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 Abstract—Recently gap waveguides have been shown as a 
potential alternative to conventional waveguides in the millimeter-
wave band. Groove Gap Waveguide (GGW) has until now been 
studied though direct correspondence with rectangular waveguide 
with the same propagation channel dimensions. However there 
have been observed differences in the above cutoff propagation 
characteristics between these waveguide types. Furthermore, the 
behaviour of GGW below cutoff remains unknown. This work 
presents a discussion of below and above cutoff propagation 
characteristics, and introduces a simple model that explains 
observed GGW behavior and establishes its propagation 
characteristics. 

Index Terms—groove gap waveguide, transmission lines, 
impedance, evanescent propagation. 

I.  INTRODUCTION  
The millimeter-wave band [1]-[4] continues to attract the 

interest of the research community as new applications 
consistently demand the development of suitable components. 
At millimeter wave bands, dielectric materials can have high 
losses [5]-[6] and coupling to substrate modes [7]-[8] can be 
problematical. Recently, in an attempt to solve these problems, 
Gap Waveguide (GW) was proposed [10]-[11]. GW is based on 
the use of a periodic structure, usually realized by square metal 
pins, Fig. 1. The pin lattice introduces a high impedance 
condition at the plane above the pins. Thus, by placing a metal 
plate at a distance ℎ𝑎𝑎 = 𝜆𝜆/4 from the top of the pins, over a 
certain frequency range defined by the periodic lattice 
parameters, no wave can propagate in this region. Groove Gap 
Waveguide (GGW) can take two versions, vertical polarization 
(VP), Fig. 1(a), and horizontal polarization (HP), Fig. 1(b). Both 
versions act in a similar manner to a rectangular waveguide, 
propagating a quasi- TE mode. 

GGWs have shown their potential advantage versus 
conventional waveguide through prototypes, including couplers, 
filters and antennas [12]-[15]. However, at this moment, 
although the behavior of the periodic lattice is characterized 
[16], it seems that more effort is necessary in the development 
of simple models that explain better GGW propagation 
characteristics especially close to, and below cut-off.  

The difficulty in characterizing gap waveguide arises from 
the presence of the periodic pin structure, which leads to a 

waveguide which is not homogeneous in the propagation 
direction and has many design parameters. Homogenization of 
the structure based on metamaterial analogies has led  to 
analytical models [17]-[19], however unlike metamaterials, the 
periodic structure in GGW can be comparable with the operating 
wavelength, thus calling into question their general 
applicability, [17]-[21]. 

In particular the propagation characteristics of GGW have 
not been analyzed in great detail. Usually it is assumed that 
GGW behaves like a rectangular waveguide with the same 
propagation channel dimensions [20]. However, important 
differences between GGW and rectangular waveguide will in 
this paper be shown to exist. GGW behavior near to, or below, 
cutoff has to date, to the authors knowledge, not been reported. 
Below cutoff aspects are important since it is known that 
waveguide evanescent components can be compact and be made 
to exhibit spurious free responses [22]-[25].  

The main aim of this paper is to address the aforementioned 
questions. Moreover, it presents a simple model which shows 
agreement with simulated results and provides a simple 
explanation of how GGW operates. It is also is useful as a tool 
for extracting the influence of the different waveguide 
parameters in the dispersion diagram though fast parametric 
analysis,  thus avoiding the need for very time consuming full-
wave EM simulation. The remainder of this paper will focus on 
GGW-VP1, which is the option, to date, chosen to implement 
high quality resonators [26] and low insertion loss filters [13], 
[27].  

   

  

a) GGW-VP b)  GGW-HP 
Fig. 1. Gap waveguides. 

 
Fig. 2. GGW fundamental mode 



II. THE PAPER IS ORGANIZED AS FOLLOWS. IN SECTION II 
THE GROOVE GAP WAVEGUIDE IS PRESENTED, AND ITS 

PROPAGATION CHARACTERISTICS ARE STUDIED BOTH BELOW 
AND ABOVE CUTOFF. THE OBSERVED DIFFERENCES BETWEEN 

THIS WAVEGUIDE AND CLASSICAL RECTANGULAR WAVEGUIDE 
ARE DISCUSSED. IN SECTION III A SIMPLE PROPAGATION MODEL 
IS PROPOSED AND THE RESULTS OBTAINED SHOWN. IN SECTION 

IV A PARAMETRIC STUDY OF THE PERIODIC STRUCTURE IS 
CARRIED OUT. FINALLY, CONCLUSIONS AND OVERALL 

REMARKS ARE GIVEN.  GROOVE GAP WAVEGUIDE 
The GGW was first proposed in [10]. Fig. 2 shows the 

transverse view of this type of waveguide, its main geometrical 
parameters and fundamental, propagating mode. The periodic 
structure inhibits propagation in lateral directions and imposes a 
propagation mode similar to the TE01 mode of standard 
rectangular waveguide.  

 
Although the lateral periodic structures should in theory be 

of infinite extent, in practice they can be significantly truncated 
without significant loss of performance. Three rows of pins have 
been shown as sufficient to achieve the desired effect of 
forbidden propagation [13], [26]. 

A. Operation above cutoff 
To analyze the dispersion diagram of the structure the 

dimensions used in [13] are taken for reference. These 
dimensions are hp=2.4 µm, w=0.3 µm, p=0.9 µm, ha=0.375µm 
and a=4.7µm. All simulations are carried out using CST® [28]. 
Fig. 3 shows the propagation constant of the first modes for this 
structure. The black curve is the propagation constant of a plane 
wave, blue curves correspond to unwanted modes and the green 
dashed curve is the desired mode. The propagation constant of a 
rectangular waveguide with same dimensions as the propagation 
channel of the GGW is displayed for comparison. It can be seen 
that the band [28.1 GHz – 52.9 GHz] represents the stopband of 
the periodic structure, so that here only the desired mode 
propagates in the waveguide. 

In previous works, [13], [20], [27], it has been assumed that 
the analogue of a GGW is a rectangular waveguide having the 
same propagation channel dimensions. However, when 
comparing the curves in Fig. 3 of the GGW with those of the 
rectangular waveguide it can be said that in the upper half of the 
stop band both curves are similar, but that this is no longer true 
at near cutoff. In fact, both waveguides present a different cutoff 

frequency, and even for frequencies where they are similar a 
greater dispersive behavior is observed for the GGW structure. 

To further characterize the propagation properties of GGW, 
the width of the propagation channel a is parameterized. To 
cover the possible cases of having cutoff going from near the 
minimum frequency of the stopband to near the maximum 
frequency of the stopband, six values of a equally distributed 
between a=2.8 µm and a=6 µm (both included) are considered. 
The standard waveguide configuration is represented by the 
curve a=4.72µm [13]. 

The results of this parameterization are shown in the Fig. 4. 
Here, in most cases, the GGW presents a higher cutoff frequency 
than its rectangular waveguide counterpart, especially as a 
increases. This means that GGW is effectively smaller in 
propagating aperture than the equivalent rectangular waveguide. 
The contrary could be expected since in GGW the fields are not 
strictly transmitted in the channel, but spread evanescently 
through the lateral pin regions. As a decreases this difference 
becomes smaller and, if a is small enough ( a=2.8 µm the GGW 
has lower cutoff frequency  than the rectangular waveguide, and 
becomes effectively larger than the rectangular waveguide. 

In general, simulation reveals GGW to exhibit a more 
dispersive behavior when compared with rectangular 
waveguide. For the cases of larger a the GGW curve grows 
faster with frequency and reaches the rectangular waveguide 
curve, and, although it surpasses it, both curves are quite similar 
from that point. For the cases of smaller a, this difference is 
greater and both curves diverge having only a very narrow band 
of coincidence, or even no coincidence e.g. at a=2.8 µm where 
a very dispersive curve is observed. 

From the above study the standard assumption of 
equivalence between rectangular waveguide and GGW is valid 
only in a certain frequency bands determined by specific range 
values of a. 

B. Operation below cutoff 
In a below cutoff rectangular waveguide the lateral 

conditions are electric walls and evanescent energy is delivered 
along the axial direction only. In the GGW, the condition of 
forbidden propagation into the pins regions permits also 
exponential decay as a lateral condition [17]. Consider the 
following example; the electric field is simulated for the case 
a=4.72 mm, which implies a cutoff of fc=34.68 GHz in 

 
Fig. 2. GGW dispersion diagram  

 

 
Fig. 4. Propagation constant of  discussed GGW and  rectangular 
waveguide for different values of a. 



rectangular waveguide. Since the stopband of the GGW 
structure starts at f=28.1 GHz, three frequencies are analyzed, 
f=28 GHz (outside the stopband, mode below cutoff), f=29 GHz 
(inside the stopband, mode below cutoff), and f=40 GHz (inside 
the stopband, mode under usual operation). The results of this 
comparison are shown in the Fig. 5. As can be seen, outside the 
stopband, the field spread into the pin structure and attenuation 
is increased while when inside the stopband energy is delivered 
along the axial direction in a similar manner to the rectangular 
waveguide.  

It is observed that the field spreads more in the lateral 
directions when the mode is below cutoff. This can be seen in 
Fig. 6 where the Ey component as a function of x on a transversal 
plane z=z0 for different heights is plotted. The frequencies 
considered are f=29 GHz (far below cutoff), f=34 GHz (near 
below cutoff), f=40 GHz (normal operation), and f=52 GHz (far 
above cutoff). It is seen that the field is better confined in the 
propagation channel as frequency increases. Near to cutoff axial 
attenuation is lower suggesting that the lateral conditions are 
presenting a higher attenuation path. Above cutoff lower 
interaction with the GGW lateral walls occur. These results 
suggest that GGW can operate below cutoff in an analogous 
manner to rectangular waveguide. However the differences 
between both waveguide types are accentuated. 

We now study the dispersion diagram of the structure under 
cutoff operation. Above cutoff the calculation of propagation 
constant given in [29] is sufficient. Below cutoff we simulate the 
entire structure, Fig. 5(a), and evaluate, 

𝛼𝛼 �
𝑁𝑁𝑁𝑁
𝑚𝑚
� =

ln
𝐸𝐸𝑦𝑦(𝑧𝑧1)
𝐸𝐸𝑦𝑦(𝑧𝑧𝑧𝑧)
𝑧𝑧1 − 𝑧𝑧2

 
(1) 

here  𝑧𝑧1 > 𝑧𝑧2.  

The results of this study are shown in Fig. 7, which displays 
the attenuation and propagation constants of a rectangular 
waveguide (analytical) and a GGW (eigenvalue computation, 
and field computation of the full structure) for the case of a=4.72 
µm.  

Fig.7 indicates that the difference between the curves for both 
waveguide types continue increasing when the frequency goes 
below cutoff. Further, as the frequency decreases, the 
attenuation in the GGW grows faster than in the rectangular 
waveguide. Furthermore GGW exhibits growth as the stopband 
limit approaches instead of the expected slope decrease. Similar 
results have been observed for other cases of a, indicating that 
rectangular waveguide and GGW behave noticeably different 
below cutoff. 

III.  PROPOSED MODEL 

 From the previous study it is clear that assuming that for 
identical a GGW behaves equivalently to a rectangular 
waveguide implies error unless fc is near to the low stopband 
limit and that frequency of operation is far enough from cutoff. 
Moreover modelling this behavior is not possible by scaling the 
rectangular waveguide by a constant factor since a frequency 
dependent behaviour is observed. The shape of the obtained 
curves indicates that a mechanism is occurring within the 
structure which involves reactance being introduced by the 
periodic lattice. 

     
a) GGW-VP b)  GGW-HP 

  
c) GGW-VP d)  GGW-HP 

Fig. 5. Ey field inside a GGW with  a=4,72 mm for different classes of 
propagation. 

 

     
a) f=29 GHz b) f=34 GHz 

  
c) f=40 GHz d) f=52 GHz 

Fig. 6. Ey(x) GGW with a=4,72 µm on a transversal plane at different heights 
yi. Blue line is  y= hp/2, green line is  y= hp, and red line is  y= hp+ ha. 

 
Fig. 7. Propagation and attenuation constant for a rectangular waveguide 
and a GGW of  a=4,72 µm 



A. Employed Model 
Consider GGW, but now with regard to propagation in the 

lateral direction x. What is of interest is the impedance Zl seen 
looking into the first row of pins, Fig. 8, where Zl is the 
impedance of the waves incident on the sidewall. At cutoff 𝛽𝛽 =
0 so that propagation is completely in the transversal direction. 
The port is placed on the first pin with the rest of the arrangement 
terminated as a perfect electric conductor (PEC). Hence referred 
to this port the normalized impedance of the structure is 

 

𝑍𝑍𝑙𝑙𝑙𝑙 =
1 + 𝑆𝑆11
1 − 𝑆𝑆11

 (2) 

 

To obtain the required 𝑆𝑆11, the structure is simulated using 
CST. For canonical shapes further reductions in computing time 
are possible, [30]-[31]. With the model in Fig.8 only a small part 

of a periodic cell is discretized and solved for its scattering 
parameters. This results in a significantly faster solution process 
than by direct eigenvalue solution [36]. Moreover, once the 
structure is solved, the results obtained for the lateral impedance 
are valid for any a while other approaches require a new 
simulation for every a. The resulting normalized impedance by 
this approach is shown in the Fig. 9. We can see that the periodic 
structure presents a reactance that exhibits capacitive behaviour 
at the beginning of the stopband changing to inductive behavior 
at the end of the stopband crossing zero at f=47.94 GHz. 

Let now consider the normalized input impedance of 
transmission line of characteristic impedance 𝑍𝑍0 loaded with an 
impedance 𝑍𝑍𝐿𝐿which for  𝑍𝑍𝐿𝐿 = 0, i.e., PEC terminated becomes  
  

 𝑍𝑍𝑖𝑖𝑙𝑙 = 𝑗𝑗tan (𝛽𝛽𝛽𝛽) (3) 

 

hence 

 

𝛽𝛽 = −
1
𝛽𝛽
𝑡𝑡𝑡𝑡𝑡𝑡−1(𝑗𝑗 𝑍𝑍𝑖𝑖𝑙𝑙) (4) 

 

Thus the GGW is equivalent to a rectangular waveguide 
having lateral walls positioned at a distance which depends on 
 𝑍𝑍𝑙𝑙𝑙𝑙 . We have therefore a virtual rectangular waveguide with 
𝑡𝑡′ = 𝑡𝑡 + 2𝛽𝛽 (see Fig. 8). 

Since for small arguments the function 𝑡𝑡𝑡𝑡𝑡𝑡−1(𝑥𝑥) is almost 
linear, the behaviour of both  𝑍𝑍𝑙𝑙𝑙𝑙  and 𝛽𝛽  is quite similar. 
Depending on the sign of l, the GGW will be equivalent to a 
smaller (l<0) or a larger (l>0) rectangular waveguide, as shown 
in the inset in Fig.10. 

 

B. Results 
The cutoff frequency of the fundamental mode in a 

rectangular waveguide is: 

𝑓𝑓𝑐𝑐 =
𝑐𝑐

2𝑡𝑡
  (5) 

Since in the proposed model for the GGW the equivalent 
width 𝑡𝑡′ depends on the frequency the term 𝑓𝑓𝑐𝑐 will also have this 
dependence. 

 

 
Fig. 8. Schematic of the employed method 

 
Fig. 9. Lateral impedance viewed at the first pin row plane. 

 

Fig. 10. Distance l at which a PEC wall would produce the same impedance 
as the periodic structure. 



Fig. 11. Lateral impedance viewed at the first pin row planes. 

 

For a given frequency 𝑓𝑓0, one has 𝑡𝑡′(𝑓𝑓0) and by (5),  𝑓𝑓𝑐𝑐(𝑓𝑓0). 
A zero-finding routine is applied to 𝑦𝑦(𝑓𝑓) = 𝑓𝑓𝑐𝑐(𝑓𝑓) − 𝑓𝑓, in order 
to obtain the cutoff frequency for the GGW. In  Fig. 11 the cutoff 
frequency as a function of a for both rectangular and GGW, 
comparing eigenvalue solution and proposed method are given. 
The time spent in the zero-finding routine is negligible. 

The propagation or attenuation constant of the GGW can 
now be obtained through the standard rectangular waveguide 
formulas: 

𝛽𝛽 = �𝑘𝑘2 − �𝜋𝜋
𝑎𝑎′
�
2

          𝑓𝑓 ≥ 𝑓𝑓𝑐𝑐 (6) 

𝛼𝛼 = ��𝜋𝜋
𝑎𝑎′
�
2
− 𝑘𝑘2          𝑓𝑓 < 𝑓𝑓𝑐𝑐 (7) 

From Fig. 12 it can be seen how the presented method shows 
good agreement with the full numerically intensive eigenvalue 
problem solutions and field examination. The proposed method 
is therefore interesting for component optimization due to its 
speed and additional physical insight on GGW behavior. 

Above cutoff as 𝑡𝑡′  grows with frequency  (6) implies  for 
GGW that 𝛽𝛽  grows with the frequency faster than in the 
rectangular waveguide case. When the term 𝑘𝑘2  is large 
compared with (𝜋𝜋/𝑡𝑡)2 the variation of 𝑡𝑡′ is less significant   and 
the propagation behavior is similar to that of standard 

rectangular waveguide. This occurs for large a and high 
frequencies.  

Below cutoff as frequency is reduced the term 𝑘𝑘2 becomes 
small compared with (𝜋𝜋/𝑡𝑡)2 , thus regarding (7)  𝛼𝛼  exhibits  
growth with the decrease of 𝑡𝑡′  with frequency. This effect 
explains why the 𝛼𝛼  curve of the GGW does not exhibit a 
reduction of its slope as occurs with the rectangular waveguide 
when the frequency decreases. Below cutoff conditions under 
which the rectangular waveguide and GGW of same 
propagation channel dimensions behave similarly could not be 
found.  Due to the Foster Reactance Theorem [37] translated 
though (4) GGW should exhibit greater or equal dispersion than 
the equivalent rectangular waveguide. 

 

 

IV. PARAMETERIZATION OF THE PERIODIC STRUCTURE 

Depending on the final application, e.g. [35], [36], it would 
be desirable to be able to engineer the dispersive behaviour of 
the GGW. Regarding (6) and (7) the dispersion curves can be 
controlled if the adequate frequency response of the effective 
width of the GGW, 𝑡𝑡′(𝑓𝑓) , can be achieved by properly 
designing the periodic structure and obtaining the correct 
𝑍𝑍𝑙𝑙𝑙𝑙(𝑓𝑓). This section now studies the influence that different 
periodic structure parameters have on 𝑍𝑍𝑙𝑙𝑙𝑙(𝑓𝑓). 

   
(a) 𝑡𝑡 =2.80 mm (a) 𝑡𝑡 =3.44 mm (a) 𝑡𝑡 =4.08 mm 

   
(a) 𝑡𝑡 =4.72 mm (a) 𝑡𝑡 =5.36 mm (a) 𝑡𝑡 =6.00 mm 

Fig.12 Simulated propagation and attenuation constants of rectangular waveguide and GGW. 

 



A. Model based parameters 
The main parameters of the periodic structure are given in 

Fig. 2. The influence of w is shown in the Fig. 13, where 𝑍𝑍𝑙𝑙𝑙𝑙(𝑓𝑓) 
is displayed for several cases of this parameter. In this graph and 
the following ones, the original value of the parameter 
correspond to the thickest black curve and the frequency range 
corresponds to the original stopband. 

It is observed that an increase of pin width leads to a 
reduction of stopband bandwidth hence a more dispersive 
waveguide. Also as w is increased the capacitances between the 
pins and between each pin and the top plate increases. This 
implies a lower negative contribution to the total reactance for a 
given frequency (larger values of the reactance). On reducing w, 
the stopband slightly increases and moves to higher frequencies. 
For this case the inductance introduced by the pins increases. 
This can be observed when w=0.1 mm which shows a larger 
slope in the central zone of the stop band. In Fig. 14 period p is 
parameterized. Larger periods produce a wider stopband, 
however, it is observed that those cases exhibit a greater slope in 
the impedance curve, as well as displacement of the resonance 
towards the center of the stopband. 

 This effect seems to be caused by the decrement of the 
capacitances between pins which compensates, to an extent, pin 
inductance. However, the effect of pin period is less strong than 
that observed for pin width. It should be noted that very small 
periods imply that three rows of pins are insufficient to achieve 
the desired effect of lateral attenuation. 

Finally, the distance ℎ𝑎𝑎 at which is placed the top metal plate is 
parameterized, Fig. 15. This parameter is known to have 
influence in the bandwidth of the stopband [16]. The smaller ℎ𝑎𝑎 
is the larger the bandwidth obtained. Because of this, if small ℎ𝑎𝑎 
is used, a flatter response is obtained, and thus,  less dispersion.  
Therefore, using a small ℎ𝑎𝑎 is a suitable solution when reduced  
dispersion GGW is required.  

 
Fig. 16. 𝑍𝑍𝑙𝑙𝑙𝑙(𝑓𝑓) vs. w1 

 
Fig. 13. 𝑍𝑍𝑙𝑙𝑙𝑙(𝑓𝑓) vs. w 

 
Fig. 14. 𝑍𝑍𝑙𝑙𝑙𝑙(𝑓𝑓) vs. p 

 
Fig. 15 𝑍𝑍𝑙𝑙𝑙𝑙(𝑓𝑓) vs. ℎ𝑎𝑎 



B. First row pin modification 
In Fig. 16 the effect of varying width 𝑤𝑤1 of the first row of 

pins is shown. It is found that the stopband width remains quite 
stable. For larger 𝑤𝑤1 the increase of capacitance that takes place 
makes the reactance less negative and compensates the 
inductances of the structure so that flatter curves are obtained. 
This kind of modification seems suitable when a less dispersive 
waveguide is required. On the other hand, it is observed that 
when pin width is reduced the inductances of the structure grows 
considerably (see 𝑤𝑤1 = 0,1mm). It has been also checked that 
increasing pin width only in the 𝑥𝑥� direction produces the effect 
of keeping fixed the stopband and the dispersion curve slope 
while moving the resonance frequency towards the center of the 
band. 

 

 

 
Fig. 17. 𝑍𝑍𝑙𝑙𝑙𝑙(𝑓𝑓) vs. ℎ𝑎𝑎 

C. Introduction of series inductive elements 
The possibility of introducing series inductive elements is 

now presented. From a practical point of view a simple element 
with a series inductive behavior could be a thin sheet inter-
connecting the pins. Fig. 17 shows the result of the 
parameterization of height ℎ𝑖𝑖𝑙𝑙𝑖𝑖 when a sheet is placed between 
the pins of the first and second row. The width of the sheet has 
little influence so its width is fixed at 𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖 = 60𝜇𝜇𝑚𝑚 Small 
values of ℎ𝑖𝑖𝑙𝑙𝑖𝑖  produce an appreciable narrowing of the 
stopband, displacement to lower frequencies and highly 
dispersive behavior. When ℎ𝑖𝑖𝑙𝑙𝑖𝑖  reaches the height of the 
pins  ℎ𝑝𝑝 , the slope of the dispersion curve and the stopband 
bandwidth are similar to the case without insert, however the 
resonance frequency is more centered and there is a 
displacement to lower frequencies. A second series inductive 
element connecting the second and third row s produces a 
similar effect. Thus small values of  ℎ𝑖𝑖𝑙𝑙𝑖𝑖 could be used to design 
very dispersive GGW while ℎ𝑖𝑖𝑙𝑙𝑖𝑖 ≥ ℎ𝑝𝑝 could be used to center 
the resonance frequency. Furthermore, the observed frequency 
displacement to lower frequencies for this case could be used to 
compact the structure.  

V. CONCLUSIONS 

This paper has shown that the direct equivalent 
correspondence normally assumed between the GGW and 
rectangular waveguide is a rough approximation which gives 
accurate results only for specific cases. Also, for the first time, 
the behaviour of GGW below cutoff has been studied. This study 
has shown that the GGW and rectangular waveguide behave in 
a very different manner in terms of their dispersion 
characteristics. A simple method based on transmission line 
analysis has been presented which has good predictive capability 
both below and above cutoff. The model significantly reduces 
computation time and provides a tool for fast parametric studies 
for synthesis by repeated optimization. Using the model it is 
deduced that the GGW is equivalent to a virtual rectangular 
waveguide whose width grows with the frequency. 
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