
Secrecy Performance of Wirelessly Powered Wiretap Channels

Jiang, X., Zhong, C., Chen, X., Duong, T. Q., Tsiftsis, T., & Zhang, Z. (2016). Secrecy Performance of Wirelessly
Powered Wiretap Channels. IEEE Transactions on Communications. DOI: 10.1109/TCOMM.2016.2592529

Published in:
IEEE Transactions on Communications

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74405547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/secrecy-performance-of-wirelessly-powered-wiretap-channels(407bb27d-6010-4b53-89ca-c1952c9673b5).html


1

Secrecy Performance of Wirelessly Powered
Wiretap Channels
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Trung Q. Duong,Senior Member, IEEE, Theodoros Tsiftsis,Senior Member, IEEE, and

Zhaoyang Zhang,Member, IEEE

Abstract—This paper considers a wirelessly powered wiretap
channel, where an energy constrained multi-antenna information
source, powered by a dedicated power beacon, communicates
with a legitimate user in the presence of a passive eavesdropper.
Based on a simple time-switching protocol where power transfer
and information transmission are separated in time, we inves-
tigate two popular multi-antenna transmission schemes at the
information source, namely maximum ratio transmission (MRT)
and transmit antenna selection (TAS). Closed-form expressions
are derived for the achievable secrecy outage probability and
average secrecy rate for both schemes. In addition, simple
approximations are obtained at the high signal-to-noise ratio
(SNR) regime. Our results demonstrate that by exploiting the full
knowledge of channel state information (CSI), we can achieve
a better secrecy performance, e.g., with full CSI of the main
channel, the system can achieve substantial secrecy diversity
gain. On the other hand, without the CSI of the main channel,
no diversity gain can be attained. Moreover, we show that
the additional level of randomness induced by wireless power
transfer does not affect the secrecy performance in the high
SNR regime. Finally, our theoretical claims are validated by the
numerical results.

Index Terms—Physical layer security, wireless power transfer,
secrecy outage probability, average secrecy rate.

I. I NTRODUCTION

Recently, the rapidly increasing demands for high data
rate wireless services have put a tremendous pressure on
the energy consumption of battery-powered mobile devices.
Hence, how to prolong the lifetime of these energy-constrained
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mobile devices has become a critical problem to be addressed.
Responding to this, energy harvesting techniques, which scav-
enge energy from ambient environment such as wind and solar
have been proposed as a promising solution. Nevertheless,
harvesting energy from nature resources depends heavily on
the locations and weather conditions, which fails to generate
stable energy output, hence may not be suitable to power
wireless devices with strict quality of service requirements. As
a result, a new energy harvesting paradigm, generally referred
to as wireless power transfer (WPT), has gained considerable
attentions. By exploiting the radio frequency (RF) signalsas
a means for energy transportation, WPT enables reliable and
stable energy supplies to mobile devices. Since RF signals
are widely used as a medium for information transmission,
incorporating the feature of WPT into wireless communica-
tions networks has emerged as a hot topic, generally referred
to as simultaneously wireless information and power transfer
(SWIPT) systems, and significant research effects have been
devoted to understand the fundamental performance limitation
as well as design efficient SWIPT systems, see for instances
[1]–[9] and references therein.

However, SWIPT systems are also vulnerable to poten-
tial security issues. This is because RF signals are shared
by multiple nodes, which might be potential eavesdroppers.
Recent research results show that compared to conventional
cryptographic approaches, physical layer security is a better
choice in energy and computation constrained systems, such
as SWIPT systems [10]. The basic concept behind physical
layer security is to exploit the physical layer characteristics
of wireless channels to provide perfect secrecy. The work was
pioneered by Wyner [11], which confirmed that perfect secrecy
can be achieved when the quality of the wiretap channel is a
degraded version of the main channel.

Recently, ensuing security in SWIPT systems have gained
increasing attentions. In [12], [13], the authors presented the
optimal beamforming design and power allocation scheme for
multiple-input single-output (MISO) systems in the presence
of passive eavesdroppers, later in [14], the issue of uncer-
tain eavesdroppers was tackled, where joint optimization of
information and energy beamforming and power allocation
were studied. Latest works have considered the security issue
in more sophisticated SWIPT systems, such as relay [15],
multicast [16], cognitive radio [17] and OFDMA systems
[18]. A common of these works is that they consider hybrid
network architecture, where the information source also acts
as the energy source. However, as analyzed in [19], the
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harvested energy from hybrid networks is general infeasible to
power larger devices such as smartphones, tablets and laptops.
Responding to this, a novel network architecture was proposed
in [20], where a dedicated station called power beacon (PB)
is incorporated into the wireless network to power mobile
devices. Very recently, the secrecy performance of device-to-
device (D2D) communications in energy harvesting cognitive
cellular networks has been investigated in [21], where the
D2D transmitter first harvests energy from PBs, then performs
secure transmission to the desired D2D receiver.

Thus far, secure communications in SWIPT systems with
dedicated PB remain largely an uncharted area. Motivated
by this, we consider a point-to-point four-node wirelessly
powered wiretap channel consisting of a dedicated PB, an
energy constrained information source and a legitimate user in
the presence of a passive eavesdropper. It is assumed that the
source has no transmit power of its own, hence entirely relies
on the external energy charging via wireless power transfer
from the PB. For such systems, we present a comprehensive
analysis on the achievable secrecy performance. It is worth
pointing out that, unlike in the conventional communications
systems, where the transmit power is constant, the use of
WPT effectively makes the available source transmit power
a random variable. In addition, since the transmit power
affects both the signals observed at the legitimate user and
eavesdropper, the effective signal-to-noise ratios (SNRs) of
the main and wiretap channels become correlated, making the
secrecy performance analysis much more challenging.

The main contributions of this work can be summarized as
follows:

• For enhancing wireless security, we propose simple di-
versity transmission schemes at the information source,
namely, maximum ratio transmission (MRT) and trans-
mit antenna selection (TAS). In particular, for the TAS
scheme, depending on the required channel state informa-
tion (CSI), three different selection criteria are devised.

• For all schemes, closed-form expressions for secrecy
outage probability are derived, which enable efficient
evaluation of the achievable secrecy performance. Fur-
thermore, simple and informative high SNR approxima-
tions are presented. The analytical results suggest that the
achievable secrecy performance depends heavily on the
available CSI at the source. With the CSI of the main
channel, the system attains full secrecy diversity gain,
while only unit secrecy diversity order can be achieved
with only the CSI of the wiretap channel. In addition, the
best performance is achieved when both the CSI of main
channel and wiretap channel are available.

• For all schemes, closed-form expressions for average
secrecy rate and high SNR approximations are also
derived. Our results indicate that, all the schemes attain
the same high SNR slope of one and distinct high
SNR power offset. Moreover, increasing the number of
transmit antennas improves the secrecy rate. However, the
gain gradually diminishes when the number of transmit
antennas is moderately large.

• Based on the simple high SNR expressions, the optimal
time switching ratioθ is studied. It was shown that there

exists a uniqueθ maximizing the secrecy throughput.
For the special single-antenna source case, closed-form
expression for the optimalθ is obtained.

• We show that, the randomness of source transmit power
induced by WPT does not affect the secrecy diversity
order and the high SNR slope.

The remainder of the paper is organized as follows. Sec-
tion II introduces the system model and proposes several
transmission schemes. Section III provides an analytical study
on the achievable secrecy outage probability of the proposed
schemes, while Section IV investigates the average secrecyrate
of the system. Numerical results and discussions are presented
in Section V. Finally, Section VI concludes the paper and
summarizes the key findings.

Notation: We use bold lower case letters to denote vec-
tors and lower case letters to denote scalars;‖h‖ denotes
the Frobenius norm;E{x} stands for the expectation of the
random variablex and [x]+ denotesmax(0, x); T denotes
the transpose operator and† denotes the conjugate operator.
Ik is the identity matrix of sizek. Γ(x) is the gamma
function [22, Eq. (8.31)],Γ (α, x) is the upper incomplete
gamma function [22, Eq. (8.350.2)] andγ (α, x) is the lower
incomplete gamma function [22, Eq. (8.350.1)].ψ(x) denotes
the Euler psi function [22, Eq. (8.36)] andKv(x) is the v-
th order modified Bessel function of the second kind [22,
Eq. (8.407.1)].Sa,b(x) denotes the Lommel function [22, Eq.
(8.570.2)] andGp,q

m,n(x) denotes the Meijer G-function [22,
Eq. (9.301)].

II. SYSTEM MODEL

We consider a four-node wirelessly powered wiretap chan-
nel consisting of one PB, one information source Alice and one
legitimate user Bob in the presence of one eavesdropper Eve
as shown in Fig. 1. We assume that the source is equipped
with N antennas, while the other three nodes are equipped
with a single antenna.1 Quasi-static fading is assumed, such
that the channel coefficients remain unchanged during each
transmission block but vary independently between different
blocks.

We adopt the time-sharing protocol proposed in [2]. Hence,
a complete transmission slot with time duration ofT is divided
into two orthogonal sub-slots, i.e., the first one for power
transfer with time duration ofθT with θ (0 < θ < 1) being
the time switching ratio, and the second one for information
transmission with time duration of(1− θ)T .

During the first phase, the PB sends an energy signal to
Alice, and the received energy signal at Aliceys can be
expressed as

ys =
√

PShPxs + ns, (1)

wherePS denotes the transmit power of the PB,xs is the
energy signal with unit power,ns is anN -dimensional additive

1The considered multi-antenna source model is relevant to the scenarios
where an energy constrained multi-antenna sensor node [?] transmits confi-
dential information to a single-antenna fusion center or anenergy constrained
multi-antenna transmitter [24] performs secrecy transmission to a single-
antenna receiver.
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Fig. 1: A schematic diagram of the system model consisting
of one PB, one information source Alice, one legitimate user

Bob and one eavesdropper Eve.

white Gaussian noise (AWGN) vector withE{nsn
†
s} = N0I.

The N × 1 vector hP denotes the power transfer channel
from PB to Alice. Due to relatively short distance between
the power beacon and the source, it is likely that the line-of-
sight propagation exists. Hence, the Nakagami-m distribution
is used to model the power transfer channel, i.e., the amplitude
of each element ofhP follows Nakagami-m distribution with
shape parameterm and average powerλP .2

Therefore, at the end of the first phase, the total harvested
energy within durationθT can be expressed as

E = ηPS ||hP ||2θT, (2)

whereη (0 < η < 1) denotes the energy conversion efficiency.
Since the source communicates with the legitimate user

during the second phase with duration(1− θ)T , the transmit
power can be computed as

P =
E

(1− θ)T
= ηPS ||hP ||2

θ

1− θ
. (3)

To exploit the benefits of multiple antennas at Alice, dif-
ferent transmission schemes can be adopted. In this work, we
consider two popular transmission schemes, namely MRT and
TAS. The implementation of MRT and TAS requires different
types of CSI. For MRT, only the CSI of the main channel
is required. While for TAS, partial CSI of the main channel
or the wiretap channel is required. In practice, the CSI of
the main channel can be estimated at Bob, and then feed
back to Alice. On the other hand, the CSI of the wiretap
channel can be obtained when the eavesdropper is active in
the network, a scenario that is particularly applicable in the
networks combining multicast and unicast transmissions where
the terminals play dual roles as legitimate receivers for some
signals and eavesdroppers for others [25], [26].

A. Maximum Ratio Transmission (MRT)

For the MRT scheme, Alice aims at maximizing the recep-
tion quality of the main channel by making use of a channel-

2In the presence of line-of-sight effect, Rician fading is commonly used in
literature. However, the analysis with Rician fading is much more involved. As
such, for mathematical tractability, we adopt the Nakagami-m fading model,
since the Nakagami-m distribution provides very accurate approximation to
the Rician distribution.

match beam, as such, the received signalyM at Bob can be
written as

yM =
√
PhT

Mwxt + nM , (4)

wherext denotes the information symbol with unit energy;
N×1 vectorhM denotes the main channel from Alice to Bob,
whose elements are circularly symmetric complex Gaussian
random variables (RVs) with zero mean and varianceλM ;
nM denotes the AWGN with zero mean and varianceN0; w
is the MRT vector given byw =

h
†

M

||hM || .
Similarly, the signal received at EveyW can be expressed

as

yW =
√
PhT

Wwxt + nW , (5)

where theN × 1 vector hW denotes the wiretap channel
from Alice to Eve, whose elements are circularly symmetric
complex Gaussian RVs with zero mean and varianceλW , and
nW denotes the AWGN with zero mean and varianceN0.

As such, the instantaneous SNR at BobγM and at EveγW
are given by

γMRT

M =
ηPS ||hP ||2||hM ||2

N0

θ

1− θ
, (6)

and

γMRT

W =
ηPS ||hP ||2 |hT

Wh
†

M
|2

||hM ||2

N0

θ

1− θ
, (7)

respectively.

B. Transmit Antenna Selection (TAS)

TAS is another low-complexity transmission scheme. In
this work, we consider three different selection criteria as
elaborated below.

1) Criterion 1: In this case, the antenna with the maximum
gain of main channel is selected, i.e.,

k = arg max
i=1,··· ,N

|hid|2, (8)

where hid is the i-th element of main channelhM . It is
worth noting that best antenna selection according to the
above criterion implies a random antenna selection for the
wiretap channel because the main channel is independent of
the wiretap channel.

2) Criterion 2: Instead of maximizing the gain of main
channel, we now intend to minimize the gain of wiretap
channel. As such, the best antenna is selected according to
the following criterion:

k = arg min
i=1,··· ,N

|hie|2, (9)

wherehie is the i-th element of the wiretap channelhW .
3) Criterion 3: Since the secrecy performance of system

depends on the quality of both the main channel and wiretap
channel, we now propose the third selection criterion which
picks the antenna maximizing the ratio of main channel gain
and wiretap channel gain, i.e.,

k = arg max
i=1,··· ,N

( |hid|2
|hie|2

)

. (10)
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Hence, the instantaneous SNR at BobγM and at EveγW
can be expressed as

γTASM =
ηPS ||hP ||2|hM,k|2

N0

θ

1− θ
, (11)

and

γTASW =
ηPS ||hP ||2|hW,k|2

N0

θ

1− θ
, (12)

wherehM,k denotes the channel coefficient of the link between
thek-th antenna of the source and legitimate user, whilehW,k

denotes the channel coefficient of the link between thek-th
antenna of the source and eavesdropper.

C. Secrecy Performance

For wiretap channels, the secrecy rateCS is given by
the difference of the main channel capacity and the wiretap
channel capacity [25]

CS =

{

log(1 + γ⋆M )− log(1 + γ⋆W ) γ⋆M > γ⋆W ,
0 γ⋆M ≤ γ⋆W ,

(13)

where⋆ ∈ {MRT,TAS}.
In this work, we consider two different communication sce-

narios. In the first scenario, Alice uses a constant transmission
rateRS to communicate with Bob. According to [11], perfect
secrecy is achievable whenRS < CS , otherwise, secrecy is
compromised. In this case, secrecy outage probability becomes
an appropriate performance metric. In the second scenario,
we assume that Alice adapts its transmission rate according
to CS , as such, ergodic secrecy rate becomes the appropriate
performance measure. In the following sections, we present
a detailed analysis of the achievable secrecy performance of
both MRT and TAS schemes.

III. SECRECY OUTAGE PROBABILITY

In this section, we investigate the secrecy outage per-
formance of the considered system. For both transmission
schemes, new closed-form expressions for the exact and
asymptotic secrecy outage probability are presented. Based
on which, the impacts of multiple antennas on the secrecy
performance are characterized in terms of the secrecy outage
diversity order and the secrecy outage array gain.

According to the definition, the secrecy outage probability
can be expressed mathematically as

Pout(RS) = P (CS < RS). (14)

A. MRT

We start with the MRT scheme, and we have the following
key result:

Theorem 1: The exact secrecy outage probability of the
MRT scheme can be expressed in closed-form as

PMRT

out (RS) = 1− 2

Γ(mN)

N−1
∑

k=0

k
∑

p=0

λM (k2λW )
k−p

p! (λM + k2λW )
k−p+1

×
(

(k2 − 1)m

k1λMλP

)
mN+p

2

KmN−p



2

√

(k2 − 1)m

k1λMλP



 , (15)

wherek1 = ηPS

N0

θ
1−θ

andk2 = 2RS .
Proof: See Appendix A.

Theorem 1 presents an exact closed-form expression for the
secrecy outage probability, which can be efficiently evaluated.
However, the expression is too complicated to yield any
insights. Motivated by this, we now look into the asymptotic
regime, where simple expressions can be obtained.3

For the asymptotic high SNR regime, we assume thatλM →
∞ with an arbitraryλW . Such a scenario has been widely
adopted in the literature, see for instance [27]–[30]. In practice,
this occurs when the quality of the main channel is much
better than wiretap channel, i.e., Bob is relatively close to
Alice while Eve is far away from Alice or the wiretap channel
undergoes severe small-scale and large-scale fading effects.
In the following, we characterize the two key performance
parameters governing the secrecy outage probability in the
high SNR regime, i.e., secrecy diversity orderGd and secrecy
array gainGa defined by [31]

P∞
out(RS) = (GaλM )−Gd . (16)

Proposition 1: In the high SNR regime, i.e.,λM → ∞,
the secrecy outage probability of the MRT scheme can be
approximated by

P∞
MRT(RS) =

N
∑

k=0

1

k!

Γ(mN − k)

Γ(mN)

(

m(k2 − 1)

k1k2λWλP

)k (
k2λW
λM

)N

.

(17)

Proof: See Appendix B.
It is evident from (17) that the system achieves a secrecy di-

versity order ofN . In addition, we observe the intuitive effect
of the position of nodes on the secrecy outage probability. For
instance, the secrecy outage probability decreases when the
PB is close to the source, i.e., largeλP . It is also easy to
see that the high SNR secrecy outage probabilityP∞

MRT
(RS)

is a decreasing function with respect toPs

N0
, indicating that

increasing the transmit power of the PB is always beneficial.

B. TAS Criterion 1

We now move to the TAS Criterion 1 scheme, and we obtain
the following key result:

Theorem 2: The exact secrecy outage probability of TAS
Criterion 1 scheme can be expressed in closed-form as

PTAS1

out (RS) = 1− 2

Γ(mN)

N−1
∑

k=0

(−1)k
(

N
k+1

)

λM

λM + k2λW (k + 1)
×

(

m(k + 1)(k2 − 1)

k1λMλP

)
mN
2

KmN



2

√

m(k + 1)(k2 − 1)

k1λMλP



 .

(18)

3Although the energy transfer efficiency of state of the art technique is
low, it is still of both theoretical and practical interestsin wirelessly powered
communications systems due to the following reasons: First, the energy
transfer efficiency can be significantly improved by adopting multiple antenna
technology and the PB assisted WPC architecture. Second, the effective SNR
could be still reasonably high even if the energy transfer efficiency is low.
Third, the key insights obtained from high SNR analysis provide useful
guidance for practical system design.
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Proof: See Appendix C.
While Theorem 2 presents an exact closed-form expres-

sion for the secrecy outage probability, the expression is too
complicated to gather more insights. As such, we study the
asymptotic behavior for the outage performance.

Proposition 2: In the high SNR regime, i.e.,λM → ∞, the
secrecy outage probability of TAS Criterion 1 scheme can be
approximated as

P∞
TAS1(RS) =
N
∑

k=0

N !

k!

Γ(mN − k)

Γ(mN)

(

m(k2 − 1)

k1k2λWλP

)k (
k2λW
λM

)N

. (19)

Proof: When λM → ∞, we have
(

1− e
− x

λM

)N−1

=
(

x
λM

)N−1

+o

(

(

x
λM

)N
)

. As such, following the same steps

as that of Proposition 1 yields the desired result.
It is evident from (19) that the system also achieves a

secrecy diversity order ofN . Comparing (17) and (19), we
see thatP∞

MRC
(RS) =

P∞
TAS1

(RS)
N ! , namely, the MRT scheme

outperforms the TAS Criterion 1 scheme by a factor of1
N ! .

This is not surprising since the MRT scheme has access to
perfect CSI ofhM , while TAS scheme only utilizes partial
knowledge ofhM . Recall in the conventional wirelessly pow-
ered system without secrecy constraint, the outage probability
decays in a much slower speed, i.e.,ρ−N ln ρ instead ofρ−N

due to the randomness of the transmit power, whereN is
the number of antennas, andρ is the SNR [32], [33]. In the
current work, we notice that the randomness of the transmit
power does not affect the scaling behavior of the secrecy
outage probability. This is because that in wiretap channels, the
secrecy performance is determined by the difference between
the main and wiretap channel capacities, and the transmit
power affects both channels. Hence, the effect of transmit
power randomness is canceled.

C. TAS Criterion 2

We now consider the TAS Criterion 2 scheme, and we have
the following key result:

Theorem 3: The exact secrecy outage probability of TAS
Criterion 2 scheme can be expressed in closed-form as

PTAS2

out (RS) = 1− 2

Γ(mN)

NλM
NλM + k2λW

×

(

m(k2 − 1)

k1λMλP

)
mN
2

KmN



2

√

m(k2 − 1)

k1λMλP



 . (20)

Proof: See Appendix D.
Having obtained the exact outage probability of TAS Cri-

terion 2 scheme, we now look into the high SNR regime,
and derive a simple analytical approximation for the outage
probability of the system.

Proposition 3: In the high SNR regime, i.e.,λM → ∞, the
secrecy outage probability of TAS Criterion 2 scheme can be

approximated as

P∞
TAS2(RS) =

(

1

N
+

1

mN − 1

m(k2 − 1)

k1k2λWλP

)(

k2λW
λM

)

.

(21)

Proof: See Appendix E.
Different from the previous two cases which achieve a

diversity order ofN , TAS Criterion 2 scheme only attains
unit diversity order. This is also intuitive since TAS Criterion
2 scheme aims to minimize the received SNR of the eaves-
dropper and the selected antenna serves as a random transmit
antenna for the main channel. As such, no secrecy diversity
gain can be realized, and increasing the number of antennas
N only yields some secrecy array gain.

D. TAS Criterion 3

We now analyze the secrecy outage probability of the
system with the TAS Criterion 3 scheme.

Theorem 4: The secrecy outage probability of TAS Criteri-
on 3 scheme can be approximated by

PTAS3

out ≈
(

k2

k2 +
λM

λW

)N

. (22)

Proof: See Appendix F.
Having obtained the outage probability of TAS Criterion 3

scheme, we now look into the asymptotic regime.
Proposition 4: In the high SNR regime, i.e.,λM → ∞, the

secrecy outage probability of TAS Criterion 3 scheme can be
approximated as

P∞
TAS3 =

(

k2λW
λM

)N

. (23)

Proof: The proof is straightforward, hence omitted.
As expected, the system achieves a secrecy diversity order

of N . Recall the high SNR outage probability of the MRT

scheme, and noticing that
∑N

k=0
1
k!

Γ(mN−k)
Γ(mN)

(

m(k2−1)
k1k2λW λP

)k

=

1+
∑N

k=1
1
k!

Γ(mN−k)
Γ(mN)

(

m(k2−1)
k1k2λW λP

)k

> 1, we observe that the
TAS Criterion 3 scheme outperforms the MRT scheme. This is
reasonable since the TAS Criterion 3 scheme considers both
the CSI ofhM and hW , while only the CSI of thehM is
utilized in the MRT scheme.

E. Optimization of the Time Switching Ratio θ

From the analytical expressions derived in previous subsec-
tions, we are ready to study the optimization of time switching
ratio θ. Specifically, we adopt the effective secrecy throughput
as the performance measure as in [34]. Hence, when the source
transmits at a constant rateRS , the average secrecy throughput
can be evaluated byR = (1 − Pout)RS(1 − θ). Also, due to
space limitation and for illustrative purpose, we only focus
on the MRT scheme, while other cases will be numerically
illustrated in Section V.

Using the high SNR approximation given in (17), the effec-
tive secrecy throughput of the MRT scheme can be expressed
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as

τ(θ) = (1− P∞
MRT(θ))RS

(1− θ)T

T
= (1− P∞

MRT(θ))RS(1− θ). (24)

Hence, the optimalθ∗ is the solution of the following opti-
mization problem:

θ∗ = argmax
θ

τ(θ)

s.t. 0 < θ < 1. (25)

To this end, we have the following key result:
Proposition 5: Consider a polynomial

N
∑

k=0

ak

(

1− θ

θ

)k

(1 +
k

θ
)− 1 = 0, (26)

whereak = 1
k!

Γ(mN−k)
Γ(mN)

(

m(k2−1)N0

ηPSk2λPλW

)k (
k2λW

λM

)N

. Then, the
optimal θ∗ is the unique root of the polynomial in (0,1).

Proof: Substituting (17) into (24), we obtain

τ(θ) =

(

1−
N
∑

k=0

ak

(

1− θ

θ

)k
)

b(1− θ), (27)

whereb = RS . Thus, the derivative ofτ(θ) with respect toθ
can be expressed as

dτ(θ)

dθ
=

N
∑

k=0

akb

(

1− θ

θ

)k

(1 +
k

θ
)− b. (28)

It is easy to show thatdτ(θ)dθ is a monotonically decreasing
function with respect toθ. Whenθ approaches 0,dτ(θ)dθ → +∞
and whenθ approaches 1,dτ(θ)dθ → b

(

2bλW

λM

)N

− b < 0.

Therefore, there exists a uniqueθ∗ ∈ (0, 1) with dτ(θ)
dθ = 0,

whereτ(θ) attains its maximum value.
In general, due to the complexity of the involved expression,

deriving a closed-form solution forθ∗ is very challenging.
However, for smallN , closed-form expressions forθ∗ can be
obtained.

Remark 1: WhenN = 1, the optimalθ∗ is given by

θ∗ =

√

a1
1 + a1 − a0

. (29)

Remark 2: WhenN = 2, the optimalθ∗ is given by

θ∗ =
3

√

− q
2
+

√

(q

2

)2

+
(p

3

)3

+
3

√

− q
2
−
√

( q

2

)2

+
(p

3

)3

,

(30)

wherep = 3a2−a1

1−a0+a1−a2
andq = − 2a2

1−a0+a1−a2
.

F. Comparison of the Proposed Protocols

We now present a more detailed performance comparison
for the proposed schemes at the high SNR regime as sum-
marized in Table I on the top of the next page. In general,
the secrecy performance depends heavily on the available CSI
at the source. The more CSI available, the better the secrecy

performance. However, in terms of high SNR protocols inves-
tigated shown in Table I. We list the CSI that is required for
each protocol and investigate the secrecy diversity order and
the outage performance according to the asymptotic secrecy
outage probability.

IV. AVERAGE SECRECY RATE

In this section, we focus on the average secrecy rate
performance of the system. For both transmission schemes,
new closed-form expressions for the exact and asymptotic
average secrecy rate are presented. Based on which, the
impacts of multiple antennas on the secrecy performance are
characterized in terms of the high SNR slope and the high
SNR power offset.

Starting from the definition, the average secrecy rate can be
expressed as

C̄ = E{[log2(1 + γ⋆M )− log2(1 + γ⋆W )]
+}. (31)

We now study the achievable secrecy rate of different trans-
mission schemes in the following.

A. MRT

Theorem 5: The exact average secrecy rate of MRT scheme
can be expressed in closed-form as (32) on the top of the next
page.

Proof: See Appendix G.
While (32) provides the exact average secrecy rate, the

expression are too complex to yield insightful information.
Motivated by this, we now look into the high SNR regime,
where the secrecy rate is dictated by two key parameters
known as the high SNR slopeS∞ and the high SNR power
offsetL∞ [31], i.e.,

C̄∞ = S∞(log2(λM )− L∞). (33)

To this end, we have the following key result:
Proposition 6: For the MRT scheme, the high SNR slope

SMRT
∞ is given by

SMRT

∞ = 1, (34)

and the high SNR power offsetLMRT
∞ is given by

LMRT

∞ = − 1

ln 2

(

ln
k1λP
m

+ ψ(N) + ψ(mN)

)

+

1

Γ(mN) ln 2
G31

13

(

m

k1λWλP

∣

∣

∣

∣

0

mN, 0, 0

)

. (35)

Proof: See Appendix H.
We note that the high SNR slope is also known as the

maximum multiplexing gain or the number of degrees of
freedom [35]. According to (34), the high SNR slope is one
because we assume that the legitimate user only employs a
single antenna in this system. In addition, we observe that the
wiretap channel only reflects the high SNR power offset. It is
also easy to see that the asymptotic average secrecy rate is an
increasing function with respect tok1 andλP , indicating that
increasing the transmit power of the PB is always beneficial
and the secrecy rate increases when PB is close to the source.
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TABLE I: Comparison of the proposed schemes
Scheme CSI requirement Secrecy diversity order Outage performance
MRT hM N Second best

TAS Criterion 1 Index of the entry ofhM N Third best
TAS Criterion 2 Index of the entry ofhW 1 Worst
TAS Criterion 3 hM andhW N Best

C̄MRT =
1

Γ(mN) ln 2







N−1
∑

k=1

k−1
∑

p=0

(−1)k+p+1 p!

k!

(

m

k1λMλP

)k−p−1

Γ(mN − k + p+ 1)






1− 1

(

1 + λM

λW

)p+1






+

N−1
∑

k=0

(−1)k

k!

(

m

k1λMλP

)k
(

G31
13

(

m 1
λM

k1λP

∣

∣

∣

∣

0

mN − k, 0, 0

)

−G31
13

(

m( 1
λM

+ 1
λW

)

k1λP

∣

∣

∣

∣

0

mN − k, 0, 0

))]

. (32)

B. TAS Criterion1

We now consider the TAS Criterion 1 scheme, and we have
the following key result:

Theorem 6: The exact average secrecy rate of TAS criteri-
on1 scheme can be expressed in closed-form as (36) on the
top of the next page.

Proof: The proof follows similar lines as that of Theorem
5, hence is omitted.

We now look into the high SNR regime, and present the
high SNR metrics in the following proposition.

Proposition 7: For the TAS criterion1 scheme, the high
SNR slopeSTAS1

∞ is given by

STAS1

∞ = 1, (37)

and the high SNR power offsetLTAS1
∞ is given by

LTAS1

∞ = − 1

ln 2

(

N
∑

k=2

(−1)k
(

N

k

)

ln k + ψ(1) + ψ(mN)+

ln
k1λP
m

)

+
1

Γ(mN) ln 2
G31

13

(

m

k1λWλP

∣

∣

∣

∣

0

mN, 0, 0

)

.

(38)

Proof: The proof follows similar lines as that of Propo-
sition 6, hence is omitted.

C. TAS Criterion2

We now analyze the average secrecy rate of the system with
the TAS Criterion 2 scheme, and we have the following key
result:

Theorem 7: The exact average secrecy rate of TAS criteri-
on2 scheme can be expressed in closed-form as

C̄TAS2 =
1

Γ(mN) ln 2

[

G31
13

(

m

k1λP

1

λM

∣

∣

∣

∣

0

mN, 0, 0

)

−

G31
13

(

m

k1λP
(
1

λM
+

N

λW
)

∣

∣

∣

∣

0

mN, 0, 0

)]

. (39)

Proof: The proof follows similar lines as that of Theorem
5, hence is omitted.

Having obtained the exact average secrecy rate of TAS
Criterion 2 scheme, we now look into the asymptotic regime.

Proposition 8: For the TAS criterion2 scheme, the high
SNR slopeSTAS2

∞ is given by

STAS2

∞ = 1, (40)

and the high SNR power offsetLTAS2
∞ is given by

LTAS2

∞ = − 1

ln 2

(

ln
k1λP
m

+ ψ(1) + ψ(mN)

)

+

1

Γ(mN) ln 2
G31

13

(

mN

k1λWλP

∣

∣

∣

∣

0

mN, 0, 0

)

. (41)

Proof: The proof follows similar lines as that of Propo-
sition 6, hence is omitted.

D. TAS Criterion3

We now move to the TAS Criterion 3 scheme, and we obtain
the following key result:

Theorem 8: The average secrecy rate of TAS criterion3
scheme can be approximated by

C̄TAS3 ≈ 1

ln 2

λM
λW

N−1
∑

k=0

1

Γ(k + 1)Γ(N − k)
×

G23
33

(

1 +
λM
λW

∣

∣

∣

∣

−N, 1 + k −N, 1 + k −N

0, 1 + k −N, k −N

)

. (42)

Proof: See Appendix I.
We now look into the high SNR regime, and present the

high SNR metrics in the following proposition.
Proposition 9: For the TAS criterion3 scheme, the high

SNR slopeSTAS3
∞ is given by

STAS3

∞ = 1, (43)

and the high SNR power offsetLTAS3
∞ is given by

LTAS3

∞ =
1

ln 2

(

ln λW +
1

N
−N +

N
∑

k=2

(−1)k
(

N

k

)

1

k

)

.

(44)

Proof: See Appendix J.
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C̄TAS1 =
1

Γ(mN) ln 2

N
∑

k=1

(−1)k+1

(

N

k

)[

G31
13

(

m

k1λP

k

λM

∣

∣

∣

∣

0

mN, 0, 0

)

−G31
13

(

m

k1λP
(
k

λM
+

1

λW
)

∣

∣

∣

∣

0

mN, 0, 0

)]

. (36)

V. NUMERICAL RESULTS

In this section, we present numerical results to verify the
theoretical expressions. Unless otherwise stated, we set the
source transmission rate asRS = 1 bit/s/Hz, the energy
conversion efficiency asη = 0.8 and the time switching ratio
as θ = 0.5. The Nakagami-m parameter is set to bem = 4,
which corresponds to a Rician factor ofK = 3 +

√
12. The

transmit power of the PB to the noise ratio asPS

N0
= 10 dB,

the channel variance asλP = 1 andλW = 10. Also, we set
ρ = PS

N0
λM and ρ1 = PS

N0
λW to denote the average SNR of

the main channel and the wiretap channel, respectively.
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Fig. 2: Secrecy outage probability versusρ with differentN
for the MRT scheme.

Fig. 2 plots the secrecy outage probability versusρ with
differentN for the MRT scheme. As illustrated, the analytical
results are in exact agreement with the Monte Carlo simu-
lations, which demonstrates the correctness of the analytical
expression. In addition, the high SNR results accurately pre-
dict the secrecy diversity order and the secrecy array gain,
and increasingN substantially enhances the secrecy outage
performance by achieving a higher secrecy diversity gain.

Fig. 3 illustrates the secrecy outage probability of three
different TAS schemes. Once again, we observe that the
analytical curves are in perfect agreement with the Monte
Carlo simulation results and the high SNR approximation are
sufficiently tight for all curves. As expected, the TAS Criterion
2 scheme only attains unit diversity order, while the other two
TAS schemes achieves a full diversity order ofN . In addition,
it is observed that the TAS Criterion 3 scheme yields the best
secrecy outage performance. However, the TAS Criterion 2
scheme tends to outperform the TAS Criterion 1 scheme in the
low SNR regime, and then becomes inferior as the operating
SNR becomes sufficiently high.

Fig. 4 examines the average secrecy rate of the MRT
scheme. We observe that the high SNR slope of all the curves
is one, which corroborates the theoretical analysis presented
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Fig. 3: Secrecy outage probability versusρ for different TAS
schemes withN = 3.
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Fig. 4: Average secrecy rate versusρ with differentN for
the MRT scheme.

in previous section. Nevertheless, increasingN improves the
average secrecy rate by decreasing the high SNR power offset.
However, the benefit of increasing the number of antennasN
gradually diminishes whenN is sufficiently large.

Fig. 5 investigates the impact of distance between Alice and
Eve on the average secrecy rate for different TAS schemes.
As expected, the TAS Criterion 3 scheme always attains the
best performance. At the lowρ1 regime, namely, relatively
large distance between Alice and Eve (or smallλW ), the TAS
Criterion 1 scheme outperforms the TAS Criterion 2 scheme.
However, the opposite holds when the distance decreases, i.e.,
λW becomes large. This phenomenon is quite intuitive, since
when the average channel gain of the wiretap channel is better
than that of the main channel, selecting the worst antenna as
per the TAS Criterion 2 scheme substantially degrades the
capacity of the wiretap channel, thereby resulting in a larger
secrecy performance gain than the TAS Criterion 1 scheme.



9

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

ρ
1
  (dB)

A
ve

ra
ge

 s
ec

re
cy

 r
at

e 
(b

its
/s

/H
z)

 

 

TAS Criterion 1

TAS Criterion 2

TAS Criterion 3

λ
M

 = 100

λ
M

 = 10
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schemes.

Fig. 6 compares the average secrecy rate for different TAS
schemes. Once again, we observe that the high SNR slopes
are one. The TAS Criterion 2 scheme outperforms the TAS
Criterion 1 scheme with a largeλW . In addition, the number
of antennasN has a significant impact on the performance
of TAS schemes. For smallN , i.e., N = 3, all the three
TAS schemes attain similar secrecy rate. While for largeN ,
i.e.,N = 20, the secrecy rate difference becomes much more
pronounced.

Fig. 7 depicts the impact of time split parameterθ on the
secrecy performance of different schemes. Specifically, we
adopt the effective throughput as the performance measure
as in [34]. Hence, when the source transmits at a constant
rate RS , the average throughput can be evaluated byR =
(1 − Pout)RS(1 − θ), while when the source transmits at a
varying rate adapting to the secrecy rate, the throughput is
given by R = (1 − θ)C̄. It is observed that, in all cases,
the effective throughput first increases along withθ, and then
start to decrease after reaching the maximum point, indicating
that there exists a unique optimal time split parameterθ. In
addition, we see that, with optimized time split parameterθ,
the MRT scheme achieves the highest throughput as expected.
Also, it is observed that the TAS Criterion 2 scheme outper-
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Fig. 7: Effective throughput versusθ for different schemes
with N = 2 andλM = 1.

forms the TAS Criterion 1. The reason is that we have set
λM = 1 andλW = 10 in the simulations, a scenario where
the average gain of the main channel is worse than the wiretap
channel. Hence, the main channel capacity enhancement due to
selection of the strongest channel in TAS Criterion 1 schemeis
rather insignificant compared to the wiretap channel capacity
degradation due to the selection of the weakest channel in TAS
Criterion 2 scheme.

VI. CONCLUSION

In this paper, we have investigated the secrecy performance
of the wirelessly powered wiretap channels. For both MRT
and TAS schemes, exact analytical expressions and asymptotic
approximations are presented, which facilitate the extraction
of key insights of the achievable secrecy outage probability
and average secrecy rate performance. The findings of the
paper suggest that, with CSI of the main channel (e.g., MRT
and TAS Criteria 1 and 3), the system can achieve substantial
secrecy diversity gain. On the other hand, without the CSI of
the main channel (e.g., TAS Criterion 2), no diversity gain can
be attained, which indicates the critical importance of CSIin
the design of practical systems.
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APPENDIX A
PROOF OFTHEOREM 1

We start by expressing the SNR given in (6) and (7) as

γMRT

M = k1yhP
yhM

, and γMRT

W = k1yhP
yhW

, (45)

where k1 = ηPS

N0

θ
1−θ

, yhP
= ||hP ||2, yhM

= ||hM ||2 and

yhW
=

|hT
Wh

′

M |2

||hM ||2 . It is straightforward to show that the
probability density function (pdf) ofyhP

follows a gamma
distribution with shape parametermN and scale parameter
λP /m given by [36]

fyhP
(x) =

1

Γ(mN)

(

m

λP

)mN

xmN−1e
− m

λP
x
, (46)

and the pdf ofyhM
follows a chi-square distribution with2N

degrees of freedom given by [37]

fyhM
(x) =

xN−1

λNMΓ(N)
e
− x

λM . (47)

In addition, according to [38],yhW
follows an exponential

distribution with pdf

fyhW
(x) =

1

λW
e
− x

λW , (48)

and is independent ofyhM
. As such, the secrecy outage

probability can be written as

PMRT

out (RS) = 1− P

(

1 + k1yhP
yhM

1 + k1yhP
yhW

≥ k2

)

, (49)

wherek2 = 2RS . Conditioned onyhP
andyhW

, with the help
of [22, Eq. (3.351.2)], we obtain

PMRT

out (RS |yhP
, yhW

) = 1−
∫ ∞

k2−1

k1yhP

+k2yhW

xN−1

λNMΓ(N)
e
− x

λM dx

= 1− e
−

k2−1

k1λMyhP

−
k2yhW

λM

N−1
∑

k=0

1

k!

(

k2 − 1

k1λMyhP

+
k2yhW

λM

)k

.

(50)

By applying the binomial expansion(x1 + x2)
n =

∑n

k=0

(

n
k

)

x1
kx2

n−k, (50) can be further expressed as

PMRT

out (RS |yhP
, yhW

) = 1−
N−1
∑

k=0

k
∑

p=0

1

p!(k − p)!
×

e
−

k2−1

k1λMyhP

(

k2 − 1

k1λMyhP

)p

e
−

k2yhW
λM

(

k2yhW

λM

)k−p

. (51)

Noticing that the RVyhP
is decoupled withyhW

, the expecta-
tion can be taken separately. Hence, with the help of [22, Eq.
(3.471.9)], we obtain
∫ ∞

0

e
−

k2−1

k1λMx

(

k2 − 1

k1λMx

)p
xmN−1

Γ(mN)

(

m

λP

)mN

e
− m

λP
x
dx =

2

Γ(mN)

(

(k2 − 1)m

k1λMλP

)
mN+p

2

KmN−p



2

√

(k2 − 1)m

k1λMλP



 .

(52)

Similarly, invoking [22, Eq. (3.326.2)], we have
∫ ∞

0

e
−

k2x

λM

(

k2x

λM

)k−p
e
− x

λW

λW
dx =

(k − p)!λM (k2λW )
k−p

(λM + k2λW )
k−p+1

.

(53)

To this end, pulling everything together yields the desired
result.

APPENDIX B
PROOF OFPROPOSITION1

Starting from (49), conditioned onyhP
andyhM

, we have

PMRT

out (RS |yhP
, yhM

) = 1−

Prob

(

yhM
>
k2 − 1

k1yhP

)

×
∫

yhM
k2

−
k2−1

k1k2yhP

0

1

λW
e
− x

λW dx

= 1−Prob

(

yhM
>
k2 − 1

k1yhP

)

×
(

1− e
−

yhM
k2λW

+
k2−1

k1k2λW yhP

)

.

(54)

With the help of [22, Eq. (3.351.2)] ande
k2−1

k1λMyhP =
∞
∑

k=0

1
k!

(

k2−1
k1λMyhP

)k

, conditioned onyhP
, the outage proba-

bility can be expressed as

PMRT

out (RS |yhP
) = e

−
k2−1

k1λMyhP

∞
∑

k=N

1

k!

(

k2 − 1

k1λMyhP

)k

+

e
−

k2−1

k1λMyhP

N−1
∑

k=0

1

k!

(

k2−1
k1λMyhP

)k

(

1 + λM

k2λW

)N−k
. (55)

Then, averaging overyhP
, with the help of [22, Eq. (3.471.9)],

the secrecy outage probability can be computed as (56) on the
top of next page.
Expanding the Bessel function by [22, Eq. (8.446)] and
omitting the high order items yield

P∞
MRT(RS) =

∞
∑

k=N

1

k!

(

m(k2 − 1)

k1λMλP

)k
Γ(mN − k)

Γ(mN)
+

N−1
∑

k=0

1

k!

(

m(k2−1)
k1λMλP

)k

(

1 + λM

k2λW

)N−k

Γ(mN − k)

Γ(mN)
. (57)

By omitting the high order items, the desired result can be
obtained.

APPENDIX C
PROOF OFTHEOREM 2

Based on (11) and (12), we setyhM
= |hM,k|2 andyhW

=
|hW,k|2. In this case, since the selected antenna corresponds
to a random transmit antenna for the eavesdropper, the pdf
of yhW

can be expressed asfyhW
(x) = 1

λW
e
− x

λW . Now,
with some simple algebraic manipulations, the cumulative
distribution function (cdf) ofyhM

can be shown as

FyhM
(x) =

(∫ x

0

1

λM
e
− t

λM dt

)N

=
(

1− e
− x

λM

)N

. (58)
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PMRT

out (RS) =

∞
∑

k=N

1

k!

(

m(k2 − 1)

k1λMλP

)k
2

Γ(mN)

(

m(k2 − 1)

k1λMλP

)
mN−k

2

KmN−k



2

√

m(k2 − 1)

k1λMλP



+

N−1
∑

k=0

1

k!

(

m(k2−1)
k1λMλP

)k

(

1 + λM

k2λW

)N−k

2

Γ(mN)

(

m(k2 − 1)

k1λMλP

)
mN−k

2

KmN−k



2

√

m(k2 − 1)

k1λMλP



 . (56)

Hence the pdf ofyhM
can be obtained with a simple derivative

as follows:

fyhM
(x) =

N

λM

(

1− e
− x

λM

)N−1

e
− x

λM . (59)

Then, the desired result can be obtained by following similar
lines as in the proof of Theorem 1.

APPENDIX D
PROOF OFTHEOREM 3

In this case, the strongest antenna corresponds to a random
transmit antenna for the legitimate user, as such, the pdf of
yhM

can be expressed asfyhM
(x) = 1

λM
e
− x

λM . Then, with
some simple algebraic manipulations, the cdf ofyhW

can be
shown as

FyhW
(x) = 1−

(∫ ∞

x

1

λW
e
− t

λW dt

)N

= 1− e
− N

λW
x
.

(60)

Taking derivation of (60), the pdf ofyhW
can be expressed as

fyhW
(x) =

N

λW
e
− N

λW
x
. (61)

Then, the desired result can be obtained by following similar
lines as in the proof of Theorem 1.

APPENDIX E
PROOF OFPROPOSITION3

By following the same steps as in the proof of Proposition
1, we obtain

PTAS2

out (RS) = 1− NλM
NλM + k2λW

2

Γ(mN)
×

(

m(k2 − 1)

k1λMλP

)
mN
2

KmN



2

√

m(k2 − 1)

k1λMλP



 . (62)

Expanding the Bessel function and omitting the high order
items yield

PTAS2

out (RS) = 1− NλM
NλM + k2λW

×
(

1− m(k2 − 1)

(mN − 1)k1λP

1

λM
+ o

(

1

λ2M

))

. (63)

Then, the desired result can be obtained along with some
simple algebraic manipulations.

APPENDIX F
PROOF OFTHEOREM 4

The exact secrecy outage probability is difficult to charac-
terize, instead, we apply the following approximation as in
[39]

CS =

[

log

(

1 + γM
1 + γW

)]+

≈
[

log

(

γM
γW

)]+

=

[

log

( |hM,k|2
|hW,k|2

)]+

. (64)

It is worth pointing out that, such approximation is reasonably
tight and becomes asymptotically exact in the high SNR
regime.

Then, we can define a new variable as follows

X = max
i=1,··· ,N

( |hid|2
|hie|2

)

. (65)

Along with some simple algebraic manipulations, the cdf of
X can be computed as

FX(x) =

(

∫ ∞

0

∫ ∞

y
x

1

λW
e
− t

λW
1

λM
e
− y

λM dtdy

)N

=

(

x

x+ λM

λW

)N

. (66)

Taking derivation of (66), the pdf ofX can be expressed as

fX(x) = N
λM
λW

xN−1

(

x+ λM

λW

)N+1
. (67)

To this end, the desired result can be expressed asFX(k2).

APPENDIX G
PROOF OFTHEOREM 5

Starting from (31), conditioned onyhP
, by following the

same steps as in [31], we formulate the average secrecy rate
as

C̄MRT =
1

ln 2

∫ ∞

0

k1yhP

1 + k1yhP
x
FyhW

(x)
(

1− FyhM
(x)
)

dx

=
1

ln 2

∫ ∞

0

k1yhP

1 + k1yhP
x

(

1− e
− x

λW

) Γ
(

N, x
λM

)

Γ(N)
dx.

(68)

Invoking [22, Eq. (3.383.10)] and expanding the incomplete
Gamma function, the average secrecy rate can be computed
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C̄MRT =
1

ln 2

N−1
∑

k=0

(

1

k1λMyhP

)k
(−1)k

k!

(

e

1
λM

k1yhP Γ

(

0,
1

λM

k1yhP

)

− e

1
λM

+ 1
λW

k1yhP Γ

(

0,
1

λM
+ 1

λW

k1yhP

))

−

1

ln 2

N−1
∑

k=1

k−1
∑

p=0

(−1)k+p

(

1

k1λMyhP

)k
p!

k!





(

k1yhP

1
λM

)p+1

−
(

k1yhP

1
λM

+ 1
λW

)p+1


 . (69)

as (69) on the top of the page.
The next step is to average overyhP

. Here, we set

A =
1

ln 2

N−1
∑

k=0

(

1

k1λM

)k
(−1)k

k!

1

Γ(mN)

(

m

λP

)mN

×
∫ ∞

0

xmN−k−1e
− m

λP
x+ 1

k1λMxΓ

(

0,
1

k1λMx

)

dx. (70)

With the help of [22, Eq. (8.353.3)] and [22, Eq. (3.471.9)],
(70) can be further expressed as

A =
1

ln 2

N−1
∑

k=0

(

1

k1λM

)k
(−1)k

k!

1

Γ(mN)

(

m

λP

)
mN+k

2

×
∫ ∞

0

4xmN−k+1

x2 + 1
k1λM

KmN−k

(

2x

√

m

λP

)

dx. (71)

Invoking [22, Eq. (6.565.7)], we have

A =
N−1
∑

k=0

(−1)k

ln 2

Γ(mN − k + 1)

Γ(mN)k!

(

m

k1λMλP

)k

2mN−k+2

×
(

m

k1λMλP

)
mN−k

2

S−1−mN+k,mN−k

(

2

√

m

k1λMλP

)

.

(72)

With the help of [22, Eq. (9.34.6)] and [22, Eq. (9.31.5)], we
obtain

A =
1

ln 2

N−1
∑

k=0

(−1)k

k!

1

Γ(mN)

(

m

k1λMλP

)k

×

G31
13

(

m

k1λMλP

∣

∣

∣

∣

0

mN − k, 0, 0

)

. (73)

To this end, by following the same steps and utilizing [22, Eq.
(3.326.2)], the desired result can be obtained.

APPENDIX H
PROOF OFPROPOSITION6

Capitalizing on the general framework proposed in [31] for
the evaluation of asymptotic average secrecy rate, conditioned
on yhP

, we have

C̄∞ = A−B =
1

ln 2

∫ ∞

0

ln(k1yhP
x)fyhM

(x)dx−

1

ln 2

∫ ∞

0

k1yhP

1 + k1yhP
x

(

1− FyhW
(x)
)

dx. (74)

With the help of [22, Eq. (4.352.1)],A can be computed as

A = log2(λM ) +
1

ln 2

(

ln
k1λP
m

+ ψ(N) + ψ(mN)

)

.

(75)

The calculation ofB is exactly the same as̄C above. Then
we have

B =
1

Γ(mN) ln 2
G31

13

(

m

k1λWλP

∣

∣

∣

∣

0

mN, 0, 0

)

. (76)

The desired result then follows immediately.

APPENDIX I
PROOF OFTHEOREM 8

Starting from the definition, we have

C̄TAS3 =

∫ ∞

1

log(x)fX(x)dx. (77)

Substituting (67) into (77) yields

C̄TAS3 =
N

ln 2

λM
λW

∫ ∞

1

lnx
xN−1

(

x+ λM

λW

)N+1
dx. (78)

Making a change of variablet = x− 1 and utilizing [40, Eq.
(8.4.6.5)], (78) can be alternatively written as

C̄TAS3 =
N

ln 2

λM
λW

∫ ∞

0

ln(t+ 1)
(t+ 1)N−1

(

t+ 1 + λM

λW

)N+1
dt

=
N

ln 2

λM
λW

∫ ∞

0

G12
22

(

t

∣

∣

∣

∣

1, 1

1, 0

)

(t+ 1)N−1

(

t+ 1 + λM

λW

)N+1
dt.

(79)

Applying the binomial expansion and utilizing [22, Eq.
(7.811.5)] yield the desired result.

APPENDIX J
PROOF OFPROPOSITION9

By taking the general form, we obtain

C̄∞ = A−B =
1

ln 2

∫ ∞

0

ln(x)fyhM
(x)dx−

1

ln 2

∫ ∞

0

ln(y)fyhW
(y)dy, (80)

where the two pdfsfyhM
(x) andfyhW

(x) have been derived
in [41] as

fyhM
(x) =

NxN−1

λNM
Γ(2−N,

x

λM
), (81)
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and

fyhW
(x) = N(N − 1)×
N−2
∑

k=0

(−1)k
(

N − 2

k

)

xk+1

λk+2
W

Γ

(

−1− k,
x

λW

)

. (82)

ForA, by utilizing [22, Eq. (8.350.2)] and [22, Eq. (4.352.1)],
we obtain

A =
1

ln 2

(

lnλM + ψ(2)− 1

N

)

. (83)

Following the similar lines,B can be computed as

B =
1

ln 2

(

lnλW + ψ(1) + 1−N +

N
∑

k=2

(−1)k
(

N

k

)

1

k

)

.

(84)

The desired result then follows immediately.
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