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Abstract—Even though iterative solvers like the Precondi-
tioned Conjugate Gradient method (PCG) have been studied
for over fifty years, fault tolerance for such solvers has seen
much attention in recent years. For iterative solvers, two ma-
jor reliable strategies of recovery exist: checkpoint-restart for
backward recovery, or some type of redundancy technique for
forward recovery. Efficient low-overhead redundancy techniques
like algorithm-based fault tolerance for sparse matrix-vector
products (SpMxV) have recently been proposed. These techniques
add resilience with a good, but limited scope; state-of-the-art
techniques correct at most 1 fault within a SpMxV. In this work,
we study a more powerful resilience concept, which is redundant
multithreading. It offers more generic and stronger recovery
guarantees, including any soft faults in PCG iterations (among
others covering SpMxV), but also requires more resources. We
carefully study this redundancy-efficiency conflict. We propose a
fault-tolerant PCG method, called TwinPCG, which introduces
very small wall-clock time overhead, and significant advantages in
detection and correction strategies. Our method uses Dual Mod-
ular Redundancy instead of the more expensive Triple Modular
Redundancy (TMR); still, it retains the TMR advantages of fault
correction. We describe, implement, and benchmark our iterative
solver, and compare it in terms of efficiency and fault tolerance
capabilities to state-of-the-art techniques. We find that before
multithreading in BLAS, TwinPCG introduces 5-6% runtime
overhead compared to reference PCG implementations, and can
exploit BLAS multithreading well. In the presence of faults, it
reliably performs forward recovery for a range of problems,
showing all the strengths of TMR techniques.

Index Terms—Conjugate Gradients, Fault Tolerance, Soft
Faults, Redundant Multithreading, Dual Modular Redundancy,
BLAS

I. INTRODUCTION AND RELATED WORK

Iterative solvers like the Conjugate Gradient (CG) method
[1], and its preconditioned variations (PCG), are an important
and well studied method to solving large systems of linear
equations for positive definite matrices. In the absence of
faults, PCG shows excellent practical convergence, even if in
theory it is susceptible to numerical inaccuracies.

Soft faults in memory, including silent faults, are expected
to increase in computer architectures [2]; the domain of Near-
Threshold Computing [3] suggests the fault rates will increase
even more. In this domain, it is proposed to use supply

Online-ABFT [7] Partial redundant computation
Algorithmic redundancies [8] Partial redundant data and computation
ABFT SpMxV [9], [10] Partial redundant data and computation
TwinPCG 2 x Full redundancy
TMR [11] 3 x Full redundancy

TABLE I: State-of-the-art fault-tolerance techniques for PCG
in shared memory (including TwinPCG positioning): Redun-
dancy increases from top to bottom, and so do the forward
recovery capabilities.

voltage near the operational threshold of circuits with the
goal of increased energy efficiency. Voltage frequency scaling,
however, has been demonstrated to increase soft error rates
(e.g. [4]).

Transient faults are relevant to PCG methods for multiple
reasons: First, due to the very large matrices PCG can handle,
combined with potentially many iterations, a transient fault
may occur. Second, PCG is in the general case very unstable
when such faults occur. It is well studied that its convergence
can not be guaranteed even for round-off errors, let alone
for transient errors which can affect more significant bits in
memory.

In the last five years, there has been a rise in solid research
efforts to develop fault-tolerant iterative solvers on the example
of (P)CG. In general, fault-tolerant iterative methods follow
one of two important directions, or combinations thereof:

• Checkpoint-restart
• A “stronger” type of redundancy:

– Time/space redundancy within single-threaded exe-
cution, e.g. algorithm-based fault tolerance (ABFT)
for sparse matrix-vector product (SpMxV)

– Thread redundancy, e.g. Triple Modular Redundancy
(TMR)

Unreliable, and hence more efficient, fault tolerance mech-
anisms exist, e.g. a self-stabilizing approach [5], or a lossy
recovery approach [6]. However, in this work we remain in
the realm of reliable recovery mechanisms, which guarantee
that PCG methods preserve their convergence.



In this section, we detail and compare the state-of-the-art de-
velopments in fault-tolerant shared-memory implementations
of PCG. We remark that while we do not focus on distributed
memory fault-tolerance PCG techniques, an efficient technique
exploiting redundancy in distributed memory for PCG is
presented in [12]. We reserve the distributed memory direction
for future work.

A summary of related fault-tolerance PCG techniques is
given in Table I. We will proceed in increasing level of
redundancy, since this is a key aspect of our work as well:
Online-ABFT [7] is a single-threaded PCG implementation
using checkpoint-restart as fault tolerance approach. It is
simple enough to adopt, with no parallelism being introduced
in the original work. To detect faults, Online-ABFT monitors
PCG invariants like residual levels and orthogonality.

An increasing level of redundancy in work on iterative
solvers involves ABFT techniques, which was first success-
fully used by [13] to detect and correct faults in the matrix-
matrix product. The basic idea is to introduce additional
checksums, and some additional computation, which may
allow for detection and correction of faults. The same idea was
recently applied to the sparse matrix-vector product in related
work ([9], [10]). These contributions improve the resilience of
iterative solvers like PCG by focusing on the underlying sparse
matrix-vector product, i.e. implementing ABFT SpMxV. The
individual techniques differ in their overhead, and in the capa-
bility to recover from faults. The entire mechanism of ABFT
SpMxV can be considered an efficient redundancy in a single-
threaded execution, which uses some extra space (checksums),
and extra time (additional computations). There are strict
limits to what existing ABFT SpMxV can do: the related
contributions [9], [10] detect up to two faults, and correct
up to 1 fault. In addition, the sequential use of redundancy
in these approaches, while not significant, always impacts
runtime: every additional check is expensive, particularly so
for an efficient sparse matrix-vector product. For example, [9]
measures a 7.5% overhead for their most efficient approach of
detection (but no correction) of faults.

Another resilience approach [8] exploits redundancy for soft
faults which have already been detected. Once the operating
system detects a fault (e.g. a page fault), the authors use
algorithmic redundancies (which need to be specified), and
interpolation, to efficiently recompute values and roll forward.
Detection and correction require the support of the runtime (in
contrast to our solution).

The next step of redundancy is in redundant multithreading,
and this is where our main contribution lies. Before we outline
the few efforts made in this area so far, we list some important
advantages of redundant multithreading, compared to non-
redundant or less redundant techniques:
• Compared to rollback recovery which uses no data re-

dundancy, further redundancy offers the possibility of
forward recovery, always outperforming the former in the
presence of faults

• Compared to less redundant methods like ABFT SpMxV,
redundant multithreading is significantly more powerful

and generic. It essentially allows to recover from arbitrary
faults within a data structure (vectors, matrices) used in
a PCG iteration. Redundant multithreading goes beyond
any ABFT SpMxV strategy in its capabilities. In fact,
existing ABFT SpMxV solution offers limited detection
and correction capabilities (up to 1 correction), and they
only apply to SpMxV.

• While redundant multithreading always multiplies the
used CPU and cache resources compared to less redun-
dant techniques, it can be implemented to only marginally
increase the total runtime, since multithreading is in-
herently suitable for parallelization. We demonstrate this
experimentally in this work.

A very popular and well-established redundancy technique,
which can be implemented in hardware or software, is Triple
Modular Redundancy (TMR) (e.g. [14]); in this technique,
detection of a fault is trivial, and a correction is performed
via majority voting of two threads (hopefully) carrying forward
correct data. TMR is the minimal thread redundancy approach
recently used for various kernels, including iterative solvers
like CG, in the work of [15], [11]. The authors use a holistic
compile and runtime system to dynamically spawn redundant
threads in certain regions, increasing the number of redundant
threads as needed. The assumption is that the runtime is
able to detect certain types of faults (like ECC errors), and
dynamically spawn redundant threads for fault tolerance.

The issue with thread redundancy, particularly TMR, is that
it uses triple CPU and cache resources that could otherwise be
used for more efficient computation, and this is also clearly
demonstrated in our experimental results. As Kanellakis has
ably summarized many years before the advent of many-core
systems, “parallel algorithm efficiency implies a minimization
of redundancy in the computation, leaving very little room for
fault tolerance” [16].

We propose a solution to this problem, by implementing
TwinPCG, an original fault tolerant PCG algorithm, in which
we use the minimum possible redundant multithreading, Dual
Modular Redundancy (DMR). DMR is well known, but the
novelty is that our solution is capable of forward recovery,
similarly to TMR. We integrate backward and forward re-
covery, and implement a robust fault tolerance solution in
TwinPCG. On one side, we adopt the residual check idea of
Online-ABFT for our algorithm. On the other side, we com-
bine backward/forward recovery, influenced by the Online-
Detection/Online-Correction work of [10]. Combinations of
redundancy and checkpointing have been favourably used in
less application-specific contexts as well (e.g. [17]).

In summary, our contributions to the area of fault-tolerant
iterative solvers are:
• We design and implement an original fault-tolerance PCG

algorithm, TwinPCG. Its fault tolerance is rooted in using
Dual Modular Redundancy

• TwinPCG detects faults, and implements efficient forward
recovery from faults, with an intelligent detection and
correction process; it can also perform rollback recovery,
in the rare cases forward recovery is not deemed possible



Once every d iterations:
detection / correction

PCG Iteration

Fig. 1: Overview of fault-tolerant PCG implementations which
do correction and detection on iteration level: Once every d
iterations, faults are detected, and possibly corrected (through
backward or forward recovery). At each iteration, textbook
PCG step is performed.

• TwinPCG can utilize multi-threaded BLAS libraries like
Intel MKL better than more wasteful solutions like Triple
Modular Redundancy

• We implement from scratch our version of Online-ABFT.
It has multiple optimizations: First, it uses parallel BLAS
for SpMxV. Second, it reduces the sensitivity to insignif-
icant faults, and as a consequence converges quicker than
the original algorithm for the tested problems.

• We develop a flexible and realistic fault injection mech-
anism for all implemented solvers, and use it to confirm
the fault tolerance of TwinPCG for a range of real-world
problems

The rest of the paper is structured as follows: In section 2,
we describe in detail our algorithm, TwinPCG. In section 3,
we analyse the performance of TwinPCG, while in section 4,
we evaluate its fault tolerance. We conclude the paper with
section 5.

II. TWINPCG: DUAL MODULAR REDUNDANCY FOR PCG

A. Overview

In this section, we propose an original fault-tolerance al-
gorithm for PCG, which we call TwinPCG. As shown in
a high-level overview in Fig. 1, detection and correction
are performed at PCG iteration level. Each PCG iteration is
implemented in agreement with the reference algorithms listed
in [18]. Our fault tolerance technique uses DMR to detect
faults, and is capable of correcting faults as well. In most
cases, the recovery is efficient forward recovery, as opposed
to the more expensive checkpoint-restart recovery. In the very
rare cases where forward recovery is not possible, we still
perform a rollback to a checkpointed state.

We call our prototype TwinPCG for two reasons:
• First, our implementation uses two-threaded DMR. We

consider this a minimal extension to single-threaded
redundancy, and a less expensive technique than TRM
(or any further thread redundancy).

• Second, both threads, much like twins, perform identical
PCG iterations (each of them perform the steps shown in
Fig. 1 on replicas of the same data). Also, they are very
supportive of each other: whenever exactly one of them
has a severe fault, the healthy thread recovers the faulty
one.

Start thread synchronization

∣∣∣∣rT1
i

∣∣− ∣∣rT2
i

∣∣∣∣ < ε1D1

Check |b−A∗xi−ri|
|A| < ε2D2

Norms
approx.
identical

Forward
recovery (shared
memory copy)

FR Rollback
recovery (last
checkpoint)

RR

End thread synchronization

’No’ for both
threads

’Yes’ for both
threads

’No’ for both
threads

’No’ for exactly 1
thread

’Yes’
for both
threads

Fig. 2: Detection and correction logic of each TwinPCG
thread. The efficient detection step D1, and efficient forward
recovery FR, are marked in green. Both are only possible
due to redundant multithreading. Their more expensive coun-
terparts are marked in red – the detection step D2, and the
rollback recovery step RR. We apply D2 and RR as our
variations on Online-ABFT.

For some stages, steps from Online-ABFT [7] will be used
and properly attributed. Due to space constraints, details of
this related work are omitted.

In the following sections, we carefully describe the detection
and correction phases of TwinPCG, the logic flow of these
phases, and our reasoning behind the design.

B. Detection and Correction

In this part, we detail our implementation of detection and
correction of faults for PCG, which we display in Fig. 2.

As shown in the diagram, the detection/correction phase,
which we perform every d iterations, is enclosed by a synchro-
nization window (at the start and at the end of each phase).

The synchronization window is essentially a software-based,
and thereof more flexible version of a lock-step execution (see
e.g. [19], Ch. 5.4.3).

Our synchronization window is needed for the following
reasons:
• The start synchronization point is needed to ensure

threads are in the exact same iteration in order to detect
faults correctly

• The end synchronization point is needed, since the two
threads need to read from shared memory (detection steps



D1 and D2), and to write into shared memory (correction
steps FR and RR); we can not simultaneously allow
another thread to perform a write operation as part of
continued PCG iteration

As we see later in this work, the introduction of lock
stepping in itself does indeed introduce a few percent over-
head. Still, in the detection and correction of faults, we make
savings in time, especially compared to checkpoint-restart
mechanisms.

In the detection/correction phase, we use the redundant data
at each thread. As a first detection mechanism (D1), we check
the residual norm at each thread. In the absence of faults,
the ideal case is

∣∣rT1
i

∣∣ = ∣∣rT2
i

∣∣. Instead of checking for strict
equality, we check that the difference is below a threshold
ε1. Apart from numerical reasons, this threshold has another
very important implication – it becomes a significance filter
for faults, as visualized in Fig. 3.

• If the inequality in D1 holds (always for both threads),
either no faults have occurred, or faults have occurred
that we consider insignificant. In other words, our use of
residual norm in D1 allows us to use ε1 as a significance
filter for bit flips which may very often be insignificant. A
wide range of bit flips which are insignificant in practice
have been also observed in related work [20], [21]. Our
solution has the implication that the two threads may
diverge up to a certain point. No correction is needed
until then.

• If this inequality does not hold (always for both threads),
we only know that a significant transient fault has hit
at least one, possibly both threads. Since we use dual
redundancy, we can not use trivial mechanisms like
majority vote to decide on where the fault occurs. For
this reason, we rely on an invariant used in Online-
ABFT. We check in parallel at each thread if the condition
ri = b−A ∗xi is fulfilled, and denote this detection step
as D2. It requires an expensive matrix-vector product, but
is only evaluated if detection D1 indicates an issue.

– If the inequality holds at both threads, we continue
without recovery

– If one thread breaks the inequality, the healthy thread
recovers the faulty thread via a trivial copy of its
PCG data in shared memory. This forward recovery
is efficient in many ways: it avoids reading a check-
point (possibly from file), it avoids recomputation,
and also importantly, no rolling back to previous
iterations of PCG is required.

– If both threads break the inequality, we assume that
they both need to be recovered. We resort to a
traditional checkpoint-restart, and we roll back a
few iterations as Online-ABFT would do. We will
later show that this RR (rollback recovery) step is
extremely rare in practice for our solution.

The reader may express concerns over how ε1 and ε2 are
chosen and calibrated. In our experiments in Sect. IV, we
choose fixed threshold values which work well across all 8

〈000〉 〈010〉
〈000〉 〈000〉

|〈010〉 − 〈000〉| < ε1
Ignore
bit flip

λ

λ

Fig. 3: D1 is both a detection mechanism, and filter for
insignificant faults: Fault injection with probability λ for each
thread, and threshold ε1.

problems. Their values are indeed very important, and could be
further optimized; the balance of the threshold level is in itself
a complex topic. Furthermore, we refrain from establishing a
relation between D1 and D2 in this work. For example, it is
conceivable for a D1 check to fail, but a D2 check to pass, or
vice versa, if the values are not properly set.

The underlying principle for D1 and D2 checks, regardless
of calibration of thresholds, is solid in our view: a deviation
between redundant threads indicates a soft fault (D1), and
so does an invariant which does not hold any more (D2).
We also remark that by design, detection steps D1 and D2
always provide consistent results across both threads, since
they access shared data in a synchronized fashion.

C. Implementation Details

We implemented TwinPCG as a command-line tool in C.
We use the reference algorithm of [18] to implement PCG,
and the simple Jacobi matrix as a preconditioner. We use an
implementation of File I/O and various operations for sparse
matrices in the Compressed Row Storage (CSR) format [22].
There are the following external library dependencies:
• We use Intel Math Kernel Library for all Sparse BLAS

operations (including OpenMP-parallel SpMxV routines)
• We use GSL [23] for the uniform probability distribu-

tions, and for the Poisson distribution; we use both for
our fault injection mechanism, which we detail later

• We use POSIX threads to implement redundant multi-
threading, and POSIX condition variables and mutexes
to implement the synchronization window

The entire implementation thus has no strict requirements
on proprietary software. Intel MKL, as the only proprietary
component, can potentially be replaced by an open-source
Sparse BLAS implementation.

D. Fault Injection

We assume that data values of the problem matrix, and
consequently any vectors, can be affected by transient faults.
Since we use the efficient CSR format with its 3 arrays for
values, columns, and rows, our assumption means we only
allow the values array to be corrupted. While it is not complex
to also design resilience mechanisms for the column and row
arrays, this is not the subject of this work.

We have implemented from scratch a fault injection mecha-
nism on the principle of fully uniform probability distribution,
based on the assumption that any bit in memory is equally
likely to get flipped. We assume that a bit flip can occur at
any bit of any element of the value array of matrix A. It can
easily be demonstrated based on a faulty matrix Ã in any given



iteration that its faults propagate to all PCG vectors irreversibly
within one iteration. At the end of each iteration, we unflip
any bit flips we may have introduced to the matrix, i.e. we
fix the matrix A. This corresponds to the model of transient
faults for PCG methods as used in [5], [10].

The fault rate λ corresponds to the mean rate of faults for a
Poisson distribution; we generate faults accordingly. If a fault
occurs in an iteration, we use uniform distribution to decide
which element of the non-zero elements of A gets a bit flip.
We then use again uniform distribution to decide which bit of
this element gets flipped.

One consequence of this model is that often the injected
faults have no noticeable effect on the convergence of PCG.
This effect is well known, and there is relevant work [20],
[21] studying how significant is a bit flip in a floating point
number, depending on its position in the data representation.
The mantissa of a Binary64 IEEE floating point number holds
52 bits; however, bit flips in the mantissa may often have
no significant effect, especially if the exponent is very small.
A fault injection framework using a uniform distribution of
bit flips should take this into consideration. Indeed, in our
experimental results, only a fraction of the injected faults can
be considered significant (see Fig. 3).

III. PERFORMANCE EVALUATION OF TWINPCG

In this section, we evaluate the performance of TwinPCG
in following ways:
• We measure the memory requirements
• We carefully describe the thread-to-core pinning we use
• We compare our two-threaded implementation to a PCG

implementation before memory contention due to SpMxV
multithreading

• We evaluate the effects of enabling SpMxV multithread-
ing in Intel MKL on PCG, the modified Online-ABFT,
TwinPCG, and TMR

A. Experimental Platform

For our benchmarks, we use compute nodes on the Kelvin
cluster at Queen’s. Each node has 2-socket Intel machines with
an Intel Xeon CPU E5-2660 v3 with 2.6 GHz frequency, and
128 GB RAM. Each of the two sockets has 10 cores, which
share per socket 25 MB L3 cache, with 256 KB L2 cache,
and 32 KB L1 cache per core. Intel Hyper-Threading was
disabled on the nodes, so there are 20 physical and virtual
cores available per node.

B. Main Memory Footprint

For its backward/forward recovery strategy, TwinPCG re-
quires triple storage for all PCG vectors. A transient fault can
permanently affect all PCG vectors within an iteration. Each
of the two threads stores the PCG vectors (used for forward
recovery), and a third copy is held in shared memory for
backward recovery. Whether or not the problem matrix needs
to be duplicated depends on the assumption – a transient or
a permanent soft faults. For the transient fault assumption of
this work, we only store a single copy of the matrix, and

TwinPCG
main

POSIX thread
for PCG

Intel
MKL

OpenMP
threads

POSIX thread
for PCG

Intel
MKL

OpenMP
threads

Socket 1

Socket 2

Fig. 4: Illustration of nested thread paralellism in TwinPCG,
with each redundant POSIX thread calling the OpenMP-
parallel SpMxV routine in Intel MKL. We also outline the
thread-to-socket pinning we experimentally find to be most
efficient.

our fault injection mechanism restores the matrix at the end
of an iteration to simulate this behaviour. We remark that
redundant multithreading is so powerful that it allows for a
trivial extension of our work to permanent soft faults. This case
requires three copies of the input matrix, similar to the current
PCG vector case, and trivial modifications to the existing code.

We use the efficient Compressed Row Storage format for
all matrices. The amount of storage needed is proportional
to the number of nonzero elements (nnz). We profiled the
heap use for various problems. We experimented with the
range of matrices we use for most experiments, as listed in
Table II, where the nnz varies between 340 thousand and
7.6 million. For our largest test matrix (G3 circuit with 7.6
million nonzero elements) and all vectors, our implementation
consistently used 488.5 MB of heap memory with PCG, and
727 MB of heap memory for the two-threaded TwinPCG. This
includes the entire allocated memory for all data structures.
We therefore consider the problem of allocating a few extra
hundred MB of additional memory per thread acceptable.

C. Efficient Thread-to-Core Mapping in TwinPCG

The thread-to-core mapping in TwinPCG is very important,
and a bad mapping has a detrimental effect on performance,
especially for a memory-bound problem like PCG.

In our implementation, there is a two level hierarchy of
threads, as shown in Fig. 4:
• The main program first spawns POSIX threads (1 for

PCG or Online-ABFT, 2 for TwinPCG, or 3 for Triple
Modular Redundancy).

• Each PCG kernel calls an OpenMP-parallel SpMxV rou-
tine (implemented in Intel MKL)

While Intel MKL is thread-safe for multithreaded applica-
tions to use, the thread-to-core mapping when using POSIX
threads to call OpenMP threads is not trivial. The challenges
and solutions are described in detail in [24]. We are unable to
properly set the thread affinity without source code modifica-
tions. The reason is that the OpenMP runtime only has a global



affinity view, but no notion of the POSIX thread which runs
an OpenMP-parallel region. However, pinning down threads
depending both on the first-level POSIX thread number, and
second-level OpenMP thread number, is possible with some
code modifications. The affinity can be set e.g. via Intel or
POSIX Thread Affinity API.

The thread-to-core mapping for TwinPCG we choose fits
very well with the used 2-socket platform: We place each
POSIX thread, and all its associated OpenMP threads, on its
own dedicated socket (the OpenMP thread groups are thus
pinned to two different sockets, as shown in Fig. 4). The
motivation is to avoid memory contention between the two
redundant threads, which mostly use independent data sets.

For the TMR version, we use the same strategy for the
first two threads, and pin the OpenMP threads of the third
POSIX thread consecutively to sockets one and two. An ideal
solution for TMR in this setting does not exist: we have two
sockets available, and need to utilize three redundant PCG
threads, each of them using a OpenMP-parallel SpMxV. Even
in the presence of many-socket platforms, the fundamental
problem of a fixed set of available resources would remain:
kernels allowing for maximum concurrency would utilize these
resources best, DMR solutions would be less efficient, and
TMR solutions (or higher redundancy solutions) would be
trailing off further in performance.

D. CPU Footprint

1) Evaluation of Multithreading and Synchronization in
TwinPCG: It is important to evaluate the effects of multi-
threading in our two-threaded implementation of PCG. Two
important questions arise:
• Is there a scenario where no memory contention occurs,

and the efficiency of TwinPCG in wall-clock time is not
affected compared to single-threaded PCG?

• For this scenario, how significant is the overhead of the
synchronization window we presented?

To begin with, we experimentally confirm that memory
contention can be avoided with following setting: use of a
single-threaded Intel MKL SpMxV, and pinning of the two
redundant POSIX threads, and the derived OpenMP threads,
on different sockets to avoid competition for L3 cache.

After performing this setup, we run benchmarks with a
number of matrix sizes, ranging from 340K to 7.7M nonzero
elements. No faults are injected for both cases. Each run only
terminates after convergence (tol = 10−10). The average time
over 10 iterations of each experiment was used for PCG and
TwinPCG.

Fig. 5 shows the (average) PCG runtime for all problems,
and the marginal TwinPCG overhead in runtime is indicated
above the bars. PCG includes standard iteration time, while
TwinPCG includes both iteration time and the synchronized
detection (even though no faults are injected). When using
proper thread-to-core pinning as described previously, the
actual PCG computation time, excluding the lock stepping
overhead of TwinPCG, is comparable across both single-
threaded and two-threaded versions. TwinPCG did not intro-
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Fig. 5: TwinPCG runtime overhead: y-axis measures the
average runtime to convergence for PCG for all problems.
TwinPCG doubles the used threads, but we see at most 5-
6% runtime overhead in runtime (overhead indicated above
bars), which we attribute to lock stepping (Fig. 2) across the
two redundant threads.

duce a slowdown in computation, even for the largest prob-
lems. However, the two TwinPCG threads did usually slightly
differ in their compute time; for each lock stepping (once every
5 iterations), this translates into a forced slow down for the
quicker thread. We profiled the maximum accumulated time
in lock stepping across both threads for TwinPCG, and found
that it amounts to at most 5.5%, compared to compute time.
This difference translated into a TwinPCG overhead compared
to PCG. It is an open question if this TwinPCG overhead
can be eliminated; it may be due to inefficiencies in our lock
stepping implementation, or a CPU/cache utilization difference
for redundant computation on different sockets.

2) Combining Redundant Multithreading and BLAS Mul-
tithreading: Redundant multithreading for TwinPCG, and an
efficient multithreaded SpMxV kernel as we use it, poses a
conflict for resources for orthogonal purposes: fault tolerance,
and efficiency. This conflict is intuitively clear, but its exper-
imental validation is tricky, and requires precise pinning of
threads to cores to avoid the significant effects of cache sharing
for all tested settings. We have described our optimal choice
of thread affinity, and we present experimental results based
on this choice.

We experiment with our entire suite of implemented solvers,
and a broad range of OpenMP threads for SpMxV parallelism.
The results are shown in Fig. 6, the y-axis being the total
computation time. More importantly, Fig. 6 shows the conflict
between redundancy and BLAS efficiency. We have compared
our solution TwinPCG with our reference implementation of
PCG, Online-ABFT, and Triple Modular Redundancy. The
shown problems are the largest two, apache2 (around 5M nnz),
and G3 circuit (7.6M nnz); we choose larger problems for
more representative results. The x axis represents the OpenMP
threads we set per PCG thread for any implementation. For
each kernel, we experiment with as many OpenMP threads
per PCG thread as the total available cores; thus, we inten-
tionally perform “stress tests” in order to properly evaluate the



overhead of redundant solutions. For PCG, and Online-ABFT,
we naturally impose no thread-to-core restrictions, allowing
the runtime to freely utilize both sockets. We expect PCG to
exploit multithreading best, since no redundancy is used to
“block” resources. We also expect Online-ABFT to exploit
multithreading well, since its redundancy is sequential, and
does not inhibit concurrency. Both of these expectations are
confirmed: PCG and Online-ABFT perform well overall with
increased BLAS multithreading. We then expect our two-
threaded redundancy to come next, outperforming the TMR
solution clearly for large OpenMP threads; this is due to both
L3 cache contention, and ultimately oversubscription (for 10
and more OpenMP threads per PCG thread) for TMR. This
expectation is also confirmed. We add here that our detection
time (step D1) consistently outperformed Online-ABFT’s D2,
but this gain is generally lost in the overhead we incur through
lock stepping.

In summary, the experimental results fully mirror the
increasing level of redundancy as summarized in Table I.
TwinPCG, while offering a much broader and generalized
recovery spectrum than Online-ABFT, or any ABFT SpMxV
approach, comes very close in performance to it. However,
Online-ABFT does have an advantage for high levels of BLAS
multithreading, since the thread redundancy of TwinPCG
limits the available cores.

IV. FAULT TOLERANCE OF TWINPCG

We previously evaluated the performance of TwinPCG with-
out faults, and without verifying in any way that the proposed
scheme offers fault tolerance capabilities. In this section, we
verify using a range of problems that in practice, TwinPCG re-
covers almost exclusively using the efficient forward recovery
familiar from mechanisms like TMR.

A. Experimental Setup

In this section, we will evaluate the fault tolerance of
TwinPCG in regard to transient faults. In the absence of
transient faults, PCG, Online-ABFT, and TwinPCG converge
in the same number of iterations. As we have outlined in
section II, we expect to be able to perform efficient forward
recovery for the case of a single-thread fault for the two
redundant threads; In the unlikely event of a double fault
(both threads experience a fault within a detection window),
we perform backward recovery.

The parameters we use are:
• a detection is triggered each 5 iterations, and a backup is

performed each 10 iterations (as in Online-ABFT)
• e1 = 10−15, e2 = 10−10 (See Fig. 2)
• We use e = 10−10 for our version of Online-ABFT, for

compatibility with the original, and in agreement with e2
of TwinPCG

• We use as residue norm tolerance (termination criterion)
10−10 for all kernels.

• We abort each run if no convergence is reached at 6000
iterations
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Fig. 6: Effect of using both redundant threads for fault toler-
ance, and multi-threaded SpMxV operations via MKL threads.
Problems shown are apache2 (above) and G3 circuit (below).
PCG and Online-ABFT use no concurrency, and therefore can
better explore SpMxV multithreading, especially for larger
MKL counts. TwinPCG can still explore multithreaded Sp-
MxV with very little loss in performance (with efficient thread-
to-core pinning); TMR experiences memory bottlenecks for
larger OpenMP thread count (per PCG thread).

We should add that the detection (each 5 iterations), and the
backup (each 10 iterations) are not necessarily optimal, and
simply borrowed from the one proposed in the original Online-
ABFT. Since our implementation is parallel, and hopefully
more efficient, we intend to calibrate these intervals according
to the widely accepted Young/Daly formula [25], [26].

The problems we use are all from the freely available
University of Florida Sparse Matrix Collection [27], with the
exception of the better conditioned K3D problem [5]. We list
the problems, their nnz count, and their condition number
estimate (according to MATLAB) in Table II. Our main criteria
was to have a good range of real-world problems, which
converge quickly with the simple Jacobi preconditioner in
place for a fault-free execution.

We can experiment with arbitrary fault injection rates. We
denote the average number of faults per iteration with λ. We
show results for λ = 0.01 (a mean of 1 random fault per



Problem nnz condition number
K3D 340200 645

apache1 542184 4 ∗ 106

thermal1 574458 5 ∗ 105

Pres Poisson 715804 3.2 ∗ 106

G2 circuit 726674 2 ∗ 107

parabolic fem 3674625 2.1 ∗ 105

apache2 4817870 5.3 ∗ 106

G3 circuit 7660826 2.24 ∗ 107

TABLE II: Selection of problems used in our benchmarks and
fault tolerance tests.
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Fig. 7: Validation of fault tolerance of TwinPCG, with PCG
and the modified Online-ABFT as reference. y-axis shows #
iterations to converge. A run is terminated either at conver-
gence, or at max 6000 iterations. Each result is an average
over 60 iterations. Above: Fault rate λ = 0.01 (1 bit flip every
100 iterations). Below: Fault rate λ = 0.1 (1 bit flip every 10
iterations).

100 iterations) and λ = 0.1 (a mean of 1 random fault per
10 iterations). Some bit flips may be insignificant; similarly,
some problems may not be ill-conditioned enough to be easily
affected by bit flips. We tested all problems presented in Table
II. Apart from our implementation TwinPCG, we experiment
with our reference implementations of PCG, and our modified
version of Online-ABFT; this version converges faster than the
original in all our settings due to reduced fault sensitivity, and
significantly less unnecessary rollbacks.

The compiled results are shown in Fig. 7. We show PCG (no
recovery), our version of Online-ABFT (rollback recovery),

and TwinPCG (mostly forward recovery). Every single bar is
an average over 60 independent executions, each triggering
different bit flip patterns for a probability λ.

The y axis shows the number of iterations to convergence
(we abort at 6000 iterations at most per run). We consciously
choose the number of iterations as a metric for fault tolerance
rather than the overall runtime. This measure allows for a
more educated comparison of TwinPCG against Online-ABFT,
and their strengths and weaknesses. Fig. 7, especially for the
higher fault rate, shows that the problems K3D, apache2,
Pres Poisson, and parabolic fem are most sensitive to bit
flips; the reasoning behind this is difficult, and factors like
conditioning and sparsity of each matrix play a role. PCG (no
fault tolerance) rarely converges for λ = 0.1 for either of these
problems. For the same fault rate, TwinPCG reliably recovers
forward, and always converges in less iterations than Online-
ABFT; for example, it needs on average 9% less iterations for
apache1 and apache2, 12% less iterations for G2 circuit, and
13 % less iterations for K3D (highlighted in the figure below
for K3D and G2 circuit). We stress that these are averages
over 60 different iterations per setting (problem, error rate,
and kernel). In addition, TwinPCG very rarely resorts to roll-
back recovery: the highest rollback recovery ratio to forward
recovery was 1:60 (for the G2 circuit and λ = 0.1). This
outcome makes it unnecessary to draw a comparison to the
more resource-expensive TMR method, which in its forward
recovery behaves as TwinPCG in practically all settings. The
rollback recovery (via checkpoint) in TwinPCG is very rare
due to the low probability of double faults before correction.
This raises the idea of eliminating rollback recovery altogether
for very low fault rates, and activating it only for higher fault
rates, in future work.

Under the assumption that we use multithreaded BLAS
on the available cores, TwinPCG can not always outperform
Online-ABFT in total runtime; the overall runtime is faster for
the 5 smallest (out of 8) problems. For the largest problems, as
visible in Fig. 6, Online-ABFT explores multithreaded BLAS
better. However, for the higher λ fault rate, TwinPCG runtime
remains practically constant due to forward recovery, while
Online-ABFT runtime increases (Fig. 7). If we extrapolate this
result, a higher fault rate should always lead to an advantage
for TwinPCG, even in the face of less cores available for
BLAS multithreading. Still, for low fault rates less redundant
solutions like Online-ABFT are better than more redundant
solutions like TwinPCG.

V. CONCLUSION

In this work, we introduced a fault-tolerant PCG implemen-
tation, called TwinPCG, which uses two redundant threads,
and is able to both detect and correct transient faults. The
recovery is powerful, in the sense that it covers arbitrary faults
within matrices and vectors in PCG, including SpMxV faults
studied elsewhere. The transient fault assumption can also be
trivially extended to any soft faults. In terms of CPU usage, our
dual redundancy doubles the used CPU and cache resources
compared to PCG, but it does not triple them as TMR.



We concluded that the introduced lock stepping across two
threads adds up to 6% overhead relative to the baseline in our
implementation, but no other overhead is introduced compared
to a single-threaded PCG implementation, in terms of wall-
clock time. To achieve this performance, we designed a proper
thread-to-core pinning. TwinPCG exploits BLAS parallelism
well, but as expected solutions like Online-ABFT can utilize
more cores for parallelism. We tested the fault tolerance of
TwinPCG on a number of problems, and concluded that its
ability to recover from faults shows all the strengths that
TMR solutions have, almost exclusively performing forward
recovery and outperforming therefore algorithms like Online-
ABFT for ill-conditioned problems and increasing fault rates.

In summary, we see TwinPCG as a more efficient, and
equally robust, alternative to TMR solutions for PCG, with
the same powerful recovery capabilities. TwinPCG is partic-
ularly attractive for settings where higher fault rates may be
anticipated, in particular near-threshold voltage settings of the
future.
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