-ASP architecture: The purple line depicts the transfer
of applications control between the smartphone and the ASP. The red lines
depict the maintenance of different applications presence by ASP on-behalf
of smartphone.

V. APPLICATIONS PROXYING TECHNIQUES

The main objective of the ASP is to proxy applications
until an event is received. Application events can be classified
into two main categories: (i) delay sensitive and (ii) delay
insensitive. Delay sensitive events (such as an incoming call)
require user response within the shortest time span. Thus, the
ASP needs to resume the application back on smartphone in
the shortest possible time to avoid any adverse effects. On
the other hand, the ASP may take few seconds to resume the
application back on smartphone in case of delay insensitive
events (such as new message arrival). Most of the events
related to smartphone applications are delay insensitive such as
messages on Facebook messenger, Vonage, Viber, Whatsapp,
Twitter, Skype or updates on Dropbox, Box, etc. Resuming
an application on smartphone for delay insensitive events is
less challenging. Simply starting up the specific application
on smartphone will automatically receive the events from the
application service provider. Special care is required when
returning the application control for delay sensitive events.
Usually, an application (with same user account) running on
different devices receive events simultaneously. E.g., a Skype
or Viber client running on two different devices will receive
the call event simultaneously. Thus, just starting up the specific
application on smartphone will automatically receive event (a
call in this case) if the delay is not significant.

The ASP impersonates presence of applications on behalf of
smartphones by sending/receiving periodic application specific
heartbeat messages. The ASP can achieve this objective by one
of the following techniques.

A. Using Application Specific Stubs

The application specific stub is a piece of software derived
from the actual application source code that periodically gen-
erate or respond to the heartbeat messages. Writing the appli-
cation stub requires application source code and understanding
of its functionalities. The stub only contains the subset of
application functionalities which are enough to impersonate
the application presence. It is usually not feasible for the stubs
to include the entire application source code as the application
may also depend on the hardware components or drivers e.g.,
display, memory, disk etc that may not be available or may
overload the ASP hosting device. Another important part of the
stub is to understand or recognize events which will require

to resume application back on smartphone. The application
stubs usually also require login credentials of the application
account. The idea of stubs was initially introduced by Y.
Agarwal et al. in [18]. The authors have developed a USB
based architecture ‘Somniloquy’, that maintains the presence
of sleeping desktop computers. Since the stubs require appli-
cation source code, this approach can not be easily adopted
for the proprietary closed source applications.

B. Using Virtual Machines

The ASP may also use virtual machines to impersonate the
presence of smartphone applications. For each smartphone, the
ASP will instantiate the corresponding image. The image is
responsible to maintain the presence of all applications running
on that specific smartphone. Since, the virtual machine runs
a complete operating system, it is easy to proxy many open
source and proprietary closed source applications. The ASP
will simply start the specific applications on virtual machine
when the smartphone requests its service. However, some
strategies need to be adopted to detect the events which require
the application control transfered back to smartphone. Here
the transfer of application control may simply imply stopping
or running the specific application on that device. E.g., when
a new message arrives, the ASP only needs to inform the
smartphone to run the specific application that has new event.
The application will update itself automatically after start up.
This can be also true for delay sensitive events e.g., a call
if the delay is not significant. One main limitation of this
approach is the resources required to run a virtual machine.
This approach can be good if the ASP runs in home network
and manages only few smartphones. However, scalability will
be a serious concern if the ASP runs as one global entity
managing thousands of smartphones.

C. Using Generalized Heartbeat Messages

The ASP may use a generalized heartbeat message template
that is suitable to generate heartbeat messages for any appli-
cation. This template needs to be filled up by the applications
running on the smartphone. The template will contain all
the required fields and strategies to generate the periodic
heartbeat messages. Thus, the applications on smartphone need
to implement two features: freeze and resume. The application
freeze feature fills up the heartbeat message template at
the ASP. After that the application on smartphone will stop
generating or sending heartbeat messages, instead the ASP
will start sending periodic heartbeat messages based on the
information provided in the template. When the ASP receives
an application event, it will invoke the application resume
feature on the smartphone. After the application resume,
the smartphone will once again start sending/responding to
heartbeat messages.

It can be observed that this approach is future oriented
and requires the applications to implement freeze and resume
features. Indeed, this approach is quite suitable for the ASI-
ASP scenario depicted in Fig. 7 where each application service
provider also provides the ASP service to its clients.

Home Network Application Service

Provider Network

!
-

Application Server

UPNP Local Application Specific
Communication i Protocols I
< i > |= K > |

Smartphone ASP

a) Smartphone and ASP located in same network

Home/ASP

Application Service
Network PP

Provider Network

| — UPNnP Remote Application Specific
= = |
3
Smartphone ASP Application Server

b) Smartphone and ASP located in different networks

Figure 8. Possible scenarios for ASP service: (a) Smartphone and ASP are
located in same network and communicate using standard UPnP architecture.
(b) Smartphone and ASP are located in different networks and communicate
according to URA specification.

VI. COMMUNICATION PROTOCOL

The communication protocol is mainly required for transfer
of applications control between the smartphone and ASP.
Different protocols can be considered for the ASP framework
which can lead to an efficient, flexible and scalable solution.
We have designed our communication framework using UPnP
architecture [19]. Our choice for UPnP architecture is well
motivated due to its interesting features of zero configuration,
auto-discovery and seamless communication ease. Further,
the UPnP protocol gained enormous popularity for future
network devices and can be easily supported by heterogeneous
network devices including smartphones, printers, scanners,
copiers, Internet gateways etc. The UPnP architecture is built
upon several different protocols: (i) Simple Service Discov-
ery Protocol (SSDP) to search/advertise device presence, (ii)
General Event Notification Architecture (GENA) protocol for
notification about device events and (iii) Simple Object Access
Protocol (SOAP) which is used to send actions/commands
to a UPnP device. The SOAP and GENA protocols usually
operate on the top of HTTP protocol while SSDP uses HTTPU
(an extension of the HTTP protocol which uses UDP as
the transport protocol instead of TCP). The UPnP Device
Architecture (UDA) specified two main roles for the UPnP
devices: Controlled Device (CD) and Control Point (CP). The
CD represents the physical entity that implements one or more
services. Each service consists of one or more actions that
build remote procedure calls. The CP runs on another network
device that sends commands to specific service of the CD and
invokes particular action.

The UPnP protocol was originally proposed for seamless
autonomous communication between devices in local network.
However, the smartphone is a mobile device and mostly stays
outside the local/home network. Thus, we have tailored our
design to support both, the communication in local network
as well as over the Internet. The two possible scenarios are
depicted in Fig. 8. Fig. 8(a) depicts the scenario when the
smartphone is present at home and connected to the home
gateway which is offering the ASP service. It is quite impor-
tant in this scenario that the smartphone is not using 3G/4G
data network, instead using the Internet over home WiFi.

Smartphone 1

ASP

UPnP CD

UPnP CP

Smartphone N

ASC Service
. { UPNP CP
\ﬂ/ """""""""""""" : F/

Figure 9. UPnP model for local communication framework.

Fortunately, due to comparatively less power consumption
by WiFi than 3G/4G, the modern smartphones automatically
switch to WiFi whenever an active access point is discovered.
Fig. 8(b) represents the scenario when the smartphone is
out of the home network and tries to avail the ASP service
offered by a device at home or a device located anywhere
in the world. Since the smartphone and ASP hosting device
are located in two different networks, the communication
between them needs to address many issues and challenges
to ensure reliability and security. The UPnP Remote Access
(URA) specification has recently been proposed that allows
secure communication between two device located in different
networks in a similar way as if they are located in the same
network [20].

A. Local communication framework

The generic design of our UPnP based local communication
framework is depicted in Fig. 9. In the general UPnP com-
munication scenario, each physical device either implements
a CP or a CD. However, in our design in Fig. 9, both the
smartphone and the ASP implement a CP as well as a CD. The
CP is required on smartphone to send proxying requests for
different applications to the service offered by the CD of ASP.
Similarly, the CP is required on the ASP to send commands
for resuming applications back on smartphone (in case of any
event). Thus, the Application State Control (ASC) service on
smartphone provides different actions with remote procedure
calls for stopping and resuming different applications.

B. Internet communication framework

The Internet communication framework is more complex
as the ASP and smartphone are located in different networks.
The URA specification can be adopted that extends the UPnP
coverage beyond LAN boundaries and enables the CP/CD
located in one network to securely communicate in a seamless
way with another UPnP CD/CP located in a remote network.
The URA specification also addresses key challenges and
issues arise during communication between devices located in
two remote networks (e.g., NAT and Firewall issues, quality
of service etc) [20].

The URA specification proposed usage of Remote Access
Server (RAS) running on each device. The RAS consists of
Remote Access Discovery Agent (RADA) and Remote Access
Transport Agent (RATA). The RADA exposes the devices and

m >
Secure Tunnel

RASZ. Network

ASP

perator.
@ RAS 1

Smartphone

Figure 10. UPnP Remote Access scenario.

Smartphone ASP .
(oo J(cr) (Raoa) ((rama] f{RA'TA] (raa) (@) (@]

T

1. Offer Security Profile

2. Acceptance of Profile
DAL ptance of Profile ..

. RA Connection Establishment

4. Notify 4. Notify

5. Get ASP CP & CD Description

6.ASP CD & CP

7.1Get Smartphone CP & CD Descriptidh

9.ASP CD 8. Smartphone CD & CP

Discovery

9.
CD Discovery 0. Smartphor
CP Discuvery\

10. ASP CP
Discovery

11. Smartphone Instructions to AS|

12. SAP Instructions to Smartphongy

Figure 11. Simplified communication scenario between smartphone and ASP.

services available in the local network to another RADA in the
remote network. The RATA is responsible to establish a secure
connection between two remote RAS. The typical scenario
is depicted in Fig. 10. The remote access connection can be
initiated from either side, the smartphone RAS or the ASP
RAS. The smartphone RAS exposes its embedded UPnP CD
and CP to the RAS on ASP. Similarly, the RAS on ASP hosting
device exposes its embedded or local UPnP CD and CP to
the smartphone. For successful establishment of connection,
the smartphone RAS needs to know the remote ASP RAS IP
address and other security associations and vice versa. This
information is stored in a Remote Access Application Server
(RAAS) managed by the service provider. The smartphone
retrieves this information from the RAAS to know if someone
is sharing the ASP service.

The simplified UPnP communication paradigm between the
smartphone and ASP is shown in Fig. 11. At the first step, the
smartphone initiates a connection with the ASP by offering it
the security profile. The security profile contains all parameters
and credentials to establish a successful secure connection.
Fig. 11 depicts the scenario where connection handshake is
initiated by the smartphone. However, in our communication
framework, either party can initiate the connection. After
RATA successfully establish the connection, it notifies RADA.
The RADA on both, the smartphone and the ASP issue request
to get the remote CD and CP descriptions. At the next step,
RADA announces the remote CD and CP to the local CP
and CD, respectively. Thus, the smartphone CD and CP are
updated about the ASP CP and CD, respectively and vice
versa. Now at the final step, the smartphone CD and CP
communicate with the ASP CP and CD, respectively in a
normal way as if they are located in the same network.

H Samsung Galaxy S3
H Google Nexus 5
35 | HLG E610

Percentage Battery Consumption

Android OS &
System

Display Device Idle Applications

Figure 12. Applications power consumption on different devices.

VII. EXPECTED BENEFITS

The expected benefits of the ASP service depend on the
number of applications running on the smartphone and their
dependence on the smartphone resources such as CPU, mem-
ory, WiFi, 3G/4G data etc. Further, the energy consumption
also depends on the size of heartbeat messages and their
periodic interval. Normally, multiple applications transmit
heartbeat messages randomly, which forces the WiFi or 3G/4G
data connection to stay always in the active state. Thus,
the Internet interfaces normally constitute the major share
of energy consumption. The energy consumption of same
applications on different devices can be different based on
the device built-in power management features provided by
the manufacturer. These features may include reducing clock
frequency and switching ON network interfaces periodically
for short interval during idle periods (when backlight/LCD is
OFF). For the sake of observations, we analyzed the battery
consumption of three different daily used smartphones in
Fig. 12 which are running multiple Internet-based applications
(i.e., Google+, Facebook messenger, Whatsapp, Viber, Vonage,
Voip, Skype, Dropbox etc). It can be observed in Fig. 12
that the energy consumption also depends on the device and
its usage (e.g., display). However, the applications constitute
a significant portion of overall battery consumption. Thus,
reducing energy waste of background applications with the
ASP service can significantly improve the battery life.

VIII. CONCLUSIONS & FUTURE WORK

Today, the smartphones have high memory and process-
ing capabilities and are able to run concurrently multiple
services and applications. However, most of the applications
are Internet-based which periodically transmit/receive pres-
ence/heartbeat messages over WiFi or 3G/4G data connec-
tion. These applications significantly reduce the battery life
of smartphone as they extensively utilize resources such as
CPU, memory or keeping the Internet interfaces always in
active state. In this paper, we proposed the ASP concept that
suppresses/stops applications on the smartphone and maintains
their presence on any other network device. The ASP returns
the specific application control back to smartphone only when
an event is received such as a new message. In this paper,
we presented the requirements for the ASP framework and
proposed different possible architectural designs. We have
addressed different techniques that can be adopted to proxy

the presence of applications on behalf of smartphones. Further,
we have presented in details the design of our communication
framework.

Indeed, the ASP concept can significantly improve the
battery life of smartphones by reducing the energy waste due
to background applications. Future work will focus on the im-
plementation and evaluation of our proposed ASP framework.

REFERENCES

[1] R. Palit, K. Naik, and A. Singh, “Impact of Packet Aggregation on
Energy Consumption in Smartphones,” in 7th International Wireless
Communications and Mobile Computing Conference (IWCMC), 2011.

[2] T. Pering, Y. Agarwal, R. Gupta, and R. Want, “CoolSpots: Reducing the
Power Consumption of Wireless Mobile Devices with Multiple Radio
Interfaces,” in Proceedings of the 4th international conference on Mobile
systems, applications and services, 2006.

[3] G. Perrucci, E. Fitzek, G. Sasso, W. Kellerer, and J. Widmer, “On the
Impact of 2G and 3G Network Usage for Mobile Phones’ Battery Life,”
in European Wireless Conference, 2009.

[4] B. Aggarwal, P. Chitnis, A. Dey, K. Jain, V. Navda, V. Padmanabhan,
R. Ramjee, A. Schulman, and N. Spring, “Stratus: Energy-Efficient
Mobile Communication using Cloud Support,” in SIGCOMM ’10, 2010.

[5] R. Bolla, M. Giribaldi, R. Khan, and M. Repetto, “Design and Imple-
mentation of Cooperative Network Connectivity Proxy using Universal
Plug and Play,” in 10th FIA Book, 2013.

[6] R. Bolla, M. Giribaldi, R. Khan, and M. Repetto, “Network Connectivity
Proxy: An Optimal Strategy for Reducing Energy Waste in Network
Edge Devices,” in The 24th Tyrrhenian International Workshop on
Digital Communications, 2013.

[7]1 G. Perrucci, F. Fitzek, and J. Widmer, “Survey on Energy Consumption
Entities on the Smartphone Platform,” in IEEE 73rd Vehicular Technol-
ogy Conference (VIC Spring), 2011.

[8] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “AppScope: Applica-
tion Energy Metering Framework for Android Smartphone Using Kernel
Activity Monitoring,” in Proceedings of USENIX, 2012.

[9] K. Pentikousis, “In Search of Energy-Efficient Mobile Networking,” in
IEEE Communications Magazine, Vol:48, Issue:1, 2010.

[10] A. Rice and S. Hay, “Decomposing Power Measurements for Mobile
Devices,” in IEEE PerCom, 2010.

[11] M. Calder and M. Marina, “Batch Scheduling of Recurrent Applications
for Energy Savings on Mobile Phones,” in 7th Annual IEEE Communica-
tions Society Conference on Sensor Mesh and Ad Hoc Communications
and Networks (SECON), 2010.

[12] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy Consumption in Mobile Phones: A Measurement Study and Impli-
cations for Network Applications,” in Internet Measurement Conference
(IMC), 2009.

[13] A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and E. M.
Belding, “Cool-Tether: Energy Efficient On-the-fly WiFi Hot-spots using
Mobile Phones,” in ACM CoNext, 2009.

[14] N. Ristanovic, J. Boudec, A. Chaintreau, and V. Erramilli, “Energy
Efficient Offloading of 3G Networks,” in Proceedings of IEEE Eighth
International Conference on Mobile Ad-Hoc and Sensor Systems, MASS
‘11, 2011.

[15] K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi, “Mobile Data Offloading:
How Much Can WiFi Deliver?” in IEEE/ACM Transactions on Network-
ing, Vol:21, Issue:2, 2013.

[16] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic Resource Allocation and Parallel Execution in the Cloud for
Mobile Code Offloading,” in IEEE INFOCOM, 2012.

[17] K. Kumar and Y. Lu, “Cloud Computing for Mobile Users: Can Of-
floading Computation Save Energy?” in IEEE Computer Vol:43, Issue:4,
2010.

[18] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta,
“Somniloquy: Augmenting Network Interfaces to Reduce PC Energy
Usage,” in 6th ACM/USENIX Symp. On Networked Systems Design and
Implementation (NSDI 09), Boston, MA, USA, April 2009.

[19] “UPnP forum, 2012. URL: http://www.upnp.org.”

[20] “UPnP forum: Remote Access architecture 2, 2011. Available at URL:
http://www.upnp.org/specs/ra/UPnP-ra-RAARchitecture-v2.pdf.”

