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Abstract 

This study describes the design and characterisation of the rheological and mechanical 

properties of binary polymeric systems composed of 2-Hydroxypropylcellulose and ɩ-

carrageenan, designed as ophthalmic viscoelastic devices (OVDs).  Platforms were 

characterised using dilute solution, flow and oscillatory rheometry and texture profile 

analysis.  Rheological synergy between the two polymers was observed both in the dilute 

and gel states.  All platforms exhibited pseudoplastic flow. Increasing polymer 

concentrations significantly decreased the loss tangent and rate index yet increased the 

storage and loss moduli, consistency, gel hardness, compressibility and adhesiveness, the 

latter being related to the in-vivo retention properties of the platforms.  Binary polymeric 

platforms exhibited unique physicochemical properties, properties that could not be 

engineered using mono-polymeric platforms. Using characterisation methods that provide 

information relevant to their clinical performance, low-cost binary platforms (3% 

hydroxypropylcellulose and either 1% or 2% ɩ-carrageenan) were identified that exhibited 

rheological, textural and viscoelastic properties advantageous for use as OVDs.   

 

Keywords: Ophthalmic Viscoelastic Devices; ɩ-carrageenan; Hydroxypropylcellulose; 

Viscoelastic, Adhesiveness, Interaction Parameter 
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1. Introduction 

Cataract formation is one of the most common causes of vision loss, being commonly 

observed as a result of ageing, certain diseases (e.g. diabetes mellitus, Wilson’s disease), 

and direct injury to the lens by a foreign object or by blunt trauma to the eye.   In most 

cases the cataract interferes with the visual axis and requires removal. (Kawaguchi T., 

Mochizuki M., K. & N., 2007; Olson, Mamalis, Werner & Apple, 2003).  Due to surgical 

advances, blindness caused by cataracts are considered to be highly treatable through 

extraction of the cataract and replacement with an intraocular lens (IOL) which, in turn, 

restores vision thus compensating for the loss of the lens (Andrews, Gorman & Jones, 

2005b; Collins, Gaster, Krol, Colling, Kirk & Smith, 2003; Olson, Mamalis, Werner & Apple, 

2003). One of the most popular methods that is associated with the replacement of the lens 

with IOLs is phacoemulsification, a process in which the hardened nucleus of the crystalline 

lens is emulsified and removed through a small excision within the eye (Andrews, Gorman & 

Jones, 2005a; Dick & Schwenn, 2000; Lloyd, Faragher & Denyer, 2001).  This microsurgery 

must avoid injury to the corneal endothelium (present in the anterior segment of the eye); a 

single layer of cells that does not have the ability to regenerate.  Since the introduction of 

phacoemulsification in 1967, evidence has shown that corneal epithelial damage may occur 

using this method for a number of reasons including contact of the IOL or medical 

instruments with the corneal epithelium (Binder, Sternberg, Wickham & Worthen, 1976; 

Cutler Peck et al., 2009; Irvine, Kratz & O'Donnell, 1978).  Importantly, if injured, blindness 

may result (Lloyd, Faragher & Denyer, 2001).  

 

Ophthalmic Viscosurgical Devices (OVDs) are viscoelastic materials that may be easily 

inserted into/removed from the eye, maintain ophthalmic intraocular space (within the 

anterior chamber) and additionally, offer protection to the endothelial cell layer from 

mechanical trauma (Hosny, Eldin & Hosny, 2002).  These devices are widely used to 

maintain the integrity and viability of this barrier, not only on cataract surgery but also in the 
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treatment of retinal detachment (Andrews, Gorman & Jones, 2005a; Kiss et al., 2003).     

Thus, cataract surgery and other operations involving the anterior chamber of the eye have 

benefited from the use of OVDs  

 

Whilst there are several commercially available OVDs (Arshinoff & Jafari, 2005b), their 

design (and indeed the choice of polymers for use as OVDs) has not been specifically 

performed within the context of the rheological demands of these systems (Andrews, 

Gorman & Jones, 2005a).  The optimal rheological performance of OVDs may not be 

necessarily achieved using mono-polymeric systems and, as a result, one strategy to 

improve this rheological discrepancy involves the use of binary (or higher) mixtures of 

polymers in which rheological synergy may be achieved due to an interaction between the 

chosen polymers (Andrews & Jones, 2006).  Such synergy may be successfully exploited to 

produce platforms that offer an enhanced range of rheological properties that may be 

applicable to the formulation of OVDs (Andrews, Gorman & Jones, 2005a; Dick, 

Krummenauer, Augustin, Pakula & Pfeiffer, 2001).  The rheological properties of the 

candidate OVDs may then be finely tuned by the choice of the concentrations of the 

polymeric components and their ratio.   

 

Therefore, the primary aim of this study was to design interactive blends of polymeric 

components that may be engineered to offer a more appropriate range of mechanical 

(rheological, compressional flow and adhesive) properties; properties that are of specific 

importance to their performance as OVDs.  In particular the polymeric blends investigated, 

ɩ-Carrageenan and Hydroxypropylcellulose, have been chosen due to their known 

biocompatibility, pharmaceutical acceptability and also because these will be less 

expensive than those currently used as OVDs (e.g. hyaluronic acid, chondroitin sulfate) 

(Arshinoff & Jafari, 2005b; Baino, 2011).   
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2. Material and Methods 

2.1  Materials 

Iota (ɩ)-Carrageenan (Commercial Grade, Type II) and Hydroxypropylcellulose (HPC, 

molecular weight 370,000 g mol-1) were purchased from Sigma-Aldrich (Poole, Dorset, UK). 

All other chemicals were of AnalaR grade or equivalent and were purchased from Sigma-

Aldrich (Poole, Dorset, UK) 

 

2.2  Preparation of Mono and Binary Polymeric OVDs 

Mono and binary polymeric systems were prepared by slowly adding the required amount 

of polymer (ι-Carrageenan and/or HPC) to the appropriate amount of water and mixed using 

a yellow line mechanical stirrer (2000 rpm). Manufactured systems were then left to 

equilibrate for 24 hours before testing. All systems were tested within 72 hours. 

 

2.3 Dilute solution (viscometry) studies of mono and binary polymer systems 

Viscometric measurements of polymer solutions were carried out using Rheotek Ostwald U-

tube viscometers size A-D. The temperature was regulated at 37oC ± 0.5 oC by a circulating 

bath. Once added to the U-tube, solutions were allowed 15 minutes to equilibrate to 

temperature before analysis. The kinematic viscosity (u, mm2s-1) of the solution at 

appropriate efflux times was calculated as follows: 

 

u = kt                                                                                                        (Equation 1) 

where:  k is the tube constant and t is the flow time of the solutions (s) 

 

From this the relative viscosity 𝜂"#$ 	is determined: 

𝜂"#$ = 	
'
'(

         (Equation 2) 

Where u0 is the kinematic viscosity of the solvent.  
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The reduced viscosity is calculated (equation 3), which when extrapolated to zero 

concentration defines the intrinsic viscosity [η]: 

 

𝜂"#) = 	
*+,-./
0

= 	 *12
0

        (Equation 3) 

 

where C is the concentration of the polymer in g dL-1 (Harding, 1997). Five replicate 

measurements were performed for each solution. 

 

Modelling of viscometry data for mono and binary polymer solutions was performed using 

the second power exponent of Huggin’s equation, as defined below (Harding, 1997; 

Huggins, 1942): 

 

	*12
0
= 	 𝜂 + 	𝐾5 𝜂 6𝐶      (Equation 4) 

 

where, in addition to the previously defined terms, KH is the Huggins constant.  

 

Determinations of Huggin’s constants and the intrinsic viscosities for each polymer/mixture 

were performed using linear regression analysis setting *12
0

 and C as the dependent and 

independent variables, respectively. 

 

To ascertain polymer-polymer miscibility the interaction terms 𝛼 	for the binary mixtures of 

HEC and ι-carrageenan were calculated using the following equation (Sun, Wang & Feng, 

1992). 

 𝛼 = 	𝐾9 − 𝐾5;0 𝜂5;0 6 𝑊5;0
6 + 	𝐾0="" 𝜂0="" 6 𝑊0=""

6 + 	6 >?@A>AB++ *?@A *AB++ C?@ACAB++
*?@A C?@A	D	 *AB++ CAB++	 E

 

          (Equation 5) 

where: 
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KHEC and KCarr are the Huggin’s constant for HPC and iota-carrageenan, respectively 

Km is the Huggin’s constant of the binary blend 

[ηHPC] and [ηCarr] are the intrinsic viscosities of HPC and iota-carrageenan, respectively. 

𝑊5F0	𝑎𝑛𝑑	𝑊0="" are the weight fractions of HPC and iota-carrageenan, respectively. 

 

2.4  Continuous Shear (flow) rheometry 

Continuous shear analysis was performed at 37oC using a TA AR2000 rheometer. The 

choice of plate size was determined by sample viscosity and a gap size between upper and 

lower plate of 1000µm was used. After application to the lower plate samples were allowed 

to equilibrate for 15 minutes. The shear stress was applied over a predetermined range of 

shear rates, which was governed by sample viscosity. The shearing rate was increased over 

a period of 150s, held at the upper limit for 10s and then decreased over 150s.  The flow 

properties ascertained were the average of five replicates (Jones, Brown & Woolfson, 2001) 

(Bruschi ML, Jones DS, Panzeri H, Gremião MPD, Freitas O & EHG., 2007). Flow curves 

were fitted using the Ostwald-de-Waele equation (power law equation), represented by 

Equation 6 (Jones, Lawlor & Woolfson, 2002): 

 

σ = kγn          Equation 6 

where:  

σ is the shear stress (Pa),  

k is the consistency index (Pa.sn),  

γ is the shear rate (s-1) 

n is the flow exponent 

 

2.5  Dynamic (oscillatory) rheological analysis 

Oscillatory analysis was performed at 37oC using a TA AR2000 rheometer. The geometry 

used for analysis was chosen dependent on sample viscosity with a gap size of 1000µm 
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employed. Samples were applied to the lower plate and allowed to equilibrate for 15 

minutes. For each sample the Linear Viscoelastic Region (LVR) was determined via a stress 

sweep at the upper and lower frequency. Frequency sweeps were performed from 0.1 to 

10Hz within the LVR region. The TA Instruments software, Rheology Advantage, was used 

to calculate the storage modulus (G'), loss modulus (G''), dynamic viscosity (η'), and loss 

tangent (tan δ) (Jones, Laverty & Andrews, 2015; Jones, Muldoon, Woolfson & Sanderson, 

2009).   At least 5 replicate measurements were made in all occasions. 

 

The frequency dependence of the elastic modulus was modelled through a power law 

relationship as previously reported (Ramkumar, Battacharya, Menjovar & Huang, 1996): 

 

Gf=Kfn                                                                                                                                                 Equation 7 

 

G (Pa) is the storage modulus 

f (Hz) is the oscillatory frequency 

n is the power law index  

K (Pa) is the gel strength (at a frequency of 1Hz) 

 

 

Calculation of rheological synergy within binary polymer blends using oscillatory data at a 

defined frequency (10Hz) was performed according to the method reported by (Andrews, 

Gorman & Jones, 2005a; Gallo & Hassan, 1990).  In this, the difference between the 

observed and theoretical storage moduli for the binary systems is calculated as follows: 

 

∆G' = ∆G'mixture - (∆G'CAR + ∆G'HEC)              Equation 8 
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2.6 Evaluation of mechanical properties using texture profile analysis 

The mechanical properties of the candidate OVDs were determined by texture profile 

analysis (TPA) using a TA-XT2 Texture Analyser (Stable Micro Systems, Surrey, England) in 

compression mode as previously described (Bruschi ML, Jones DS, Panzeri H, Gremião 

MPD, Freitas O & EHG., 2007; Jones, Lawlor & Woolfson, 2002).  In this McCartney bottles 

were filled with approximately 16 g of each formulation and centrifuged to remove 

entrapped air.  A polycarbonate probe (10 mm diameter) was then inserted, removed and 

then reinserted into the samples at a rate of 10 mm s-1 to a depth 15 mm. At least five 

replicates of each sample were analysed at 37 ± 0.1ºC. From the resultant force-distance 

plot the hardness, compressibility and adhesiveness of the polymeric platforms were 

calculated (Jones, Lawlor & Woolfson, 2002; Jones, Woolfson & Djokic, 1996): 

 

 

2.7  Statistical Analysis 

Polymer concentration and type effects on consistency and flow indexes (derived for the 

Ostwald-de-Waele model), the viscoelastic properties (G’, G”, tan δ and η’) at five 

representative frequencies (0.595; 3.565; 6.04; 8.515 and 10.0 Hz), gel strength and the 

textural (mechanical) properties (hardness, compressibility and adhesiveness) were 

statistically compared using a two-way ANOVA.  Individual differences between the means 

were identified using Tukey’s Honestly Significant Difference test.  Linear regression 

analysis (in association with the Analysis of Variance and correlation analysis) was employed 

to confirm the validity of the linear relationship described in equation 4.   In all cases, a 

significance level of p<0.05 was accepted to denote significance and therefore individual 

probability values are not cited.  Measurements were performed on at least five replicate 

samples. 
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3. Results and Discussion 
 

The use of OVDs has increased in recent years due, in part, to their ability to both offer 

increased protection to the corneal endothelium and to maintain the anterior space of the 

eye (Andrews, Gorman & Jones, 2005b; Arshinoff & Jafari, 2005b; Ho & Afshari, 2015).  It 

has been reported that ideally OVDs should exhibit a range of properties, including ease of 

administration and removal, to offer protection of the corneal endothelium and intraocular 

tissues and possess the ability to occupy and maintain the intraocular space (Andrews, 

Gorman & Jones, 2005b; Dick & Schwenn, 2000).  Two qualitative terms that are often used 

to categorise OVD products are cohesive and dispersive.  Cohesive OVDs are high viscosity 

products that act to stabilise the ocular environment and maintain the ocular space.  Ideally, 

cohesive systems should be shear thinning and should rheologically recover after the 

application of stress (during administration) to present a viscous structure that resists 

deformation.  Conversely, dispersive OVDs are low viscosity systems that readily flow over 

and adhere to the ocular tissues and act to offer protection to the tissues during 

phacoemulsification (Andrews, Gorman & Jones, 2005b; Mamalis, 2002).  From this 

description it may be discerned that optimisation of the rheological properties of OVDs is 

essential to ensure clinical performance.  In addition, given that many commercial products 

do not exhibit the required rheological properties, an opportunity exists to develop low-cost 

replacement products that offer these properties.  Currently available OVDs are expensive 

and are primarily composed of a single polymeric component, thus limiting the opportunities 

to engineer the prescribed rheological properties.  In this study OVDs have been designed 

that are inexpensive and offer a wider range of rheological properties that are more 

appropriate to the clinical demands of such systems.  The two polymers examined in this 

study are pharmaceutically acceptable and they (or chemically-related derivatives) have 

been used as platforms for ocular application.  For example, cellulose ethers (of which 

hydroxypropylcellulose is a member) have been used as vitreous substitutes (Baino, 2011), 
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as ocular bandage contact lenses (Patchan et al., 2016) and as platforms for drug delivery 

to the front of the eye (Makwana, Patel & Parmar, 2016; Sultana, Aqil, Ali & Zafar, 2006).  

Verification of the tolerance of injections of a cellulose ether (hydroxypropylmethylcellulose) 

has been described by Robert et al. (Robert, Gloor, Wachsmuth & Herbst, 1988).  Similarly 

the in vivo ocular safety of carrageenan has been reported (Fernandez-Ferreiro et al., 2015). 

 

Thus, the rational selection of the polymeric components and their ratios in this study has 

enabled the development of polymeric systems whose rheological properties are more 

aligned with the clinical demands. This approach therefore offers a new strategy for the 

development of ocular implants and will be of great interest to the academic, clinical and 

industrial communities. 

 

3.1 Dilute solution rheometry of mono and binary polymer systems 

Dilute solution rheometry (viscometry) was employed to identify polymer-polymer miscibility, 

a phenomenon that is indicative of interactions between the two polymeric components.  

Using this approach plots of the reduced viscosity against concentration of each of the 

mono and binary dilute polymer solutions were examined and shown to be linear over 

specific concentration ranges (r>0.98), enabling application of Huggin’s equation to the data 

sets (Figure 1).  It should be noted that the applicability of other models that are frequently 

used to define the dilute solution properties of polyelectrolytes, notably those described by 

Fedors and Fuoss (Jones, Laverty, Morris & Andrews, 2016; Morariu, Brunchi & Bercea, 

2012) was examined through linear regression analysis and correlation analysis.  However, 

the goodness of fit of these models was inferior to that associated with the Huggins plot.     

As shown in Figure 1, both the nature of the polymer and the composition of the binary 

mixtures significantly affected their reduced viscosities.  Application of equation 5 allows 

evaluation of the miscibility between ι-Carrageenan and HPC to be determined (Sun, Wang 

& Feng, 1992).    As may be observed in Figure 2, the majority of blends exhibited an 
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interaction parameter that was significantly greater than 0; indicative of polymer-polymer 

miscibility and hence interaction.  The greatest interaction parameter was associated with 

the 80:20 HPC-i-Carrageenan blend.  These results have confirmed that, with the exception 

of blends composed of 30:70, 20:80 and 10:90 HPC-ι-Carrageenan, an interaction between 

these two polymers occurred in the dilute state, the extent of which was dependent on 

blend ratio.  Dilute solution viscometry has been previously used to examine the interactions 

between two polymers.  For example, Bumbu et al. (2005) employed dilute solution 

viscometry to investigate the interaction between HPC and copolymers of maleic acid. Their 

findings suggested that at certain ratios an interpolymer complex was formed between both 

polymers (Bumbu, Vasile, Chitanu & Staikos, 2005). Dilute solution rheometry has 

consequently provided evidence that binary blends of HPC and ι-Carrageenan are 

interactive and may therefore offer unique rheological properties that may be beneficial to 

this proposed application.   

 

3.2 Flow rheometry and textural analysis of mono and binary polymer systems 

The flow and textural properties of both the mono and binary polymeric formulations are 

presented in table 1. Modelling of the flow properties using the Cross model (Cross, 1965) 

was performed however the precision of this model concerning the prediction of the zero-

shear rate viscosity was low (the coefficient of variation frequently exceeding 0.2).  

Accordingly, the relationship between shear stress and shear rate was modelled using the 

Ostwald de Waele equation, allowing the flow properties to be described in terms of the 

consistency and the flow index. The flow index of all candidate OVDs approached 0 and are 

therefore pseudoplastic (shear thinning) in nature, a beneficial property for the chosen 

application. Increasing the concentrations of ι-Carrageenan and HPC significantly increased 

the consistency of the OVDs.  Furthermore, a statistical interaction between these two 

parameters was observed and was due to a disparity in the relationship between the effects 

of each polymer on the consistency.  Hence, increasing the concentration of ι-carrageenan 
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from 0.5 to 1 to 2% w/w increased the consistency of OVDs containing 2-4% HPC.  In the 

presence of 5% HPC, addition of 0.5 and 1% iota-carrageenan significantly increased the 

consistency, conversely, in the presence of 2% polymer the consistency decreased.     

 

In a similar fashion to flow rheometry, increasing HPC and/or ι-carrageenan concentrations 

significantly increased the hardness, compressibility and adhesiveness of the candidate 

ocular implants.  A statistical interaction was again noted between the two primary factors 

(concentrations of both HPC and ι-carrageenan), which was due to the disparity in the 

effects of increasing ι-carrageenan concentration on the textural parameters of platforms of 

each concentration of HPC.  Contrary to other polymer combinations, increasing ι-

carrageenan concentration from 1-2% w/w (but not from 0.5-1% w/w) in systems 

containing 5% w/w HPC significantly lowered the hardness, compressibility and 

adhesiveness of the various OVDs.  The flow and textural (hardness and compressibility) 

properties of OVDs are primary determinants of their clinical performance, defining the ease 

of application to and the ability to fill the ocular space and the ease of removal of the OVD 

from the ocular space at the termination of the clinical procedure.  In particular, the 

compressibility provides a direct measurement of the resistance of the formulation to a 

linear stress and is directly related to the clinical scenario in which the administration of the 

OVD to the anterior space is performed using a syringe.  The combination of HPC and ι-

carrageenan allowed OVDs to be formulated to offer wide ranges of flow and textural 

properties that were not observed by the mono-polymeric counterparts.  Moreover, this 

study has shown that the desired rheological and textural properties may be engineered 

through the manipulation of both the total polymer concentration and the ratio of the 

polymeric components.  The textural parameters complement the results derived from flow 

rheometry.  With respect to the clinical application, platforms showing lower consistencies, 

hardness and compressibility will facilitate administration (typically using a syringe) and flow 

within the ocular chamber and enable removal post-surgery.  The pseudoplastic properties 
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of the platforms will enable structural recovery following implantation and will ensure 

stabilisation of the ocular space.  The observed rheological and textural synergies are 

accredited due to interactions between the two polymer components.  Finally, of particular 

interest is the adhesiveness of the platforms under investigation.  Importantly, OVD 

platforms should adhere to and subsequently protect the corneal endothelium (Neumayer, 

Prinz & Findl, 2008).  This study has uniquely described the adhesive properties of the 

polymeric systems under investigation using texture profile analysis.  Whilst not a direct 

measurement of mucoadhesion, a number of studies have shown the strong correlation 

between mucoadhesion and adhesiveness and therefore the information from this study is 

of relevance to their clinical performance (Irwin, McCullough & Jones, 2003; Jones, McMeel, 

Adair & Gorman, 2003; Jones, Woolfson, Brown, Coulter, McClelland & Irwin, 2000).  The 

range of adhesiveness values displayed by the polymeric platforms under investigation is 

considerable; modification of the ratio of HPC: ι-carrageenan facilitating the design of 

platforms with defined adhesiveness properties.  Ideally, OVDs should display adhesive 

properties that facilitate interaction with the corneal endothelium but do not damage the 

endothelium during the process of removal of the OVD.  In this respect the platforms based 

on 4%w/w HEC and 2% ι-carrageenan and 5% HEC and 1% or 2% ι-carrageenan would 

be deemed unsuitable. 

 

3.3 Viscoelastic properties of mono and binary polymer systems 

The effects of polymer type, concentration and oscillatory frequency on the storage 

modulus, loss modulus and loss tangent of the various mono and binary polymeric 

platforms are shown in Figure 3 and Tables 2, 3 and 4.  Furthermore, information on the 

viscoelastic properties were derived through calculation of the gel strength and power law 

index, both derived from the relationship between storage modulus and oscillatory 

frequency.  Increasing oscillatory frequency and polymer concentration significantly 

increased the storage modulus and the loss modulus until a plateau was observed and 



 15 

reduced the loss tangent of the various platforms.  The effects of increasing polymer 

concentration on the observed gel strength, moduli and loss tangents may be accredited to 

enhanced strength and frequency of polymer-polymer interactions (Halacheva, Adlam, 

Hendow, Freemont, Hoyland & Saunders, 2014; Larsen, Bjornstad, Pettersen, Tonnesen & 

Melvik, 2015).  In so doing the resistance to deformation increased.  Mono-polymeric HPC 

(1-5% w/w) and mono-polymeric ι-carrageenan (0.5-2.0% w/w) exhibited viscoelastic 

properties that were concentration dependent, exhibited loss tangents that were less than 1 

yet their magnitudes of the storage moduli were modest.  By contrast the binary 

compositions exhibited significantly greater storage and loss moduli and displayed low loss 

tangents that were representative of highly elastic gel systems (Winter & Chambon, 1986).  

The binary combination of polymers produced polymeric platforms in which there was 

rheological synergy; the observed storage modulus (and loss modulus) of the binary 

systems statistically exceeding the rheological properties that would be observed by simple 

addition of the individual components (Table 5).  A statistical interaction was observed 

between the two polymers with respect to the interaction parameter.  In this the magnitude 

of rheological synergy was dependent on polymer type and concentration.  Increasing 

concentration of ι-carrageenan significantly increased the observed rheological synergy in 

platforms containing £ 4% but not 5% w/w HPC.  Furthermore, the extent of the increased 

synergy was greatest by increasing the concentration of ι-carrageenan from 1-2% w/w in 

platforms containing 1 and 2% w/w HPC.  Similarly increasing the concentration of ι-

carrageenan in platforms containing 3 and 4% HPC led to an increased but lesser synergy 

whereas in platforms containing 5% w/w HPC, maximum synergy was observed in the 

presence of 1% w/w ι-carrageenan.  These results may be accredited to the effects of 

viscosity on polymer chain mobility (Wang, Li & Pielak, 2010; Xiao, Gupta, Baltas, Liu, Chae 

& Kumar, 2012), the platforms of highest viscosity inhibiting polymer-polymer interactions.  

The power law index was examined as this provides an overview of the frequency 

dependence of the storage modulus of the polymeric platforms.  Increasing the 
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concentration of ι-carrageenan within the binary platforms reduced the power law index of 

the candidate OVDs however the effect of HPC on this parameter was parabolic, i.e. 

statistically concentration independent.  As a result, platforms containing 3% w/w HPC and 

ι-carrageenan exhibited the lowest power law index.  Several platforms exhibited power law 

indices that were ≤ 0.01; their storage moduli being predominantly frequency independent.  

This property is clinically advantageous as it ensures that the rheological properties of the 

OVDs are maintained when exposed to oscillatory, non-destructive stresses during 

phacoemulsification (Dick & Schwenn, 2000; Dick, Krummenauer, Augustin, Pakula & 

Pfeiffer, 2001). 

 

In the dilute solution study (Figure 2), the maximum interaction parameter was associated 

with the 80:20 HPC: ι-carrageenan ratio, however ratios composed of 90:10, 70:30, 60:40, 

50:50 and 40:60 displayed interaction parameters that were ≥ 0.  In the gel state the 

polymer ratios that were associated with maximum rheological synergy were dependent on 

the concentration of HPC but did not directly correlate with the ratios identified using dilute 

solution rheometry.  This disparity may be explained by the inverse relationship between 

solution/gel viscosity and polymer chain mobility and hence the interaction between the two 

polymers (Fu, Pacheco & Prud'homme, 2009; Shimizu & Kenndler, 1999).  

 

 

3.4 Clinical opportunities for the binary polymeric platforms as OVDs 

The rheological and viscoelastic properties of the binary platforms under investigation offer 

significant advantages over both their monopolymeric comparators and against several 

commercially available systems.  The need for a comprehensive understanding of the 

rheological, viscoelastic and related properties of OVDs has been correctly identified 

(Arshinoff & Jafari, 2005a; Dick & Schwenn, 2000). However, this understanding is 

compromised by the challenges associated with the interpretation of the methods used and 
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accordingly, there is a need to characterise the properties of candidate OVDs using 

methods that are more appropriate to understanding their clinical performance (Arshinoff & 

Jafari, 2005a).  The types of methods that are used to assess the suitability of OVDs include 

conventional flow rheometry (from which the zero shear rate viscosity and flow phenotypes 

are derived) and the Poyer assay method, the latter being used to characterise the cohesive 

properties as the break point of a platform (mmHg) whenever exposed to increasing vacuum 

pressures (Poyer, Chan & Arshinoff, 1998).  Based on these methods a classification 

scheme was proposed that described OVDs in terms of their viscosity (low, high, very high) 

and cohesive properties (low, high), with a distinct clinical requirement identified for OVDs 

that possess high cohesion and low viscosity (Arshinoff & Jafari, 2005a).   The zero-shear 

rate viscosity is frequently and indiscriminately used however, in these studies, no 

consideration of the appropriateness of this measurement has been recorded.  The mono-

polymeric and binary polymeric systems described in this study were modelled using the 

Cross model, from which the zero-shear-rate viscosity was determined (Cross, 1965) 

however the precision surrounding this model was poor (coefficient of variation frequently ³ 

0.25).  Under these conditions and indeed whenever pseudoplastic systems are under 

examination and the shear rate range used in the analysis results in a linear inverse 

relationship between log viscosity and log shear rate, extrapolation to zero-shear rate 

viscosity, the region in which there is a plateau in the plot of log viscosity against log shear 

rate, is often problematic.  Therefore, it is suggested that as used in this study, the power 

law model should be used to determine consistency and the flow index; the former being 

related to viscosity and the latter a measure of pseudoplasticity.   Akin to other 

biomedical/pharmaceutical implants, characterisation of OVDs should optimally involve the 

quantification of their viscoelastic properties.  This allows an evaluation of the rheological 

response of the implants under the oscillatory stresses that may be encountered following 

implantation.  Ideally OVDs should display high elasticity (large storage modulus, high gel 

strength) that is preferably frequency independent, the latter being derived from the 
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exponent from the power law relationship between elastic modulus and oscillatory 

frequency.  Furthermore, an assessment of the adhesive properties of OVDs should be 

performed.  This study specifically proposes that the above measures should be routinely 

used to design and optimise the performance of candidate OVDs. 

 

The OVDs classification scheme has identified a number of limitations associated with 

currently available systems, which, through the use of a binary polymeric system, this study 

aimed to address.  This rheological, mucoadhesive and viscoelastic properties of the binary 

systems composed of HPC and ι-carrageenan offer significant possibilities for their clinical 

use as OVDs.   The highly elastic properties of these binary systems, tuneable by modifying 

the ratio of the two polymeric components, would be expected to maintain the ocular space 

and, in so doing, stabilise the ocular environment during lens removal and replacement 

(Dick & Schwenn, 2000).  This is an important clinical concern.  Furthermore, the thixotropic, 

pseudoplastic flow properties of the binary networks will facilitate both administration within 

the ocular space under high shear rates (akin to those that are achieved during injection) 

and will spread over and adhere to the corneal endothelium though mucoadhesive 

interactions, the latter properties being identified in this study.  Surprisingly, given the 

potential importance to protection of the corneal endothelium, the application of 

mucoadhesive systems for use as OVDs has received little attention to date.  It must be 

noted however that care should be given to the formulation of mucoadhesive OVDs as, if 

the mucoadhesive strength is too large, then damage to the corneal endothelium may result 

whenever the device is removed from the ocular space.  This would therefore preclude the 

use of strongly mucoadhesive polymers, e.g. poly(acrylic acid), poly(methylvinylether-co-

maleic anhydride) (Smart, 2005) (Andrews, Laverty & Jones, 2009) within OVDs.  The 

systems in this study have been designed using polymers that are only moderately 

mucoadhesive (Andrews, Laverty & Jones, 2009).  Therefore, the binary platforms formed 

using HPC and ι-carrageenan were engineered to offer mucoadhesive properties that were 



 19 

sufficient (but not excessive) thereby facilitating protection of the corneal endothelium.  

Ideally, candidates should exhibit high (equilibrium) viscosity and elasticity (to maintain the 

integrity of the anterior chamber), low viscosity upon administration to facilitate flow over 

the corneal endothelium and adhesive properties to ensure interaction with the endothelium.   

These properties were not demonstrated by mono-polymeric systems.  However, binary 

platforms composed of 3% HPC and either 1% or 2% ι-carrageenan displayed necessary 

adhesiveness, consistency, elasticity, which, in combination with the low flow index, will 

ensure ease of administration to and retention at the site of application and maintenance of 

the anterior space. 
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4. Conclusions 

In this study, binary polymeric platforms composed of hydroxypropylcellulose (HPC) and ι-

carrageenan have been prepared as candidate ophthalmic viscoelastic devices (OVDs).  

Characterisation of these systems was performed using methods that enabled an 

understanding of their physicochemical properties and, in addition, how these properties 

pertain to their proposed clinical application.  Using viscometry, HPC and ι-carrageenan 

were shown to interact over a wide range of ratios.  At higher concentrations, the binary 

systems existed as pseudoplastic gels whose compressional, viscoelastic and flow 

properties were engineered by modification of both the mass of polymer and the ratio of the 

two polymers used.  Furthermore, the adhesiveness of the systems under investigation were 

uniquely described, a property that is relevant to their clinical interaction with the corneal 

endothelium.  Based on the physicochemical properties, low cost, binary platforms were 

identified that show promise as candidate OVDs, notably those composed of 3% HPC and 

either 1% or 2% ι-carrageenan.  Finally, this study has described the physicochemical 

properties, including a measurement of adhesiveness, using methods that are reproducible, 

repeatable and which provide information relevant to their clinical performance as OVDs.  It 

is recommended that these methods should be employed in the development of new OVDs. 
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Figure legend 

 

Figure 1. The relationship between the (mean ± standard deviation, n=5) reduced 

viscosity and polymer concentration.  Symbols: 100:0 (Carr: HPC) circles, 90:0 (Carr: HPC) 

squares, 70:30 (Carr: HPC) triangles, 50:50 (Carr: HPC) crosses, 30:70 (Carr: HPC) 

diamonds. 

 

Figure 2.  The relationship between the (mean ± standard deviation, n=5) interaction 

parameter and weight fraction of ι-carrageenan in HPC: i-carrageenan binary mixtures, 

calculated using data from dilute solution rheometry. 

 

Figure 3.  The effect of oscillatory frequency on the (mean ± standard deviation) storage 

modulus of mono-polymer platforms composed of different concentrations of ι-

carrageenan.  Symbols:  1% w/w carrageenan (crosses), 2% w/w carrageenan (triangles), 

3% w/w carrageenan (diamonds), 4% w/w carrageenan (squares) and 5% w/w carrageenan 

(circles).  Standard deviations are included. 
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Table 1.   The effect of polymer concentration and ratio of hydroxypropylcellulose to iota-carrageenan on the compressional (hardness,  

Compressibility and adhesiveness) and flow (consistency, flow index) properties of mono and binary OVDs 

Polymer components (% w/w) Mean (± sd) compressional properties Mean (± sd) Flow properties 

HPC i-Carrageenan Hardness (N) Compressibility 

(N mm) 

Adhesiveness 

(N mm) 

Consistency 

(Pa.sn) 

Flow Index 

1 2 0.28 ± 0.01  1.26 ± 0.03 0.83 ± 0.02 Not measured Not measured 

2 0.5 0.21 ± 0.00 0.98 ± 0.02 0.80 ± 0.01 55.91 ± 3.42 0.34 ± 0.00 

2 1 0.37 ± 0.00 1.74 ± 0.02 1.21 ± 0.03 174.37 ± 4.30 0.23 ± 0.01 

2 2 0.57 ± 0.00 2.81 ± 0.06 2.13 ± 0.09 216.67 ± 18.97 0.14 ± 0.00 

3 0.5 0.33 ± 0.00 1.36 ± 0.01 1.21 ± 0.02 245.00 ± 4.77 0.24 ± 0.00 

3 1 0.60 ± 0.00 2.79 ± 0.03 1.78 ± 0.06 382.50 ± 3.17 0.19 ± 0.00 

3 2 0.91 ± 0.01 3.99 ± 0.09 2.44 ± 0.03 425.73 ± 17.33 0.17 ±0.01 

4 0.5 0.40 ± 0.01 1.76 ± 0.08 1.34 ± 0.03 320.67 ± 22.55 0.25 ± 0.00 

4 1 0.75 ± 0.02 3.43 ± 0.02 3.51 ± 0.09 429.10 ± 4.68 0.21 ± 0.00 

4 2 1.19 ± 0.02 5.50 ± 0.30 7.16 ± 0.11 476.37 ± 6.01 0.18 ± 0.01 

5 0.5 0.78 ± 0.00 3.54 ± 0.01 3.89 ± 0.06 613.80 ± 6.31 0.20 ± 0.00 

5 1 1.43 ± 0.05 6.52 ± 0.09 5.52 ± 0.21 652.86 ± 12.15 0.15 ± 0.00 

5 2 1.24 ± 0.01 4.75 ± 0.04 4.68 ± 0.05 534.70 ± 14.61 0.23 ± 0.00 

 

  



Table 2. The effect of polymer concentration and ratio of hydroxypropylcellulose to iota-carrageenan on the storage modulus of mono 
  and binary polymeric solutions 

Polymer concentration (%w/w) Mean (± s.d.) Storage Modulus (Pa) at defined frequencies (Hz) 

HPC Carrageenan 0.59Hz 3.0Hz 8.0Hz 10Hz 

1 0 2.91 ± 0.58 8.04 ± 0.54 14.93 ± 0.87 16.80 ± 0.84 

1 0.5 20.80 ± 0.96 43.88 ± 3.65 62.88 ± 3.86 68.29 ± 4.01 

1 1 70.58 ± 5.02 104.55 ± 7.21 129.07 ± 6.26 138.52 ± 6.96 

1 2 315.77 ± 13.89 362.15 ± 18.92 379.20 ± 21.02 384.05 ± 16.00 

2 0 47.09 ± 2.00 109.74 ± 8.22 157.78 ± 5.97 166.30 ± 7.05 

2 0.5 57.00 ± 2.30 119.43 ± 7.02 165.18 ± 5.04 176.12 ± 10.06 

2 1 189.06 ± 16.01 286.20 ± 10.02 348.88 ± 12.65 366.97 ± 9.54 

2 2 735.40 ± 43.00 903.55 ± 44.53 999.64 ± 58.83 1020.02 ± 56.85 

3 0 158.02 ± 8.89 312.46 ± 16.00 415.59 ± 15.32 439.95 ± 19.47 

3 0.5 312.56 ± 10.55 537.48 ± 14.76 646.6 ± 18.62 720.69 ± 22.69 

3 1 485.53 ± 16.97 697.64 ± 28.01 836.87 ± 25.32 870.53 ± 31.01 

3 2 813.77 ± 21.05 978.96 ± 25.96 1039.13 ± 28.22 1053.44 ± 32.55 

4 0 281.35 ± 9.37 466.79 ±12.38 535.04 ± 16.88 558.00 ± 27.82 

4 0.5 407.42 ± 10.03 686.57 ± 25.63 863.31 ± 28.94 908.08 ± 31.00 

4 1 638.11 ± 18.52 951.06 ± 21.08 1138.74 ± 38.55 1181.89 ± 34.02 

4 2 1068.40 ± 29.00 1292.88 ± 35.04 1416.98 ± 40.02 1444.10 ± 43.05 



5 0 538.97 ± 17.27 810.14 ± 19.04 906.43 ± 28.53 911.79 ± 30.12 

5 0.5 860.99 ± 23.05 1349.48 ± 32.97 1648.61 ± 38.55 1704.06 ± 35.68 

5 1 1156.50 ± 33.30 1633.19 ± 38.41 1857.64 ± 42.06 1918.16 ± 48.93 

5 2 1374.23 ± 40.65 1656 .45 ± 43.37 1809.90 ± 48.93 1830.01 ± 36.42 

  



Table 3. The effect of polymer concentration and ratio of hydroxypropylcellulose to iota-carrageenan on the loss modulus of mono  
  and binary polymeric solutions 

Polymer concentration (%w/w) Mean (± s.d.) Loss Modulus (Pa) at defined frequencies (Hz) 

HPC Carrageenan 0.1Hz 3.0Hz 6.0Hz 10Hz 

1 0 1.08 ± 0.18 8.83 ± 0.22 11.42 ± 0.05 13.32 ± 0.13 

1 0.5 8.82 ± 0.41 28.53 ± 0.69 33.12 ± 0.81 37.09 ± 0.24 

1 1 30.50 ± 2.28 35.60 ± 2.37 39.12 ± 2.55 42.08 ± 2.89 

1 2 65.22 ± 2.18 62.94 ± 2.22 61.79 ± 2.24 61.62 ± 2.30 

2 0 57.34 ± 0.42 72.72 ± 0.44 80.51 ± 0.61 85.30 ± 0.46 

2 0.5 53.76 ± 6.12 67.67 ± 6.99 75.57 ± 7.40 81.21 ± 7.79 

2 1 88.21 ± 3.37 98.95 ± 3.51 105.17 ± 3.23 109.17 ± 3.24 

2 2 162.67 ± 12.21 166.10 ± 11.93 166.30 ± 10.86 166.37 ± 9.85 

3 0 135.77 ± 0.61 156.30 ± 0.52 164.37 ± 0.67 166.87 ± 1.27 

3 0.5 201.67 ± 4.65 223.27 ± 5.17 231.00 ± 5.62 233.63 ± 5.92 

3 1 216.00 ± 5.25 225.93 ± 3.36 228.63 ± 2.08 227.93 ± 1.33 

3 2 207.73 ± 14.30 195.17 ± 12.35 187.60 ± 9.90  183.93 ± 8.61 

4 0 173.63 ± 5.21 179.57 ± 4.98 176.83 ± 4.83 173.10 ± 4.69 

4 0.5 249.83 ± 8.56 272.23 ± 9.31 278.97 ± 9.47 279.73 ± 8.39 

4 1 286.07 ± 3.15 297.67 ± 3.12 299.43 ± 3.57 295.83 ± 3.54 

4 2 221.23 ± 4.87 221.07 ± 4.17 219.80 ± 4.50 217.27 ± 2.32 



5 0 268.57 ± 15.89 264.70 ± 15.58 259.30 ± 14.68 272.03 ± 11.61 

5 0.5 439.90 ± 4.40 451.77 ± 4.83 447.47 ± 3.50 438.67 ± 3.20 

5 1 430.97 ± 6.28 427.10 ± 10.05 415.33 ± 12.67 404.20 ± 13.73 

5 2 277.40 ± 6.16 271.23 ± 5.55 270.07 ± 8.04 266.70 ± 8.33 

  



Table 4. The effect of polymer concentration and ratio of hydroxypropylcellulose to iota-carrageenan on the loss tangent of mono  
  and binary polymeric solutions 

Polymer concentration (%w/w) Mean (± s.d.) Storage Modulus (Pa) at defined frequencies (Hz) 

HPC Carrageenan 0.1Hz 3.0Hz 6.0Hz 10Hz 

1 0 1.51 ± 0.10 1.06 ± 0.05 0.91 ± 0.04 0.81 ± 0.03 

1 0.5 0.80 ± 0.00 0.65 ±0.00 0.58 ± 0.00 0.55 ± 0.03 

1 1 0.37 ± 0.00 0.34 ± 0.00 0.32 ± 0.00 0.31 ± 0.00 

1 2 0.19 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.16 ± 0.00 

2 0 0.83± 0.00 0.64 ± 0.00 0.54 ± 0.00 0.49 ± 0.00 

2 0.5 0.68 ± 0.00 0.56 ± 0.00  0.50 ± 0.00 0.46 ± 0.00 

2 1 0.39 ± 0.00 0.34 ± 0.00 0.32 ± 0.00 0.30 ± 0.00 

2 2 0.20 ± 0.00 0.18 ± 0.00 0.17 ± 0.00 0.16± 0.00 

3 0 0.65 ± 0.00 0.50 ± 0.00 0.42 ± 0.00 0.38 ± 0.00 

3 0.5 0.52 ± 0.00 0.42 ± 0.00 0.36 ± 0.00 0.32 ± 0.00 

3 1 0.38 ± 0.00 0.32 ± 0.00 0.28 ± 0.00 0.26 ± 0.00 

3 2 0.23 ± 0.01 0.20 ± 0.01 0.18 ± 0.00 0.17 ± 0.00 

4 0 0.50 ± 0.00 0.39 ± 0.00 0.34 ± 0.00 0.33 ± 0.00 

4 0.5 0.50 ± 0.00 0.40 ± 0.00 0.34 ± 0.00 0.31 ± 0.00 

4 1 0.38 ± 0.00 0.31 ± 0.00 0.28 ± 0.00 0.25 ± 0.00 

4 2 0.19 ± 0.00 0.17 ± 0.00 0.16 ± 0.00 0.15 ± 0.00 



5 0 0.42 ± 0.01 0.33 ± 0.01 0.30 ± 0.01 0.31 ± 0.03 

5 0.5 0.42 ± 0.01 0.33 ± 0.00 0.29 ± 0.00 0.26 ± 0.00 

5 1 0.32 ± 0.01 0.26 ± 0.00 0.23 ± 0.00 0.21 ± 0.00 

5 2 0.19 ± 0.01 0.16 ± 0.00 0.15 ± 0.00 0.15 ± 0.00 

  



Table 5. The storage modulus interaction parameter, gel strength and power 
law index of mixtures of HPC and iota-carrageenan 

Polymer Concentration (%w/w) Mean (± sd) Rheological Properties 

HPC ι-Carrageenan Interaction 

Parameter (Pa) 

Gel Strength 

(kPa) 

Power Law 

Index  

1 0.5 38.1 ± 3.1 0.00 ± 0.00 0.39 ± 0.01 

1 1 85.5 ± 3.9 0.01 ± 0.00 0.32 ± 0.01 

1 2 394.7 ± 21.1 0.03 ± 0.00 0.23 ± 0.01 

2 0.5 81.1 ± 4.2 0.08 ± 0.00 0.34 ± 0.01 

2 1 160.7 ± 10.8 0.22 ± 0.01 0.24 ± 0.00 

2 2 665.5 ± 22.6 0.80 ± 0.03 0.10 ± 0.00 

3 0.5 283.9 ± 10.4 0.40 ± 0.01 0.25 ± 0.02 

3 1 399.5 ± 15.2 0.59 ± 0.03 0.17 ± 0.00 

3 2 467.7 ± 12.6 0.91 ± 0.03 0.06 ± 0.00 

4 0.5 386.8 ± 12.5 0.52 ± 0.01 0.24 ± 0.01 

4 1 635.8 ± 26.9 0.77 ± 0.01 0.18 ± 0.01 

4 2 743.4 ± 20.0 1.16 ± 0.04 0.09 ± 0.00 

5 0.5 805.2 ± 19.4 1.07 ± 0.06 0.20 ± 0.01 

5 1 986.6 ± 42.2 1.49 ± 0.04 0.15 ± 0.02 

5 2 738.4 ± 19.2 1.40 ± 0.04 0.09 ± 0.00 

 

 

  



 

 

Figure 1 

 

 

 

Figure 2  

0.00 0.02 0.04 0.06
0

10

20

30

40

50

Polymer Concentration (g/L)

M
ea

n 
(±

 s
d)

 R
ed

uc
ed

 V
is

co
si

ty
 (d

L/
g)

20 40 60 80 100

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

%HEC (%w/w)

In
te

ra
ct

io
n 

Pa
ra

m
et

er



 

‘ 

Figure 3 

 

0.1 1 10
10

100

1000

10000

Frequency (Hz)

M
ea

n 
(±

 s
d)

 S
to

ra
ge

 M
od

ul
us

 (P
a)


	Carb Polymers OVD Paper Final 
	Carb Polymers OVD Tables Final

