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Abstract 14 

Muddy floods occur when rainfall generates runoff on agricultural land, detaching and 15 

transporting sediment into the surrounding natural and built environment. In the 16 
Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic 17 

costs associated with damage to property and infrastructure. Mitigation measures 18 
designed to manage the problem have been tested in a pilot area within Flanders and 19 
were found to be cost-effective within three years. This study assesses whether these 20 

mitigation measures will remain effective under a changing climate. To test this, the 21 
Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding 22 

diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope 23 
in Flanders where grass buffer strips are currently used as a mitigation measure. The 24 

model was run for present day conditions and then under 33 future site-specific climate 25 
scenarios. These future scenarios were generated from three earth system models 26 
driven by four representative concentration pathways and downscaled using quantile 27 

mapping and the weather generator CLIGEN. Results reveal that under the majority 28 

of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a 29 
consequence of large scale precipitation events rather than mean changes. The 30 
magnitude of muddy flood events for a given return period is also generally projected 31 
to increase. These findings indicate that present day mitigation measures may have a 32 
reduced capacity to manage muddy flooding given the changes imposed by a warming 33 

climate with an enhanced hydrological cycle. Revisions to the design of existing 34 

mitigation measures within existing policy frameworks is considered the most effective 35 

way to account for the impacts of climate change in future mitigation planning. 36 

 37 

Keywords: muddy flooding; climate change; grass buffer strips; runoff; soil erosion; 38 

sediment yield. 39 
 40 

 41 
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1. Introduction 43 
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The ‘off-site’ impacts of soil erosion have become a major source of concern in recent 44 

decades due largely to the environmental damage and economic costs associated 45 

with ‘muddy flooding’ (Boardman, 2010). Muddy floods occur when high volumes of 46 

runoff are generated on agricultural land, initiating the detachment and transport of 47 

considerable quantities of soil as suspended sediment or bedload (Boardman et al., 48 

2006). It is therefore a fluvial process rather than a form of mass movement, but is 49 

distinguished from riverine flooding because it originates in valleys without permanent 50 

watercourses in the form of runoff generated on hillslopes and in the thalweg following 51 

rainfall (Evrard et al., 2007a). Muddy floods are reported across the loess belt of 52 

western and central Europe (Boardman et al., 1994; Boardman et al., 2006; 53 

Boardman, 2010; Evrard et al., 2010). A principal cause of muddy flooding in the region 54 

is the switch from grassland to arable crops creating intermittently exposed bare land 55 

surfaces (Boardman, 2010). In Belgium and France, for example, muddy flooding is 56 

generally limited to late spring and early summer when crops such as maize, sugar 57 

beet, chicory and potatoes offer low resistance to runoff (Auzet et al., 2006; 58 

Verstraeten et al., 2006). In southern England and the Paris basin, muddy floods are 59 

associated with autumn and winter cereals (Boardman, 2010). The role of rainfall in 60 

triggering muddy floods is a second crucial factor, with spring-sown cereals 61 

susceptible to intense thunderstorm activity generating mainly Hortonian runoff, and 62 

winter cereals susceptible to both intense and prolonged rainfall generating Hortonian 63 

and saturation-excess runoff (Boardman, 2010). A third physical factor in causing 64 

muddy floods is the erodible nature of the loess soils in the region. The soils are highly 65 

susceptible to crusting (Evrard et al., 2008a). This reduces their infiltration capacity 66 

and surface roughness, promoting enhanced runoff. A final factor is the proximity to 67 

high density urban areas since, by definition, muddy flooding damages property and 68 

public infrastructure (Boardman, 2010).The costs associated with muddy flooding 69 

demonstrate why it has become a considerable socio-economic issue in recent 70 

decades across the European loess belt. There are few extensive calculations of mean 71 

annual costs, but several examples of costs related to specific muddy flooding events. 72 

For example, muddy floods led to a mean damage cost of €118 ha-1 y-1 in the village 73 

of Soucy, France (Evrard et al., 2010), while damages at four sites in the suburbs of 74 

Brighton, England were estimated at €957,000 (Robinson and Blackman, 1990).The 75 

most extensive calculation of costs come from Belgium, where the mean annual cost 76 



3 
 

to private householders is estimated at €1.6-16.5 million, while the damage to public 77 

infrastructure is estimated at €12.5-122 million (Evrard et al., 2007b).  78 

Given the high costs associated with muddy flooding, mitigation measures have 79 

been adopted across parts of the European loess belt to control the extent of the 80 

damage. One type of mitigation is to implement alternative farming practices to 81 

address the issue at the source, with the sowing of cover crops and adoption of 82 

conservation tillage examples of these measures (Gyssels et al., 2002; Leys et al., 83 

2007). The implementation of these practices depend on the willingness of the farmer, 84 

and for this reason they have not been widely adopted across Europe (Holland, 2004). 85 

Much more common are measures aimed at buffering, rerouting or storing runoff in 86 

order to protect the areas impacted by muddy floods. Grass buffer strips and grassed 87 

waterways act to slow runoff, increase infiltration and decrease net soil loss (Le 88 

Bissonnais et al., 2004), while retention ponds are constructed to store runoff and 89 

reduce peak discharges in downstream areas (Evrard et al., 2007b). The main 90 

obstacle to the widespread uptake of these mitigation measures is typically the lack of 91 

national-level policy (Boardman and Vandaele, 2010). An exception to this is the 92 

‘Erosion decree,’ established by the Flemish government in 2001, providing subsidies 93 

to farmers for mitigation measures (Verstraeten et al., 2003). Within this framework, 94 

an erosion mitigation scheme was drawn up at the catchment scale and piloted for the 95 

200 km2 Melsterbeek catchment. Between 2002 and 2005, 120 grass buffer strips and 96 

grassed waterways were installed, and 35 earthen dams constructed (Evrard et al., 97 

2008a). Within the catchment, a pilot thalweg draining to Velm village was extensively 98 

monitored between 2005 and 2007 following the installation of a 12 ha grassed 99 

waterway and three earthen dams in the preceding three years (Evrard et al., 2007b; 100 

2008b). Peak discharge was reduced by 69%, runoff coefficients decreased by 50% 101 

and sediment yield decreased by 93% between the head and outlet of the catchment 102 

(Evrard et al., 2008b). Furthermore, the mitigation measures were found to be cost-103 

effective within three years, with a cost of €126 ha-1 for control measures for a 20 year 104 

period compared to the mean damage cost associated with muddy floods in the area 105 

(€54 ha-1 y-1) (Evrard et al., 2008b). 106 

The success of these measures may diminish over the coming decades, 107 

however, as climate change poses new threats ranging from direct changes in rainfall 108 

characteristics to the indirect effects of changing land use and farming practices 109 
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(Pruski and Nearing, 2002a). Several studies have modelled the impacts of climate 110 

change on soil erosion, for example in Austria (Klik and Eitzinger, 2010); Brazil (Favis-111 

Mortlock and Guerra, 1999; 2000); China (Zhang and Liu, 2005; Zhang, 2007; Zhang 112 

et al., 2009); England (Boardman et al., 1990; Boardman and Favis-Mortlock, 1993; 113 

Favis-Mortlock and Boardman, 1995; Favis-Mortlock and Savabi, 1996); Northern 114 

Ireland (Favis-Mortlock and Mullan, 2011; Mullan et al., 2012a; Mullan, 2013a, 2013b); 115 

and USA (Phillips et al., 1993; Lee et al., 1996; Nearing, 2001; Pruski and Nearing, 116 

2002a, 2002b; Nearing et al., 2004, 2005; Zhang et al., 2004; O’Neal et al., 2005; 117 

Zhang, 2005; Zhang and Nearing, 2005). These studies typically employ a soil erosion 118 

model – most commonly the Water Erosion Prediction Project (WEPP) (Flanagan and 119 

Nearing, 1995) – in conjunction with climate scenarios derived from general circulation 120 

models and applied as change factors or in more recent studies downscaled for site-121 

specific impact assessment (e.g., Zhang et al., 2004; Zhang, 2005; Zhang and Lui, 122 

2005; Zhang, 2007; Zhang et al., 2009; Favis-Mortlock and Mullan, 2011; Mullan et 123 

al., 2012a Mullan, 2013a, b). A smaller selection of studies have also factored in 124 

changes in land use and management (e.g., O’Neal et al., 2005; Favis-Mortlock and 125 

Mullan, 2011; Mullan et al., 2012a; Mullan, 2013a, 2013 b). While some of these 126 

studies have modelled future soil erosion rates in the context of the off-site impacts, 127 

no study to date has examined explicitly changes in muddy flooding or the effects of 128 

climate change on mitigation measures designed to reduce muddy flooding. The aim 129 

of this study is to model the impacts of climate change (temperature and precipitation) 130 

on muddy flooding for a case study hillslope where mitigation measures have been 131 

implemented within the 200 km2 Melsterbeek catchment in Flanders, Belgium. Given 132 

the success of present-day mitigation measures, the key research question seeks to 133 

address if these mitigation measures will continue to be successful in a changing 134 

climate. In terms of scientific significance, these results will build on the existing 135 

studies that have examined climate change impacts on soil erosion. These studies are 136 

important in assisting with conservation planning. Employing the widely used WEPP 137 

model alongside the use of downscaling techniques based on the latest state-of-the-138 

art Earth System Models (ESMs) represents an advance on many previous climate 139 

change-soil erosion studies. The study is also vital in a more local context since local 140 

water authorities, land use managers, farmers and local residents will all be impacted 141 

by any changes in muddy flooding that threaten to compromise existing mitigation 142 

measures. In particular, results will be disseminated to the local water authority 143 
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responsible for managing muddy flooding in the Limburg province so they can help 144 

influence decision-making on future mitigation planning. 145 

 146 

2. Materials and Methods 147 

2.1 Study area 148 

The Belgian loess belt is a ca. 9000 km2 plateau with a mean altitude of 115 m gently 149 

sloping to the north (Fig. 1). Belgium has a temperate maritime climate influenced by 150 

the North Sea and Atlantic Ocean with cool summers and mild winters. The mean 151 

annual temperature is 9-10°C with a mean annual precipitation range of 700-900 mm 152 

(Hufty, 2001). The rainfall distribution is relatively even throughout the year, with a 153 

slight peak in rainfall erosivity between May and September (Verstraeten et al., 2006). 154 

Soils are mostly loess-derived haplic luvisols (World Reference Base, 1998). Arable 155 

land dominates the Belgian loess belt, covering around 65% of the land surface in the 156 

area (Statistics Belgium, 2006). The dominant crops are cereal, industrial and fodder 157 

crops such as sugar beet, oilseed rape, maize, chicory and potatoes. These summer 158 

crops have largely replaced winter cereals in the past few decades (Evrard et al., 159 

2007a). Farmers are encouraged to sow cover crops such as mustard and phacelia 160 

during the dormant late spring and early summer period while summer crops establish 161 

sufficient cover to protect the soil (Bielders et al., 2003). 162 

 163 
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 164 

 165 
Fig. 1. The study area. 166 

 167 
 168 

The case study site, herein referred to as Kluiskapel hillslope, is a 340 m long 169 

hillslope within a 7.3 ha field located in the 200 km2 Melsterbeek catchment near the 170 

town of St-Truiden in the Flanders region of Belgium. The area has been affected by 171 

numerous muddy floods in the past couple of decades, with a local water agency 172 
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tasked specifically with installing and maintaining mitigation measures (Evrard et al., 173 

2007b).The elevation within the slope ranges between 80 and 95 m.a.s.l. As 174 

determined from a 10 m resolution digital elevation model (described further in section 175 

2.3), the slope is broadly convex in the upper half and concave in the lower half, with 176 

an average steepness of 4.2% (Fig. 2).  177 

 178 

 179 

Fig. 2. Variation of slope angles within Kluiskapel hillslope. 180 

 181 

As determined by laboratory testing of soil samples as described in section 2.3, the 182 

soil type is very typical of the European loess belt. It is a silty loam with 81% silt content 183 

and 4.5% organic matter. The long-term mean annual temperature, taken from the 184 

nearby station in Maastricht in the Netherlands (described further in section 2.3), is 185 

10°C, and the mean annual precipitation is 769 mm, with the season occurring in the 186 

summer wettest. Fig. 3 shows how long-term temperatures and precipitation have 187 

changed at Maastricht. Temperatures have clearly risen in recent decades, while 188 

precipitation has fluctuated considerably. A typical crop rotation involves maize, 189 

followed by soybeans, with a cover crop of grass sown in both years. Tillage normally 190 
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occurs early in spring, with a finer seed bed established some six weeks later before 191 

planting. Crops are typically harvested in mid-autumn. 192 

 193 

 194 

Fig. 3. Changes in temperatures (1906-2014) and precipitation (1906-2014) at Maastricht. 195 

 196 

2.2 The WEPP model 197 

The Water Erosion Prediction Project (WEPP) model (Flanagan and Nearing, 1995) 198 

(v.2008.907) was selected to simulate muddy flooding diagnostics (runoff, soil loss, 199 

deposition and sediment yield) under observed and future climatic conditions. WEPP 200 

is a physically-based, continuous simulation model that simulates hydrology, water 201 

balance, plant growth, soil and erosion at field, hillslope and watershed scales. WEPP 202 

was selected because it is the most commonly used model for climate change-soil 203 

erosion studies (see introduction) and is used here to simulate ‘present-day’ and future 204 

rates of muddy flooding at Kluiskapel hillslope.  WEPP requires four input parameter 205 

files representing slope, soil, land management, and climate. These four input files are 206 

described with respect to how they were parameterised in the subsequent section. 207 

Climate data in WEPP is simulated using the weather generator CLIGEN (Nicks 208 

et al., 1995). CLIGEN produces long sequences of synthetic weather data based on 209 

the statistical properties of the observed climate. In order to construct daily sequences 210 

of climate data, CLIGEN requires monthly means and standard deviations for 211 

maximum and minimum temperature and solar radiation; monthly mean, standard 212 

deviation and skewness for wind speed; and monthly mean wind direction % split into 213 
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16 compass directions. The most important climatic input variables are those relating 214 

to precipitation. CLIGEN requires monthly means, standard deviations and skewness 215 

values for mean precipitation per wet day. Also required to calculate sequences of wet 216 

and dry days are the transitional probabilities of a wet day following a wet day (Pw/w) 217 

and a wet day following a dry day (Pw/d). Finally, monthly maximum half hour 218 

precipitation values (MX.5P) and time to peak rainfall intensity values (Time Pk) are 219 

required to calculate rainfall intensity. These values are all calculated on a monthly 220 

basis with the exception of the 12 Time Pk values. Instead, the Time Pk values 221 

describe an empirical probability distribution of the time to peak rainfall intensity as a 222 

fraction of storm duration (Yu, 2003).The full list of CLIGEN input parameters is shown 223 

in Table 1. 224 

 225 

 Parameter Unit 1 2 3 4 5 6 7 8 9 10 11 12 

1 Mean P in Mean daily precipitation per wet day for each month 
2 SD P in Standard deviation of Mean P per month 
3 Skew P in Skewness of Mean P per month 
4 Pw/w % Probability of a wet day following a wet day for each month 
5 Pw/d % Probability of a wet day following a dry day for each month 
6 TMAX AV °F Mean maximum temperature for each month 
7 TMIN AV °F Mean minimum temperature for each month 
8 SD TMAX °F Standard deviation of TMAX AV per month 
9 SD TMIN °F Standard deviation of TMIN AV per month 
10 SOL.RAD L/d* Mean solar radiation for each month 
11 SD SOL L/d* Standard deviation of SOL.RAD per month 
12 MX.5P in Mean maximum half hourly precipitation for each month 
13 DEW PT °F Mean dew point temperature for each month 
14 Time Pk ** Time to peak rainfall intensity 
15 % DIR*** % Mean % wind from 1 of 16 compass directions for each month 
16 MEAN m/s-1 Mean wind speed associated with % DIR per month 
17 SD m/s-1 Standard deviation of MEAN per month 
18 SKEW m/s-1 Skewness of MEAN per month 
19 CALM % Mean % of days with mean wind speed < 1 ms-1 per month 

Table 1. Input parameters required to run the weather generator CLIGEN. 226 

*L/d = Langleys/day. 227 

**For all parameters except 14, columns 1-19 represent calendar months. 228 

***% DIR refers to 16 different compass directions for wind direction. These are N, NNE, NE, ENE, E, 229 
ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW. Lines 15-18 therefore appear 16 times in a 230 

CLIGEN parameter file, meaning there are a total of 948 input values to CLIGEN (79 lines x 12). 231 

 232 

2.3 Parameterising WEPP for the observed period 233 

A slope profile for Kluiskapel hillslope was developed by extracting length and 234 

elevation data from a 10 m resolution digital elevation model (DEM) based on airborne 235 
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laser scanning for the area. Although a higher resolution DEM would be preferable, 236 

Zhang et al. (2008) demonstrated that a 10 m LiDAR-derived DEM created realistic 237 

field boundaries, stream networks and hillslopes, and actually compared more closely 238 

to observed runoff and erosion rates across two small forested catchments in the USA. 239 

These results built on earlier work by Zhang and Montgomery (1994) also indicating 240 

that a 10m resolution DEM achieved an appropriate balance between necessary 241 

topographic accuracy and computation. For the soils file, bulk soil samples to a 15 cm 242 

depth were extracted using a soil auger. Five 15-cm deep samples were extracted  per 243 

sampling location (15 cm x 5 = total depth of 75 cm) at 18 sampling locations evenly 244 

distributed between the top and bottom of the slope, generating a total of 90 soil 245 

samples. These were then analysed in the laboratory with respect to soil texture and 246 

organic matter (OM). Effective hydraulic conductivity, critical shear, and erodibility 247 

values were calculated using equations from the WEPP user manual (Flanagan and 248 

Livingston, 1995). The soil properties are shown in Table 2. Plant growth parameters 249 

for the necessary crops were taken directly from the WEPP plant database (Flanagan 250 

and Nearing, 1995). The selected crops for modelling were maize one year and 251 

soybeans the next, as this represents a typical crop rotation for this hillslope. Dates 252 

for management operations were obtained directly from the farmer. The management 253 

file was split into two sections along two different overland flow elements (OFEs) of 254 

the same hillslope. The management file for the upper majority of the slope was 255 

parameterised as described above, while the bottom 21 m of the slope was 256 

parameterised as a strip of permanent grass, with values taken from the WEPP 257 

database to represent this land cover. This section of land management represents 258 

the 21 m grass buffer strip planted at the base of the Kluiskapel hillslope to act as a 259 

mitigation measure for muddy floods from the slope. The key details of the 260 

management files in WEPP are shown in Table 3. 261 

 262 

Depth 
(cm) 

Clay % Silt  % Sand 
% 

OM 
% 

Kr 
(s/m) 

Ki (kg 
s/m4) 

Τc 
(n/m2) 

Kb (mm 
h-1) 

Albedo 

0-15 11.2 80.5 8.3 4.5 0.021 5434397 3.5 1.62 0.10 
16-30 10.9 79.9 9.1 4.2 0.022 5450501 3.5 1.70 0.11 
31-45 10.5 80.8 8.7 4.2 0.023 5475242 3.5 1.66 0.11 
46-60 10.5 81.2 8.3 4.8 0.023 5477699 3.5 1.63 0.09 
61-75 10.2 80.9 8.8 4.8 0.024 5489447 3.5 1.67 0.09 
Mean 10.7 80.7 8.6 4.5 0.023 5465457 3.5 1.66 0.10 
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Table 2. Measured and estimated input parameters representing soil conditions at Kluiskapel 263 
hillslope. Kr = rill erodibility; Ki = interrill erodibility; Tc = baseline critical flow hydraulic shear; baseline 264 

effective hydraulic conductivity. 265 

 266 

Year Operation Crop Management Dates 

1 

Initial conditions 
Tillage 
Tillage 
Plant 
Harvest 
Tillage 
Plant 

Ryegrass cover crop 
Chisel Plow 30 cm depth 
Harrow-roller 5 cm depth 
Corn (maize) – medium fertilisation 
Corn (maize) – medium fertilisation 
Chisel Plow 30 cm depth 
Ryegrass – medium fertilisation 

1 Jan 
1 Mar 
15 Apr 
15 Apr 
15 Oct 
15 Oct 
15 Oct 

 
 
 
 
2 
 
 

Tillage 
Tillage 
Plant 
Harvest 
Tillage 
Plant 

Chisel Plow 30 cm depth 
Harrow-roller 5 cm depth 
Soybeans – medium fertilisation 
Soybeans – medium fertilisation 
Chisel Plow 30 cm depth 
Ryegrass – medium fertilisation 

1 Mar 
15 Apr 
15 Apr 
15 Oct 
15 Oct 
15 Oct 

Table 3. Management details for Kluiskapel hillslope. 267 

 268 

  Climate data was obtained from the Royal Netherlands Meteorological Institute 269 

(KNMI) Climate Explorer site, which archives a range of freely available climate 270 

datasets. All climate data apart from sub-hourly precipitation were taken from 271 

Maastricht, The Netherlands and is shown in Table 4. No long-term climate datasets 272 

of good quality existed for St-Truiden or other stations in the east of Belgium, which is 273 

why the search was extended to the westerly part of The Netherlands. Maastricht is 274 

just 29 km from Kluiskapel hillslope as the crow flies, and with no major changes in 275 

topography or distance from the coast, it could be expected that both areas have very 276 

similar climates. Daily series of maximum and minimum temperature, wind speed and 277 

direction, and relative humidity from 1906-2014; precipitation from 1957-2014; and 278 

solar radiation from 1965-2014 were all extracted. The relative humidity data was 279 

converted to dew point temperature using Equation 1 (Alduchov and Eskridge, 1996).  280 

 281 

Equation 1. 282 

𝑇𝐷 = 243.04(𝐿𝑁 (
𝑅𝐻

100
) + (

17.625 ∗ 𝑇

243.04 + 𝑇
))/(17.625 − 𝐿𝑁 (

𝑅𝐻

100
) − (

17.625 ∗ 𝑇

243.04 + 𝑇
)) 283 

where TD = dew point temperature, RH = relative humidity; and T = mean temperature. 284 

 285 
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Finally, sub-hourly precipitation data from 2004-2014 was taken from Niel-bij-St-286 

Truiden (13 km as the crow flies from Kluiskapel hillslope) rather than Maastricht in 287 

order to calculate MX.5P and Time Pk. 288 

 289 

Variable 
downloaded 

Temporal 
Resolution 

Time Period Converted? CLIGEN variables 
applied to 

Maximum 
Temperature 

Daily 1906-2014 No TMAX AV; SD TMAX 

Minimum 
Temperature 

Daily 1906-2014 No TMIN AV; SD TMIN 

Precipitation Daily 
 

Sub-hourly* 

1957-2014 
 

1957-2014 

No 
 

No 

Mean P; SD P; Skew 
P; P (W/W); P (W/D) 

MX.5P; Time Pk 
Solar Radiation Daily 1965-2014 No SOL.RAD; SD SOL 

Relative 
Humidity 

Daily 1906-2014 to Daily Dew Point 
Temperature using 

Equation 1 

DEW PT 

Wind Speed Daily 1906-2014 No MEAN; SD; SKEW; 
CALM 

Wind Direction Daily 1906-2014 No % DIR 

Table 4. Details on climate data downloaded for Maastricht climate station, as used to parameterise 290 
CLIGEN. 291 

*Sub-hourly precipitation data from Niel-bij-St-Truiden rather than Maastricht. 292 

 293 

 CLIGEN was run for 60 years in order to drive WEPP for a 60-year simulation 294 

representing present-day baseline conditions. This duration was chosen to allow for 295 

30 cycles of the maize-soybeans two year crop rotation. In addition, a 1000-year 296 

CLIGEN file was generated to drive a 1000-year WEPP simulation representative of 297 

observed present-day conditions in order to facilitate the validation assessment 298 

(detailed in section 2.6). 299 

 300 

2.4 Parameterising WEPP under a changed climate 301 

2.4.1 Datasets required for downscaling 302 

Climatic conditions in CLIGEN were perturbed based on future climate scenarios 303 

downscaled from three earth system models (ESMs) driven by four different 304 

representative concentration pathways (RCPs). ESMs are the current state-of-the-art 305 

models for simulating the global climate, and they expand on AOGCMs (atmosphere-306 

ocean general circulation models) to include representation of various biogeochemical 307 

cycles including those in the carbon cycle, sulphur cycle or ozone (Flato, 2011). They 308 
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are the most comprehensive tools currently available for modelling the response of the 309 

climate system to past and future external forcing (Flato et al., 2013). In this study, 310 

three ESMs were selected in order to characterise some of the uncertainty associated 311 

with selecting a single model. The selected ESMs (Table 5) all participated in the 312 

Climate Model Intercomparison Project (CMIP5) – models which have been used to 313 

develop the scenarios and model evaluations for the Intergovernmental Panel on 314 

Climate Change (IPCC) Fifth Assessment Report (AR5) (Stocker et al., 2013). The 315 

three ESMs span almost the full range of equilibrium climate sensitivity (temperature 316 

change to doubling of atmospheric CO2) and transient climate response (change in 317 

temperature for 1% y-1 increase in CO2) (Table 5) and thus represent a broad range 318 

of potential climate futures. The RCPs replace the Special Report on Emissions 319 

Scenarios (SRES) (Nakicenovic and Swart, 2000) used to drive climate model 320 

experiments in the IPCC Fourth Assessment Report. The four most commonly used 321 

RCPs are employed here, representing four contrasting pathways of radiative forcing 322 

up to the end of the 21st century, ranging from 2.6 W/m2 to 8.5 W/m2 (van Vuuren et 323 

al., 2011). These radiative forcing figures are a consequence of collaboration between 324 

integrated assessment modellers, climate modellers, terrestrial ecosystem modellers 325 

and emissions inventory experts. Details on the four RCPs used here are given in 326 

Table 6. 327 

 328 

ESM Organisation Country Spatial 
Resolution 
(°lat x °long) 

Time 
Period 

ECS 
°C 

TCR 
°C 

Key 
reference 

GFDL-
ESM2G 

Geophysical Fluid 
Dynamics Laboratory 

USA 2.0 x 2.5 1861-
2100 

2.4 1.1 Dunne et 
al. (2013) 

MIROC-
ESM 

Japan Agency for 
Marine-Earth Science 
and Technology, 
Atmosphere and Ocean 
Research Institute (The 
University of Tokyo) and 
National Institute for 
Environmental Studies 

Japan 2.81 x 2.81 1850-
2100 

4.7 2.2 Watanabe 
et al. 
(2011) 

MPI-
ESM-
MR 

Max Planck Institute for 
Meteorology 

Germany 1.88 x 1.88 1850-
2100 

3.6 2.0 Stevens 
et al. 
(2013) 

Table 5. Details on the ESMs used in this study. 329 

 330 

 331 
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 332 

 333 

 334 

RCP Description Key references 

2.6 
Peak in RF at ~3 W/m2 (~490 ppm CO2 eq) before 2100 
and then decline to 2.6 W/m2 by 2100 

Van Vuuren et al. 2006, 2007 

4.5 
Stabilisation without overshoot pathway to 4.5 W/m2 
(~650 ppm CO2 eq) at stabilisation after 2100 

Smith and Wrigley 2006; 
Clarke et al. 2007; Wise et al. 

2009) 

6.0 
Stabilisation without overshoot pathway to 6 W/m2 (~850 
ppm CO2 eq) at stabilisation after 2100 

Fujino et al. 2006; Hijioka et 
al. 2008) 

8.5 
Rising RF pathway leading to 8.5 W/m2 (~1370 ppm 
CO2 eq) by 2100 

Riahi et al. 2007 

Table 6. Details of the RCPs driving the selected ESMs in this study. 335 

 336 

 Monthly maximum and minimum temperature and monthly precipitation were 337 

downloaded from each ESM and RCP for the grid box overlying the target climate 338 

station at Maastricht. Observed daily series for the same climatic variables for 339 

Maastricht climate station as shown in Table 4 were aggregated to monthly series in 340 

order to facilitate the subsequent downscaling analysis. 341 

 342 

2.4.2 Spatial downscaling 343 

The downscaling approach used in this study is similar to the Generator for Point 344 

Climate Change (GPCC) method (Zhang, 2005; 2013; Zhang et al., 2012; Chen et al., 345 

2014; Mullan et al., 2016). It is a two step approach first involving spatial downscaling 346 

of monthly climate scenarios from ESM grid box scale to site-specific climate station 347 

scale, followed by temporal downscaling from monthly to daily scenarios in order to 348 

enable CLIGEN to be perturbed to represent future conditions. As shown in Table 4, 349 

observed precipitation data for Maastricht spans the period 1957-2014 and observed 350 

temperature data runs from 1906-2014. Spatial downscaling was carried out using 351 

quantile mapping to bias correct the ESM data. For each calendar month, the ranked 352 

observational monthly TMAX, TMIN or PPT (y-axis) was plotted against the ranked 353 

quantiles of the ESM series (x-axis) using QQ-plots. A univariate linear function was 354 
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fit to each plot to construct transfer functions on a monthly basis. Polynomial fits were 355 

also tested but found to offer no improvement.  356 

The calibrated transfer functions were then fit to the entire period of the ESM 357 

data to create spatially downscaled series for the future period. The spatially 358 

downscaled series from the three ESMs and four RCPs were subdivided into four 20-359 

year time slices: a hindcast period from 1986-2005 enabling comparison of future 360 

periods to a historical reference period; and three future time slices from 2016-2035, 361 

2046-2065 and 2081-2100. These are the same 20-year time slices used in the IPCC 362 

AR5. In theory, this would create 12 hindcast reference periods (3 ESMs x 4 RCPs) 363 

and 36 future climate scenarios (3 ESMs x 4 RCPs x 3 future time slices). In fact, the 364 

actual number is 11 hindcast periods and 33 future scenarios because one of the 365 

ESMs (MPI) had no data available under RCP6. 366 

To test model performance, the probability distributions of the downscaled 367 

series were compared with the observed monthly series for the period of overlap. In 368 

order to test if the linear functions are suitable under nonstationary climate conditions, 369 

the observed and ESM data were split into two equal periods – with the first half of the 370 

record used to develop transfer functions and the second half used as a validation 371 

period to compare fitted probability distributions to the observed series. 372 

  373 

2.4.3 Temporal Downscaling 374 

Temporal downscaling from monthly series to daily series necessary for WEPP 375 

simulation was achieved through the weather generator CLIGEN. In theory, any of the 376 

948 input values in Table 1 could be modified to represent changed climatic conditions 377 

in CLIGEN. In this study, maximum and minimum temperature and precipitation were 378 

the modified climatic variables, with other parameters left unchanged.  379 

Spatially downscaled means of TMAX and TMIN were directly used in CLIGEN 380 

as the adjusted monthly means for each future modelled scenario. Standard deviations 381 

for TMAX and TMIN where obtained using Equation 2 following Zhang et al. (2004). 382 

 383 

Equation 2. 384 

𝑆𝐷𝑑𝐸𝑆𝑀 = (𝑆𝐷𝑑𝑂𝐵𝑆)(𝛥𝑆𝐷𝑚𝐸𝑆𝑀) 385 
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where SDdESM = daily standard deviation for future TMAX and TMIN; SDdOBS = daily standard 386 

deviation for the observed baseline; and ΔSDmESM = change in the monthly standard deviation 387 

between the future time slice and the hindcast period of each ESM. 388 

 389 

With respect to precipitation, there are further decisions to be made about how 390 

to modify precipitation related parameters. In this study, the precipitation intensity 391 

parameter Time Pk and skewness of precipitation were left unchanged as there is no 392 

straightforward way to modify these parameters. Mean P, SD P, the transitional 393 

probabilities of wet and dry day sequences, and MX.5P were the parameters that were 394 

modified in this study. The transitional probabilities were calculated by establishing 395 

linear relationships between transitional probabilities and mean daily precipitation for 396 

the observed period on a monthly basis. Transfer functions were then forced with 397 

mean daily precipitation for the future period to calculate changed transitional 398 

probabilities. In order to preserve the projected mean monthly precipitation totals (Rm) 399 

following the adjustment of transitional probabilities, Mean P was calculated using the 400 

approach of Zhang et al. (2004, 2012). First, the unconditional probability of 401 

precipitation occurrence (π) is calculated as follows: 402 

 403 

Equation 3. 404 

𝜋 =  
𝑃𝑤/𝑑

1 +
𝑃𝑤
𝑑

− 𝑃𝑤/𝑑
 405 

 406 

The new Mean P is then calculated using: 407 

 408 

Equation 4. 409 

𝑀𝑒𝑎𝑛 𝑃 =  
𝑅𝑚

𝑁𝑑𝜋
 410 

where Mean P and Rm are as described before, Nd is the number of days in the month and Ndπ is the 411 

expected number of wet days in the month.  412 

 413 
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Changes in SD P were calculated in exactly the same manner as was used for 414 

temperature in Equation 2. MX.5P changes were calculated based on the study of 415 

Zhang (2016), where linear relationships were developed between relative changes in 416 

MX.5P (RMX.5P) and relative changes in mean monthly precipitation (RMMP) for 23 sites 417 

across the USA. The relative changes were calculated by splitting the daily data from 418 

each station into two equal halves. RMX.5P and RMMP were then calculated for each half 419 

and calendar month to fit the model: 420 

 421 

Equation 5. 422 

∆𝑅𝑀𝑋. 5𝑃

𝑅𝑀𝑋. 5𝑃
= 𝛽

∆𝑅𝑀𝑀𝑃

𝑅𝑀𝑀𝑃
 423 

where Δ is the differential changes between the two halves and β is the slope of a linear regression 424 

without an intercept.  425 

 426 

In Zhang (2016), Equation 5 was fit to 12 data points at each station (one per month) 427 

and to all 23 stations and a regression equation developed. In this study, the 428 

regression equation for these 23 sites was then forced with the ratio of ΔRMMP between 429 

the hindcast and future periods of each future scenario to RMMP (i.e., the right hand 430 

side of Equation 5). 431 

  432 

2.5 Running WEPP under a changed climate 433 

WEPP was run for the future by holding the slope and soil input files constant from the 434 

present-day simulation and perturbing the climate file under the various downscaled 435 

climate scenarios. As with the baseline period, 60-year CLIGEN files representing 436 

future climate scenarios were created in order to drive 60-year WEPP simulations. For 437 

each of these future scenarios, the planting and harvest dates in the management file 438 

were also modified. This was done by calculating the change in the number of growing 439 

days between the observed period and each future scenario and then delaying the 440 

planting dates by half that amount and bringing harvest forward by the other half. For 441 

example, if a future climate scenario projected 10 more growing days in the future, 442 

then planting would be delayed by five days and harvest brought forward by five days. 443 

In the few cases where there were more than 60 extra growing days projected per 444 
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year, the planting dates and harvest dates were not moved by more than one month 445 

in either direction as the growing season would be unrealistically short if dates were 446 

moved beyond this. A similar approach to modifying management dates has been 447 

used in Zhang et al. (2004, 2012) and Mullan et al. (2012a) and Mullan (2013a, 2013b). 448 

A total of 33 future scenarios were simulated, representing three ESMs x four RCPs x 449 

three future time slices, minus one unavailable ESM-RCP combination for each future 450 

time slice. 451 

 Future muddy flooding diagnostics outputted by WEPP include mean annual 452 

precipitation (MAP), mean annual runoff (MAR), mean annual soil loss (MASL) and 453 

mean annual sediment yield (MASY). Other analysed outputs include mean maximum 454 

monthly precipitation (MXP) and calculated return periods for MAP, MAR, MASL and 455 

MASY. 456 

 457 

2.6 Model Validation 458 

WEPP was validated for Kluiskapel hillslope under present-day conditions using 459 

volumetric calculations of deposited sediment following a muddy flood event in 460 

summer 2014 at the site.  461 

 462 

2.6.1 The Event 463 

The muddy flood event occurred on 29 July 2014 after an intense thunderstorm that 464 

affected much of Limburg province. The storm was highly spatially heterogeneous, 465 

with daily rainfall amounts between zero and 80 mm across Limburg. The exact 466 

amount and intensity of the rainfall event precisely at Kluiskapel hillslope on 29 July 467 

2014 is unknown as there is not a rain gauge at the field site, but local weather 468 

observations recorded daily rainfall amounts between 31 mm and 80 mm at nearby 469 

stations. Moreover, it is highly likely the daily rainfall amount lies somewhere between 470 

43 mm and 80 mm as these amounts were recorded by the two nearest rain gauges 471 

– both within 2 km of the field site on either side. The rainfall event caused rilling within 472 

the hillslope, resulting in the deposition of sediment in five distinct depositional zones 473 

within the grass buffer strip at the base of Kluiskapel hillslope (Fig. 4).  474 
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 475 

Fig. 4. Sedimentation zones (1-5) at Kluiskapel hillslope after the muddy flood event described above. 476 

 477 

2.6.2 Sedimentation Calculations 478 

The volume of sediment was calculated for each sedimentation zone and added to 479 

obtain a figure of total sediment deposited. The volumetric calculation was converted 480 

to t ha-1 to facilitate comparison with simulated soil loss using Equation 6. 481 

 482 
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Equation 6. 483 

𝑆𝐷𝑒𝑝 = (
𝑉𝐷

𝐶𝐴
) ∗ 𝐵𝐷 ∗ 10,000 484 

where SDep = sediment deposited (t ha-1); VD = volume sediment deposited (m3); CA = contributing 485 

area (m2); and BD = bulk density (t m3). 486 

 487 

VD was calculated by multiplying the cross-sectional depositional area (m2) by the 488 

length of deposition (m). CA is simply the slope width (m) x slope length (m). The BD 489 

value was taken from Goidts and van Wesemael (2007) as a mean BD value for 490 

cropland in the Belgian loess belt. Applied to this study, Equation 6 is solved below: 491 

 492 

Equation 7. 493 

𝑆𝐷𝑒𝑝 = (
90

105,400
) ∗ 1.4 ∗ 10,000 494 

 495 

2.6.3 Measured vs Simulated Events 496 

A selection of soil loss events from the 1000-year present day WEPP output from 497 

Kluiskapel hillslope was extracted according to those events most similar to the 498 

measured event. In this respect, those events simulated from May-August inclusive 499 

were first extracted. Then, two different ranges were extracted. First, Validation 500 

Criteria 1 (VC1) consisted of a wider range encompassing all soil loss events with 501 

associated rainfall amounts between 31 mm and 80 mm and regardless of storm 502 

duration (i.e., the full range of rainfall amounts recorded at nearby stations on the day 503 

of the event). Validation Criteria 2 (VC2) employed a narrower range encompassing 504 

all soil loss events with rainfall amounts between 43 mm and 80 mm whose storm 505 

duration is two hours or less (i.e., the reported rainfall characteristics from the two 506 

nearest rain gauges on the day of the event). In both cases, a linear relationship 507 

between rainfall amount and soil loss for these simulated events was developed and 508 

used to predict soil loss for an event with rainfall amounts in the range of the measured 509 

events. 510 

 511 

 512 
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 513 

3 Results 514 

 515 

3.1 Model Validation 516 

The storm on 29 July 2014 at Kluiskapel hillslope resulted in a sedimentation 517 

zone measuring 90 m3. This translates to 12 t ha-1. This figure compares reasonably 518 

closely to the WEPP simulated mean annual soil loss rate of 16.5 t ha-1, but as shown 519 

in Fig. 5 there is a considerable degree of scatter for the simulated soil loss rate during 520 

events.  521 

 522 



22 
 

 523 

Fig. 5. Daily simulated rainfall amount vs simulated soil loss events based on a) VC1; and b) V2, and 524 
their comparison to the measured validation event. 525 

 526 

The full simulated range of soil loss rates during events between 31 mm and 527 

80 mm (i.e., VC1) is 0-84 t ha-1. Of the 544 simulated events corresponding to VC1 528 

(Fig. 5a), 74% lie above the measured soil loss rate and 26% fall below it. When 529 

considering the full rainfall range in this manner, it is difficult to establish how well 530 

WEPP simulates soil loss at Kluiskapel hillslope as the range encompasses the 531 

measured rate and large amounts both below and above it. To illustrate the extreme 532 
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difference between a rainfall event of 31 mm and 80 mm, return periods were 533 

calculated based on 115 years of daily rainfall data from Maastricht climate station. 534 

This reveals a return period of 0.7 years for a rainfall amount of 31 mm and a return 535 

period of 115 years for a rainfall amount of 80 mm (i.e., it has only happened once in 536 

the 115-year record from Maastricht). When the narrower range of events simulated 537 

within VC2 is considered (Fig. 5b), the soil loss range changes to 25-83 t ha-1, with all 538 

42 simulated events lying above the measured soil loss rate. Although the magnitude 539 

of the range is very similar to VC1, we can state that when VC2 is considered, WEPP 540 

is overpredicting soil loss rates for Kluiskapel hillslope, by a minimum of double the 541 

measured rate. This could relate to the hillslope length simulated. It has been found 542 

that WEPP tends to overpredict soil loss rates on slopes greater than 100 m long 543 

(Favis-Mortlock and Mullan, 2011). At 340 m long, the slope in this study therefore 544 

greatly exceeds this and may be vulnerable to overprediction. Nonetheless, WEPP 545 

has been applied to similar length slopes across Northern Ireland with soil loss rates 546 

that validate closely against measurements (e.g., Mullan, 2013a). 547 

This comparison requires two points of caution. First, the sedimentation zone 548 

cannot be compared directly with the simulated soil loss from WEPP. It is likely that 549 

not all soil lost would be deposited in the sedimentation zone as some may be 550 

redeposited within the field and some finer material may be lost beyond the 551 

sedimentation zone. Therefore, the measured amount should be lower than the 552 

simulated amount. Second, the measured muddy flood is a single event that may not 553 

be representative of long-term conditions. As shown in Fig. 5, there is considerable 554 

variation in the simulated response of soil loss to rainfall events of a very similar 555 

magnitude, which is something we also see in measured data (Nearing, 1998). This 556 

lack of long-term measured data at Kluiskapel hillslope is a considerable caveat to the 557 

current study, so results must be interpreted with this in mind. Greater confidence in 558 

the simulated rates of soil loss and sediment yield can be obtained by considering soil 559 

erosion rates from past field studies across Belgium. Historic evidence from small 560 

catchments in central Belgium (0.2-210 ha-1) obtained mostly from augering thick 561 

alluvial deposits reveal soil loss rates ranging from 2.1-16.9 t ha-1 yr-1 (Verstraten et 562 

al., 2006). The simulated mean annual soil loss in this study, at 16.5 t ha-1 yr-1, lies 563 

towards the upper end of this range. Contemporary measurements of soil loss in 564 

central Belgium from rilling (the main process of soil loss in the measured event at 565 

Kluiskapel hillslope) lie below the mean annual simulated rate of soil loss in this study. 566 
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Govers (1991) surveyed 86 winter wheat and bare soil fields for three winter periods 567 

between 1982 and 1985 and found a mean rill erosion rate of 3.6 t ha-1 per winter 568 

period. Vandaele (1997) also surveyed rill erosion rates between 1989 and 1992 569 

across three small agricultural catchments with sugar beet, potato and maize crops 570 

and obtained rates of 1.4-4.5 t ha-1 yr-1. Although these rates lie well below the mean 571 

annual simulated soil loss in this study, additional soil loss from interrill erosion at 572 

Kluiskapel hillslope means simulated rates may not be vastly overpredicted. Govers 573 

and Poesen (1988) calculated the ratio of rill to interrill erosion from an upland field 574 

plot near Leuven and found that interrill erosion contributed about 22% to total erosion. 575 

All considered, WEPP is likely to be overpredicting soil loss rates for Kluiskapel 576 

hillslope, but the measured event and historic and contemporary field measurements 577 

from central Belgium offer some indication that simulated results may not be too far 578 

from reality.   579 

 580 

3.2 Mean Annual Changes 581 

Table 7 shows the absolute and relative changes in muddy flooding diagnostics across 582 

all future climate scenarios for the near, mid and 21st century, while Fig. 6 shows the 583 

full distribution of projected changes in the same diagnostics for Kluiskapel hillslope 584 

under the same scenarios.  585 

 586 

Diagnostic Baseline Future Mean % change Future Range % change 

MAP (mm) 759 843 11 725 to 1094 -5 to 44 
MAR (mm) 11.2 17.1 52 7.6 to 28.2 -32 to 152 
MASL (t ha-1) 16.5 22.1 34 6.5 to 39.8 -61 to 141 
MASY (t ha-1) 5.6 9.0 61 3.1 to 16.8 -45 to 200 

Table 7. Present-day baseline and future simulated rates of muddy flooding diagnostics. % changes 587 
are relative to the baseline and the range is across all 33 future climate scenarios. 588 
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589 
Fig. 6. Full distribution of all muddy flooding diagnostics across 33 future climate scenarios. Plotted in 590 

red is the present-day simulated value for each diagnostic. 591 

 592 

All muddy flooding diagnostics are generally projected to increase throughout the 593 

21st century. The median projected changes are higher than the observed baseline for 594 

all diagostics and for all three future time slices. In addition, the 25th percentile exceeds 595 

the baseline for 10 out of 12 of the scenarios shown in Figure 6. The median projected 596 

changes for the near 21st century are 4% for MAP, 29% for MAR, 13% for MSL and 597 

20% for MSY, with maximum changes of 24% for MAP, 148% for MAR, 133% for MSL 598 

and 188% for MSY. Four out of 11 scenarios project small decreases in MAP, with 599 

three for MAR, MSL and MSY. For the mid 21st century, median projected changes in 600 

MAP are lower than the near 21st century at 3%, while maximum projected changes 601 
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are higher at 34%. In contrast, the response in the other three muddy flooding 602 

diagnostics shows higher projected changes in the median and in many cases lower 603 

projected maximum changes. The median changes are 34% for MAR, 27% for MSL 604 

and 42% for MSY, with maximum changes of 129% for MAR, 141% for MSL and 200% 605 

for MSY. The amount of scenarios projecting decreases is generally lower than the 606 

near 21st century, with three out of 11 scenarios projecting small decreases for all 607 

diagnostics. For the late 21st century, median and maximum projected changes in 608 

muddy flooding diagnostics are generally at their highest. Median changes are 5% for 609 

MAP, 79% for MAR, 16% for MSL and 52% for MSY (highest of all time slices apart 610 

from MSL), while maximum changes are 44% for MAP, 152% for MAR, 119% for MSL 611 

and 182% for MSY. Just one out of 11 scenarios project small decreases for all muddy 612 

flooding diagnostics for the late 21st century. 613 

 614 

3.3 Seasonal Changes 615 

In addition to the projected annual precipitation totals, the seasonal distribution of 616 

rainfall is critical in triggering muddy flood events. Figs. 7-9 show projected monthly 617 

distribution of sediment yield (SY) as well as mean monthly precipitation totals (MMP) 618 

and mean maximum monthly precipitation (MXP) for all ESM-RCP combinations for 619 

the near 21st century (Fig. 5), mid 21st century (Fig. 8) and late 21st century (Fig. 9). 620 

Also shown is the observed baseline in each case and the date when tillage and 621 

planting of maize one year and soybeans the next occurs (for the baseline 622 

management scenario). The key months of concern are late April-August following 623 

tillage and planting, as this time represents the critical phase of late spring and summer 624 

when the land surface is most exposed. A short period from mid-October to December 625 

is also a vulnerable time for the soil surface following harvesting.  626 

 627 
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 628 

Fig. 7. Projected monthly distributions of SY, MMP and MXP for the present-day and under 11 future 629 
climate scenarios for the near 21st century. Also marked are the dates of key farming operations. 630 

 631 
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 632 

Fig. 8. Same as Fig. 7, but for the mid 21st century. 633 

 634 
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635 
Fig. 9. Same as Fig. 7, but for the late 21st century. 636 

 637 

MMP shows a mixture of projected increases and decreases from the observed 638 

baseline for all three future time slices during these key months. MIR-ESM stands out 639 

with the largest increases in MMP, particularly during the month of August. For 640 

example, MIR-ESM driven by RCP8.5 results in a doubling of MMP for the late 21st 641 

century (Fig. 9). For GFDL-ESM and MPI-ESM, it is much more of a mixed picture, 642 

with several scenarios projecting increases and decreases in MMP, sometimes even 643 

within the same summer season. As also shown in Figs. 7-9, projections of MXP are 644 

also very mixed across different scenarios. The changes in MXP do not necessarily 645 

correspond with changes in MMP, as there are several examples where one increases 646 

and the other decreases from the observed baseline. For example, during the month 647 

of July for the mid 21st century (Fig. 8), MMP is projected to increase by over 10% 648 
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under MIR-ESM driven by RCP4.5, while the corresponding scenario for MXP projects 649 

a decrease by over 10%. In contrast, one of the highest MXP values projected by any 650 

scenario for any time period is 36 mm by GFDL-ESM under RCP2.6 for the month of 651 

June for the mid 21st century (Fig. 8). Yet the corresponding scenario of MMP is only 652 

moderately higher than the observed baseline. Figs. 7-9 also show that SY 653 

corresponds much more closely to MXP than to MMP. For example, during the month 654 

of July for the mid 21st century (Fig. 8), GFDL-ESM driven by RCP2.6 projects a very 655 

large increase in SY (200%), yet the corresponding scenario for MAP projects only a 656 

very small increase. This is because the corresponding scenario for MXP projects a 657 

considerably larger increase of almost 50%. This clearly shows that changes in MXP 658 

rather than MMP are the chief cause of changes in SY. 659 

 In terms of changing seasonality, there is minimal change in the proportional 660 

distribution of all muddy flooding diagnostics between the baseline and future. For the 661 

three summer months where most muddy flooding occurs, the baseline proportion of 662 

muddy flooding diagnostics is 28% for MAP, 68% for MAR, 79% for MASL and 80% 663 

for MASY. As a mean of all 33 future scenarios, the proportions for the same months 664 

are 27% for MAP, 66% for MAR, 72% for MASL and 73% for MASY. 665 

 666 

3.4 Changes in Return Periods 667 

Figs. 10-12 show changes in return periods of total precipitation amounts and SY 668 

during muddy flooding events for the modelled baseline period as well as under the 669 

various ESM-RCP combinations for the near 21st century (Fig. 10), mid 21st century 670 

(Fig. 11) and late 21st century (Fig. 12). For all three future time slices, typically two 671 

out of the three ESMs project higher magnitude events for a given return period than 672 

the baseline. The largest change for PPT is projected by MPI-ESM driven by RCP4.5 673 

for the late 21st century, where a 120-year return period has a magnitude of 132 mm 674 

for PPT, compared to the baseline PPT of 75 mm for the same return period. For SY, 675 

the 120-year return period for the same scenario has a magnitude of 93 t ha-1, 676 

compared to the baseline SY of 46 t ha-1. 677 

 678 
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 679 

Fig. 10. Return Periods for PPT and SY for the present-day and under 11 future climate scenarios for 680 
the near 21st century. 681 

 682 
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 683 

Fig. 11. Same as Fig. 10, but for the mid 21st century. 684 

 685 
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 686 

Fig. 12. Same as Fig. 10, but for the late 21st century. 687 

 688 

 689 

4 Discussion 690 

The results presented and described in section 3 reveal a wide range of potential 691 

changes in muddy flooding diagnostics at Kluiskapel hillslope, depending on which 692 

scenario is considered. This section discusses some of the key points and implications 693 

emerging from these findings. 694 

 695 

4.1 Timing is everything 696 

As shown in Figs. 7-9, muddy flood events will only occur when high mean monthly 697 

precipitation totals or intense precipitation events occur during the time of year when 698 
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the land surface is exposed. In the case study area and central Belgium generally, this 699 

is currently the late spring and early summer months between tillage and planting of 700 

crops such as maize and soybeans in mid-April and the time taken to establish a 701 

sufficient crop cover to protect the soil surface, typically around August. There is also 702 

a period in the late autumn from mid-October following harvesting when the land 703 

surface is vulnerable for around the ca. six weeks it takes for the cover crop to 704 

establish. For both the baseline period and all future scenarios, soil loss and sediment 705 

yield from Kluiskapel hillslope generally only occur during these key months. For the 706 

baseline period, no sediment yield occurs during the relatively less vulnerable months 707 

of January-May. As an average of all 33 future scenarios, this increases but remains 708 

low at just  5% for the same months, highlighting the role of timing with respect to 709 

farming operations in causing muddy floods. Specifically, the three summer months 710 

are when most of the damage occurs. For example, under MPI-ESM driven by RCP8.5 711 

for the mid 21st century (Fig. 8), 90% of the sediment yield was generated during the 712 

three summer months despite these months not being the wettest projected months 713 

of the year. With 90 mm precipitation in December (the highest of the year), no 714 

sediment was lost from the hillslope. The timing of elevated rainfall amounts/intensity 715 

with inadequate crop cover is a well-established cause of soil erosion and muddy 716 

flooding and is also reported in many studies including Mullan et al. (2012a) and Mullan 717 

(2013a; b). For a more in-depth commentary on the role of timing with respect to 718 

rainfall and land cover in causing soil erosion, see Boardman and Favis-Mortlock 719 

(2014) and Burt et al. (2015). 720 

 721 

4.2 Changes in extremes are key 722 

As shown in Figs. 7-9 and described in section 3.3, changes in MASL and MASY align 723 

much more closely with MXP than MAP. There are several instances in Figs. 7-9 724 

where increases in MAP have not yielded consequent increases in MASY, even during 725 

the key vulnerable summer months. Just because MAP increases it does not 726 

necessarily mean precipitation amounts or intensities within individual storms 727 

increases. But in all cases where MXP increases, MASY responds with an increase. 728 

This illustrates that muddy flood events are typically driven by storms with high 729 

precipitation amounts and/or intensities rather than increases in monthly means that 730 

can mask the effects of individual storm events. Changes in extremes are further 731 
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illustrated in the changing return periods projected in Figs. 10-12. Muddy flood events 732 

of a given return period are typically projected to become higher in magnitude in a 733 

majority of scenarios. These results are in keeping with the literature for Flanders, 734 

which suggests that most muddy flood events are triggered by intense short-lived 735 

thunderstorms (Evrard et al., 2007b). 736 

 737 

4.3 Choice of climate scenarios is critical 738 

In this study, three ESMs driven by four RCPs were used as the basis for projecting 739 

future changes in muddy flooding diagnostics. As Figs. 6-12 show, there is 740 

considerable variation between individual scenarios. Fig. 6 shows that the 11 741 

scenarios for each of the three future time slices all include at least one scenario where 742 

each of the muddy flooding diagnostics decrease from the baseline period, but most 743 

of the future scenarios project an increase. The MIR-ESM tends to project the largest 744 

increases in MAP while the magnitude of changes in MXP and consequently MAR and 745 

MASY are relatively mixed between all models. The three selected ESMs were 746 

purposely selected to span a wide range of climate sensitivities, so the wide variation 747 

in the response of muddy flooding metrics is not surprising. As the model with the 748 

highest equilibrium climate sensitivity (ECS), it is not surprising that MIR-ESM projects 749 

the highest increases in precipitation due to the warmer atmosphere projected by this 750 

model, but it is rather more surprising that the ‘colder’ two models in certain scenarios  751 

project larger increases in intense precipitation events. Differences in precipitation 752 

projections, however, are caused by more than simply the enhancement of the 753 

hydrological cycle by additional heat in the atmosphere. The role of clouds in particular 754 

is very important in the modelling of precipitation, and it is well documented that cloud 755 

feedbacks are one of the chief causes of model errors with respect to the simulation 756 

of precipitation fields (Bony and Dufresne, 2005; Andrews et al., 2012). The simulation 757 

of precipitation is therefore more complex and non-linear than temperature and 758 

consequently results in a wide spread between scenarios. In this respect, although the 759 

model selection in this study spans a wide range of climate sensitivities that captures 760 

well the temperature range between CMIP5 models, this does not mean the selection 761 

captures the widest range of precipitation response between models. The use of a 762 

wider range of CMIP5 models would therefore be desirable in presenting a wider 763 

selection of scenarios of muddy flooding. 764 
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 765 

4.4 Uncertainty should not mean inaction 766 

Given the complexity of climate science and the large envelope of uncertainty around 767 

modelled projections, uncertainty has been flagged as one of the key arguments for 768 

delaying or avoiding action (Moser, 2010). With progress made in mitigating muddy 769 

floods in the present day following the adoption of the 2001 Erosion Decree, it is 770 

important that the impacts of a changing climate are factored into the mitigation 771 

process in a proactive way. The wide range of future scenarios presented here makes 772 

low-regret, flexible and ‘soft solutions’ most desirable as adaptation options (Wilby and 773 

Dessai, 2010). Grass buffer strips and grassed waterways in particular are good 774 

examples of such options in the sense that their dimensions can be modified relatively 775 

quickly and easily as the situation worsens over time. Given the results presented in 776 

this study, the characteristics (e.g., width, length, grass species, etc.) of these natural 777 

mitigation measures will need to be revised to accommodate increased runoff and 778 

sediment yield. More research is needed to examine how this can be best achieved to 779 

reduce the impacts of more frequent/intense muddy flood events in a way that 780 

balances this with the need to keep their dimensions minimal to avoid needless extra 781 

compensation to farmers. In terms of earthen dams and retention ponds, these are not 782 

as flexible as the buffer strips and waterways since they are designed to be effective 783 

for decades rather than from year to year. That said, they can be very effectively 784 

modified to account for the impacts of climate change by simply altering their 785 

dimensions and storage capacities with information on modelled return periods. Again, 786 

research is needed to provide specific information on modified characteristics of these 787 

‘harder’ mitigation measures. The benefit of the suggestions outlined above is that 788 

these measures have all been shown to be effective at managing muddy flooding in 789 

the present day, driven by existing policy structures. Small revisions to these existing 790 

measures seems the most sensible way to achieving continued success in mitigating 791 

muddy flooding under the impacts of a changing climate. 792 

 793 

4.5 What do we still need to know? 794 

First, this study focused on the impacts of climate change on muddy flooding, but did 795 

not consider changes in land use and management. These changes have been shown 796 

to in many cases be a more significant factor in driving increases in soil erosion than 797 
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climate change (e.g., O’Neal et al., 2005; Mullan et al., 2012a; Mullan, 2013a, 2013b). 798 

Future studies should examine this crucial factor. Second, changes in sub-daily rainfall 799 

intensity are not considered here, given the lack of information available at this 800 

temporal resolution from climate models. Refining the temporal resolution of rainfall 801 

scenarios remains a key research requirement for the wider climate modelling 802 

community. Third, while this study has provided an indication of future rates of muddy 803 

flooding diagnostics for one hillslope in Flanders, it does not claim to be representative 804 

of conditions across the wider region. A larger project would need to be undertaken to 805 

project changes in muddy flooding diagnostics for more of the erosion hotspots across 806 

Flanders. Fourth, the study does not answer any questions on the spatial patterns of 807 

soil erosion and sediment yield from the case study hillslope or whether events are 808 

most largely generated from interrill, rill or gully erosion. Finally, it is imperative that 809 

further monitoring is conducted across pilot thalwegs and catchments within Flanders 810 

in order to construct databases that help more fully ascertain the present day extent 811 

of the problem as well as greatly assist in model construction and validation. 812 

 813 

5 Conclusions and Implications 814 

Mitigation measures to manage muddy flooding in Flanders are cost-effective within 815 

three years. This study sought to investigate whether or not these mitigation measures 816 

would remain effective under a changing climate. In this respect, changes in muddy 817 

flooding diagnostics were modelled for a case study hillslope in Flanders under a 818 

variety of future climate scenarios. The key findings and implications are as follows: 819 

 820 

 Present-day baseline sediment yield from Kluiskapel hillslope was projected at 821 

5.6 t ha-1 yr-1. Based on calculations of a sedimentation zone following a muddy 822 

flood event in 2014, this projected rate fell within the measured range, though 823 

a refined measured range indicates that projections may be overestimated. 824 

 Projected sediment yield as a mean of all 33 future climate scenarios is 61% 825 

higher than the baseline at 9.0 t ha-1 yr-1, with a majority of scenarios projecting 826 

increases in muddy flooding diagnostics. 827 

 The magnitude of events of a given return period is generally projected to 828 

increase under a majority of future scenarios. 829 



38 
 

 Changes in sediment yield are governed more closely by large-scale 830 

precipitation events than changes in monthly means. 831 

 Given the projected increases in muddy flooding diagnostics, present-day 832 

mitigation measures may not suffice in controlling the problem in the future. 833 

Current mitigation measures are working, but may need to be modified to 834 

account for the impacts of climate change.  835 

 Uncertainty in modelled scenarios should not be used as an excuse for inaction. 836 

Mitigation measures based around low-cost, flexible and ‘soft’ solutions seem 837 

the most effective way of dealing with uncertainty in a proactive manner. 838 

 This is most likely to involve changes in design capacities and dimensions of 839 

existing measures, which should be implemented through existing policy 840 

structures. 841 
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