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Motivation

• To enable the use of parameters which define the shape 
in a feature-based CAD model as optimization variables.

• To present an efficient methodology for the calculation 
of gradients for CAD based design variables.

• To present an efficient approach for gradient based 
optimization using adjoint functions and CAD variables 
in presence of constraints.
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Parametric CAD model (S-bend)
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Parametric CAD model (wing)

Bezier curve
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Gradient Computation
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Gradient Computation
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Adjoint Sensitivity

• Adjoint surface sensitivity represents the derivative of the objective function with respect 
to surface perturbation at each mesh node.

𝜙 =
𝑑𝐽

𝑑𝑋𝑠

• The adjoint sensitivity map is provided as values of 𝜙 on a mesh of the boundary of the 
model.

Adjoint sensitivities contour. To minimize the objective function (dissipated power) the surface has to be pulled out at 

positive values (warm colours) or pushed in (cold colours). Areas coloured green have practically no impact on the 

objective function
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Gradient Computation
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Design Velocity

• Measure of geometric shape change in response to a parameter 
change.

• Design velocity can be defined as the normal component of shape 
displacement on the boundary of the model.

𝑉𝑛 = 𝛿𝑋𝑠.  𝑛,

where 𝛿𝑋𝑠 is the movement of surface nodes and  𝑛 is the outward unit normal.
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Design Velocity Calculation
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Design Velocity Validation
Perturbed geometry

Bezier curve

Bezier control points

Original geometry

Perturbed geometry

Original geometry

Perturbed geometry

Original geometry

𝑋 𝑡 =  

𝑖=0

𝑛

𝑃𝑖 𝐵𝑖𝑛(𝑡)
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Design Velocity Validation

For perturbation of 𝟏𝟎−𝟑m the maximum error is of the order of 𝟏𝟎−𝟕m

(a) (b) (c)
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Design Velocity contours (wing)
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Design Velocity (S-Bend)

Original Geometry

Perturbed Geometry
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CAD based Optimization
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Problem Formulation

Objective Functions : 

1) dissipated power

2) uniformity at the outlet

Flow conditions

• Laminar flow, Re=350
• Inlet velocity u=0.1m/s
• Structured mesh, 710,000 cells

Design Variables

9 design parameters created in CATIA V5 controlling the S-bend portion of the duct.

𝐽 =  
𝑆

𝜓 𝑝 +
1

2
𝑣2 𝑑𝑆

𝐽 =  
𝑜𝑢𝑡𝑙𝑒𝑡

(𝑣 − 𝑣𝑚𝑒𝑎𝑛)
2𝑑𝑆
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Design Velocity contours

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

Parameter 6 Parameter 7 Parameter 8 Parameter 9

Perturbing each parameter by 1mm
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Validation

• Predictions of change in objective 
function against CFD analysis 
computations

• Slope of linear approximation 
reflects the over prediction of the 
method (~1.4)
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Unconstrained Optimization

Targeting at dissipated power minimisation

• BFGS algorithm
• 5.1% reduction of objective function

Adjoint sensitivities: Pull out red areas, push 

in blue areas
Geometry during the optimisation cycles
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Unconstrained Optimization

Targeting at outlet uniformity maximisation

• BFGS algorithm
• 2% reduction of objective function
• Further reduction constrained by 

parameters limits

Adjoint sensitivities: Pull out red areas, push 

in blue areas

Comparison between starting geometry (transparent) and
optimised geometry (cyan)
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Constrained Optimization

Targeting at outlet uniformity maximisation 
with fixed power dissipation losses

• 5% Reduction in objective function
• Constraint imposed with the 

Augmented Lagrangian Method using 
in-house code

Comparison of the optimised geometries derived by the 
unconstrained (transparent, magenta lines) and constrained 

(black lines) optimisation

Geometry during the optimisation cycles 22



Conclusion

• An efficient and robust method has been developed for calculating geometrical 
movements or design velocities for different CAD parameters. 

• The developed approach is linked with adjoint sensitivities to use CAD parameters 
directly in the optimization loop.

• Optimization of S-Bend duct using parameters defined in CATIA V5 have been shown.

• The optimization for two different objective functions i.e. minimizing power dissipation 
and maximizing flow uniformity at the outlet is achieved.

• Implementation of flow constraints have been shown using Augmented Lagrangian 
method.
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Future Works

• Formulate methodologies which can be used to automatically parameterize the CAD model 
using existing feature free.

• Automatically adding the optimum new CAD features to CAD model in order to improve 
the manner in which the shape can update.

• To rate the effectiveness of CAD parameters and find the most effective parameter set to 
be used in optimization.

• Consider the constraints imposed on a design from adjacent components in the product 
assembly, which are currently not robustly defined.
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