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Abstract 

The main goal of research presented in this paper was the material and radiological 

characterization of high volume fly ash concrete (HVFAC) in terms of determination of natural 

radionuclide content and radon emanation and exhalation coefficients. All concrete samples 

were made with a fly ash content between 50% and 70% of the total amount of cementitious 

materials from one coal burning power plant in Serbia. Physical (fresh and hardened concrete 

density) and mechanical properties (compressive strength, splitting tensile strength and 

modulus of elasticity) of concrete were tested. The radionuclide content (226Ra, 232Th and 40K) 

and radon massic exhalation of HVFAC samples were determined using gamma spectrometry. 

Determination of massic exhalation rates of HVFAC and its components using radon 

accumulation chamber techniques combined with a radon monitor was performed. The results 

show a beneficial effect of pozzolanic activity since the increase in fly ash content resulted in 

an increase in compressive strength of HVFAC by approximately 20% for the same mass of 

cement used in the mixtures. On the basis of the obtained radionuclide content of concrete 

components the I-indexes of different HVFAC samples were calculated and compared with 

measured values (0.27 – 0.32), which were significantly below the recommended 1.0 index 

value. The prediction was relatively close to the measured values as the ratio between the 

calculated and measured I-index ranged between 0.89 and 1.14. Collected results of mechanical 

and radiological properties and performed calculations clearly prove that all 10 designed 

concretes with a certain type of fly ash are suitable for structural and non-structural applications 

both from a material and radiological point of view. 
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1. Introduction 

1.1.  Background 

The building industry has one of the largest environmental impacts among all human activities: 

an annual consumption of 10 – 11 billion tons of aggregate (Meyer, 2002) and 4.18 billion tons 

of cement (USGS, 2015). Apart from extremely high resource and energy consumption, cement 

production is a significant source of CO2 emissions, accounting for approximately 4.4% of 

global CO2 emissions from industry in 2007 (Boden et al., 2010). 



There are many ideas that have been proposed to make concrete “greener” and more 

sustainable but they are all based on two principles: reuse and reduce. Concepts based on the 

“reduce” principle are oriented towards decreasing cement production based on natural 

materials and result in a reduction in CO2 emissions. With respect to the requirements for 

concrete as the world’s most used man-made material, a lower production of Ordinary Portland 

cement must be compensated with alternative sources of binders in concrete production. There 

are several industrial sectors which produce significant amounts of residues such as fly ash 

(FA), bottom ash, red mud, steel slag, nonferrous slag, etc. which can be used for that purpose 

(Shi et al., 2006). 

Millions of tons of FA, a by-product of coal combustion, are being generated annually 

worldwide (Malhotra, 2002; Coal Ash Facts). Although it has been used as a partial cement 

replacement for decades, there is an increased pressure to use a higher content of FA in concrete 

as a result of three main aspects e the economy, environmental and technical benefits. High 

volume fly ash concrete (HVFAC) is defined as concrete containing more than 50% FA in the 

total cementitious material’s mass (ACI, 2014). Generally, HVFAC exhibits good workability, 

low heat of hydration, low drying shrinkage and enhanced durability related properties 

compared to ordinary cement concrete (Huang et al., 2013; Malhotra, 2002). However, for all 

replacement rates, FA generally slows down the setting time and hardening rates of concrete at 

early ages. However, concrete mixtures with an amount of FA that is equal or greater than the 

amount of cement can achieve a compressive strength equal to or comparable to concrete 

without FA (Bouzoubaa and Fournier, 2003; Lam et al., 1998; Poon et al., 2000; Atis, 2005). 

The reuse of industrial residue streams can be beneficial from an economical and 

ecological point of view but mechanical properties of the final product and its effect on human 

health are cardinal properties to ensure safe inbuilt materials. The utilization of FA in concrete 

should also be considered from a radiological point of view. As a result of coal combustion the 

initial radionuclide content of the coal remains and thereby also accumulates in the solid 

residues, mainly in the bottom ash or coal slag but also in FA. This is the reason why FA belongs 

to the group of Naturally Occurring Radioactive Materials (NORM), materials which contain 

an elevated natural radionuclide content. A very large scatter of data for radionuclide content 

in fly ash can be found between different countries (Nuccetelli et al., 2015) and only limited 

data can be found for Serbian fly ash (Kisic et al., 2013). Several studies found that the natural 

radionuclide content in fly ash can be significantly high (Somlai et al., 1999, 2006; Petropoulos 

et al., 2002; Stojanovska et al., 2010). Therefore, utilization of FA as a supplementary material 



in cement production can cause a dose contribution to residents as a result of bulk inbuilt of 

concrete. 

The natural radionuclide content of inbuilt building materials can have an effect on 

human health which can be different from the outdoor value (Sas et al., 2015a; Szabo et al., 

2013; Trevisi et al., 2012, 2013). This is the reason why the reduction and limitation of exposure 

to building materials must meet various radiological conditions, e.g. the I-index for gamma 

radiation and low radon exhaling capacity (Nuccetelli et al., 2012; Kovler, 2011; Schroeyers, 

2015). 

The natural isotopes found in building materials can significantly contribute to radiation 

exposure in two ways, from external and internal exposure. Gamma radiation (extremely high 

electromagnetic radiation that ionizes its surroundings and is thus biologically hazardous) 

released from building materials is responsible for external exposure owing to the presence of 

terrestrial radioisotopes. In the recently published 2013/59/Euratom Directive (CE, 2014) and 

in many other national standards regulating the radioactivity of building materials, 

classification is based on the activity concentration index (I-index), taking into account the total 

effect of three main natural radionuclides usually present in building materials – 226Ra, 232Th 

and 40K. 

The main contributor to the internal exposure of human beings is radon (222Rn), a 

radioactive noble gas that originates from the alpha decay of 226Ra. Inhaled radon and its 

progenies significantly augment the risk of the evolution of pulmonary cancer and it is 

recognized as the second most relevant risk after smoking (WHO, 2009). It can increase in 

poorly ventilated areas, such as mines or even in buildings. Generally the underlying soil is the 

most dominant indoor radon enhancing factor (Szabo et al., 2014) in the case of lower floors or 

single storey buildings except in extreme cases when the building materials may be the main 

source (Somlai et al., 1999, 2006). Despite of the elevated level of 226Ra FA has a relatively 

low emanation coefficient which can be beneficial for HVFAC from a radon exhalation point 

of view (Kovler et al., 2005). 

The reuse of FA from coal burning power plants as part of concrete production will 

result in a reduction in the environmental impact of concrete by decreasing the amount of 

deposits in landfills and using waste instead of natural resources for concrete production. It will 

also enable the management of NORM residues in a more sustainable manner providing 

respectable physical and mechanical properties of the final product e concrete. However, the 

relatively high potential gamma exposure and indoor air quality, originating from the enhanced 

radionuclide content, may increase the risk in the case of human health. For the sustainable 



utilization of FA in building materials such as concrete, both external and internal radiation 

exposure should be as low as possible. 

 

1.2. Objectives 

The main objective of this study is to provide reliable data regarding the utilization of HVFAC 

in the building sector both from a material and natural radiation point of view. The global aim 

of this research is the promotion of HVFAC as a sustainable solution for the construction 

industry. In order to achieve this aim, the following procedures, measurements and analyses 

were performed: 

1. Design and preparation of concrete mixtures with a FA content between 50% and 70% by 

mass of the total amount of cementitious materials (the sum of cement and fly ash masses) 

2. Measurement of basic physical and mechanical properties of fresh and hardened concrete 

3. Determination of the radionuclide content (226Ra, 232Th and 40K) in all solid components of 

concrete (FA, cement and aggregate) and also in the final product (HVFAC) using gamma 

spectrometry 

4. Determination of massic exhalation rates of HVFAC and its components using radon 

accumulation chamber techniques combined with a radon monitor 

5. Analysis of all investigated materials by means of the I-index as a widely accepted 

screening tool 

6. Analysis of the effect of the amount of FA on radioactivity concentration, radon emanation 

and exhalation properties of HVFAC 

 

2. Experimental program – description 

2.1 Materials and sample preparation  

FA used for concrete preparation was obtained from the power plant “Nikola Tesla B” in 

Obrenovac, Serbia. Its chemical and physical composition fulfills the requirements of EN 450-

1:2012 (CEN, 2012), and according to ASTM C618-15 (ASTM, 2015) provisions this fly ash 

can be classified as Class F type. Two types of commonly used sand and coarse river aggregate 

with a nominal maximum size of 16 mm were used in this research. The cement used was a 

commercially available Portland-composite cement CEM II/A-M (S-L) 42.5R supplied from 

Lafarge. Cement additions with a mass of up to 20% of the total cement mass were grinded slag 

and limestone. A polycarboxylate ether polymer based superplasticizer was used in some 

mixtures to enable proper workability. The specific densities of applied materials are presented 

in Table 1. 



Table 1 

Specific density for concretes ingredients 

Material Water 
Aggregate 

Cement Superplasticizer FA sand 
[0/4] 

coarse  
[4/8] 

coarse 
[8/16] 

Specific 
density 
[kg/m3] 

1000.0 2573.0 2548.0 2591.0 3040.0 1070.0 2075.0 

 

Altogether 10 different concrete mixtures were designed and organized into two groups 

with two different quantities of cement 200 kg/m3 and 150 kg/m3. FA mass varied from 200 

kg/m3 to 400 kg/m3 in the first group and from 150 kg/m3 to 350 kg/m3 in the second group, 

Table 2. 

 

Table 2 

Mixture proportions of all designed concrete mixtures 

ID of concrete sample 
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C200_F200_0.488 195.0 810.5 486.3 324.2 200.0 0.00 200.0 127.0 2218.0 
C200_F250_0.433 195.0 748.5 486.3 324.2 200.0 1.00 250.0 148.0 2205.0 
C200_F300_0.390 195.0 686.5 486.3 324.2 200.0 1.25 300.0 28.0 2193.3 
C200_F350_0.355 195.0 624.5 486.3 324.2 200.0 2.24 350.0 33.0 2218.0 
C200_F400_0.325 195.0 562.5 486.3 324.2 200.0 2.00 400.0 700.0d 2170.0 
C150_F150_0.610 183.0 878.6 527.2 351.4 150.0 0.00 150.0 82.0 2240.2 
C150_F200_0.523 183.0 816.6 527.2 351.4 150.0 0.00 200.0 58.0 2228.2 
C150_F250_0.458 183.0 754.6 527.2 351.4 150.0 0.00 250.0 83.0 2216.2 
C150_F300_0.407 183.0 692.6 527.2 351.4 150.0 0.33 300.0 40.0 2204.5 
C150_F350_0.366 183.0 630.6 527.2 351.4 150.0 1.13 350.0 585.0d 2193.3 

a Fine aggregate, size 0-4 mm  
b Coarse aggregate, size 4-8 mm 
c Coarse aggregate, size 8-16 mm 
d Flow values  
 

The mass of FA in all mixtures was chosen to be between 50% and 70% of the total 

mass of cementitious materials. The ID of each sample was given in the form CN_FM_W, 

where C means cement, N means the mass of cement, F means fly ash, M means the mass of 



FA and W means the water-to-binder ratio. Concrete was cast in moulds and the standard curing 

procedure was conducted. In all mixtures, the FA content was equal to or greater than the mass 

of cement, thus this type of concrete can be classified as High Volume FA Concrete. 

The 100 mm concrete cubes were cast for compressive strength testing. The 150 × 150 mm 

cylinders were cast for splitting tensile strength testing and 150 × 300 mm cylinders for testing 

the modulus of elasticity. Upon completion, the specimens were exposed to the standard curing 

procedure (CEN, 2009) which meant covering them with wet fabric and storing in a casting 

room at 20±2 C for the first 24 h. Samples were demoulded and put in a water tank for 28 days 

after which mechanical properties were tested. 

Radiological characterization was performed on all 10 concrete samples but also on their 

components e three fractions of aggregate, cement and fly ash. All samples were dried in an 

drying oven for 24 h at 105 C to remove moisture and achieve constant weight. Concrete 

components and the solidified HVFAC samples were grinded and sieved through a mesh 

containing holes 5.0 mm in diameter. Approximately 500 – 700 g of sample prepared in this 

way was put into air-tight aluminium Marinelli beakers, weighed and enclosed for 30 days. 

 

2.2 Determination of radionuclide content by gamma spectrometry 

To obtain the radionuclide content, a (HPGe) semiconductor detector (ORTEC 

GMX40-76, with an efficiency of 40% and energy resolution of 1.95 keV at 1332.5 keV) was 

used. The data and spectra were recorded using an ORTEC DSPEC LF 8196 MCA. The 226Ra 

concentration values were determined after 30 days (necessary to reach a secular equilibrium 

state between 226Ra and 222Rn) by measuring the gamma lines of its decay products, 214Pb 

(295 and 352 keV) and 214Bi (609 and 1120 keV) under an equilibrium state. The 40K was 

measured using the 1461 keV gamma ray, while the 232Th was measured using the 911 keV 

gamma ray of 228Ac and 208Tl using the 583 keV and 2614 keV gamma rays. To calculate the 

activity concentration the obtained spectra were compared with a certificated reference 

material (IAEA-327 soil sample) (IAEA, 2003). The sample measuring time varied between 

60,000 and 80,000 s.  

2.3 Determination of massic exhalation and emanation rates 

Radon exhalation is the radon activity that diffuses per unit of time from a material to 

the surrounding air, in Bq s-1 defined by NEN-ISO 11665-9:2016 en (NEN-ISO 11665-9:2016). 

The radon exhalation rate can be related either to the area of exhaling surfaces or the mass of 



the sample. If the exhalation is related to the surface - the areic exhalation rate (radon flux Bq 

m-2 s-1) can be calculated. On the other hand, when the radon exhalation rate is related to mass 

- the massic exhalation rate (Bq kg-1 s-1) is obtained. Generally, the diffusion length in the case 

of porous materials is greater than 40 cm (Keller et al., 2001; Mujahid et al., 2005). Owing to 

this fact, if the sample thickness is extremely low compared with the diffusion length of radon, 

all the emanated radon can exhale from the matrix. This means the geometry of the sample has 

no effect on the sample. Only the amount of the sample, its 226Ra content and emanation factor 

determine its radon exhalation rate. Under those conditions the massic radon exhalation rate 

can be obtained (Kovler et al., 2005). Therefore, the concrete samples were prepared in the way 

that eliminated the problem with thickness and diffusion length, and enabled the use of massic 

exhalation as an acceptable method. 

HVFAC samples and its components were enclosed in air-tight radon accumulation 

chambers. Before measurements, the chambers were purged with radon-free N2 gas prior to the 

accumulation to reduce the initial radon concentration to zero (Sas et al., 2015b). The 

accumulation time ranged between 2 and 5 days. Following that period, the radon increment in 

the accumulation chamber was measured by a professional Alpha GUARD PRO type radon 

monitor (Fig. 1). The sampling process lasted 10 min with an air flow of 1.0 dm3 h-1 to ensure 

homogenous radon conditions in the entire sampling volume. After circulation had ceased there 

was also thoron (220Rn) – originating from the 232Th content of the samples – in the detector 

chamber, which cannot be distinguished by the PIC (Pulse Ionization Chamber) detector. 

Owing to its short half-life (55.6 s), a waiting time of 10 min is enough for the thoron to decay. 

The radon concentration was obtained after the atmosphere had become thoron-free in the 

detector chamber. The method is described in detail in a previous publication (Sas et al., 2015b). 

The radon exhalation rate in terms of mass can be calculated by Eq. (1) (Sas et al., 2015b): 

 



Fig. 1. Measurement of radon increment in the accumulation chamber by Alpha 

GUARD PRO type radon monitor 
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where: 

• Ct = accumulated radon concentration in the measurement kit during sampling  [Bq m-3] 

• EMass = massic exhalation rate [mBqkg-1 h-1] 

• t = accumulation time [h] 

• V = volume of the accumulation kit [m3]  

• m = mass of the sample [kg] 

• λ = decay constant of radon [h-1] 

 

The emanation factor (ε) is defined as the ratio of 222Rn atoms that escape from the sample 

matrix into the pore space and total 222Rn atoms that are produced in the sample matrix 

(Sahoo et al. 2007). The equilibrium radon activity can be calculated using the following 

formula: 

t
t

e
VC

A λ−∞ −
⋅

=
1           

(2) 

where: 

• A∞ = Equilibrium radon activity  [Bq] 

• Ct = accumulated radon concentration in the measurement kit during sampling  [Bq m-3] 

• t = accumulation time [h] 

• V = volume of the accumulation kit [m3]  

• λ = decay constant of radon [h-1] 

3. Results and discussion 

3.1 Fresh concrete properties  

The investigation of the workability of concrete was conducted by a standard slump test and a 

flow table test for mixtures that had slump values higher than 20 cm. Lower slump values were 

obtained for concrete mixtures with higher amounts of FA. In the group of mixtures with 200 

kg/m3 of cement, mixtures with 300 kg/m3 and 350 kg/m3 of FA resulted in slump which can 

be categorized as of class S1 according to EN 206-1:2013 (CEN, 2013), while the mixtures 



with 200 kg/m3 and 250 kg/m3 of FA belong to the S3. In the group of mixtures with 150 kg/m3 

there was one mixture in slump category S1 (with 300 kg/m3 of FA) and three in category S2 

(with 150, 200 and 250 kg/m3 of FA). The consistency of the two mixtures with the highest 

content of FA and lowest water-to-binder ratio, one from each group (C200_F400_0.33 and 

C150_F350_037) was quite different from the others. These mixtures were very dry during 

mixing but became very liquid after a superplasticizer was added in the amount of about 1% of 

cement mass. Apart from that, thixotropic behaviour was observed during the preparation and 

testing of these two mixtures. During mixing in the pan they were movable while afterwards 

they exhibited surface hardening. The observed behaviour is similar to the behaviour of alkali-

activated fly ash concrete with dense, sticky but workable mixtures. There were only slight 

differences in fresh concrete densities up to 5.5% for all 10 concrete mixtures. They were all 

between 2230 kg/m3 and 2355 kg/m3, similar to the density of ordinary concrete. These results 

showed that it was possible to make workable HVFAC with a suitable fresh density, but in the 

case of very high FA content and low water-to-binder ratio, a careful choice of the amount of 

superplasticizer is necessary. 

3.2 Hardened concrete properties 

Physical and mechanical properties of hardened HVFAC are presented in Table 3. Oven-dry 

densities of all concretes were between 2244 kg/m3 and 2352 kg/m3. All designed HVFACs can 

be classified as normal-weight concrete as they meet EN 206-1:2013 (CEN, 2013) 

requirements.  

Table 3  

Hardened physical and mechanical properties of HVFAC 

ID of concrete 
sample 

Hardened 
concrete 
density 
(kg/m3) 

Compressive 
strength 
(MPa) 

Splitting 
tensile 

strength 
(MPa) 

Modulus 
of 

elasticity 
(GPa) 

C200_F200_0.488 2303 34.2 2.9 31.3 
C200_F250_0.433 2295 38.2 2.7 32.1 
C200_F300_0.390 2244 36.7 2.9 31.8 
C200_F350_0.355 2268 42.0 3.7 33.2 
C200_F400_0.325 2255 40.2 2.0 32.7 
C150_F150_0.610 2352 24.3 2.5 29.0 
C150_F200_0.523 2313 25.7 2.3 31.9 
C150_F250_0.458 2316 24.5 3.1 30.0 
C150_F300_0.407 2291 26.8 2.9 30.1 



C150_F350_0.366 2283 29.8 3.2 30.2 
 

 

Obtained compressive strength values for 2 concrete mixtures prepared with 200 kg/m3 of 

cement satisfy requirements for classes C30/37 while the other 3 can be classified as class 

C25/30. In the group of concretes made with 150 kg/m3 of cement, 2 out of the 5 concretes can 

be classified as class C20/25 while the other 3 belong to class C16/20, according to EN 1992-

11:2005 (CEN, 2005) provisions. By comparing HVFAC mixtures of the same FA content, 

higher compressive strengths were observed in concrete mixtures with greater cement contents 

of between 33% and 56%. Within the group of concretes with the same amount of cement, 

compressive strength increases by up to 20% as FA content increases. The correlation is not 

very strong but the trend is obvious. This can be explained as a consequence of a ‘filler’ effect 

of FA, resulting in a more compact structure of the concrete matrix. 

No reliable correlation between the obtained values for splitting tensile strength and FA 

content in HVFAC can be found, Table 3. A relatively large scatter of results can be seen, 

between 2 MPa to 3.7 MPa in the first and between 2.3 MPa and 3.2 MPa in the second group 

of concretes. With the exception of C200_F400_0.325, the absolute values of splitting tensile 

strength in the group of concretes prepared with 200 kg/m3 of cement satisfy requirements for 

at least class C25/30 EN 1992-1-1:2005 (CEN, 2005). A possible reason for such a low tensile 

splitting strength of mixture C200_F400_0.325 is its very pronounced tixotropic behaviour and 

hard concrete placement into moulds that could cause insufficient compacting of concrete. The 

group of concretes made with 150 kg/ m3 of cement meets the requirements for at least class 

C20/25. 

There were negligible differences in the modulus of elasticity within the group of 

HVFACs with the same cement content. Generally, an average value of the modulus for 

concrete in the first group was 32.2 GPa while for the second one it was 30.2 GPa which is 

6.5% lower. All concretes with higher cement content meet the requirements for concrete class 

C25/30, while concretes with a lower cement content can be used as class C20/25 EN 1992-

11:2005 (CEN, 2005). 

Results of testing hardened properties testing proved that it is possible to produce 

HVFAC with properties sufficient for structural applications, comparable and competitive with 

ordinary concrete. 



3.3 Natural radionuclide content of samples determined by gamma spectrometry 

The measured activity concentrations of concrete components and all HVFAC samples 

are presented in Table 4.  

Table 4  

Measured activity concentration and calculated I-indexes of investigated samples 

ID of sample 
40K 226Ra 232Th I-index 

Bq/kg ± Bq/kg ± Bq/kg ± 
Aggregate 311 41 <LDa <LDa 24 9  
Cement 230 35 66 24 29 10  
Fly ash (FA) 240 36 90 28 66 19  
C200_F200_0.488 247 36 27 15 22 11 0.28 
C200_F250_0.433 249 37 28 15 23 11 0.29 
C200_F300_0.390 239 36 29 15 24 11 0.29 
C200_F350_0.355 239 36 34 17 27 12 0.33 
C200_F400_0.325 248 37 31 16 27 13 0.32 
C150_F150_0.610 229 35 20 13 18 10 0.23 
C150_F200_0.523 247 36 22 13 21 11 0.26 
C150_F250_0.458 235 36 28 15 25 12 0.29 
C150_F300_0.407 255 37 33 16 28 13 0.33 
C150_F350_0.366 248 37 32 16 27 13 0.33 

a Detection limit 

 

I-indexes of prepared HVFAC samples were calculated from the measured activity 

concentrations in Bq/kg of 226Ra (CRa-226), 232Th (CTh-232) and 40K (CK-40), using equation (3): 

3000200300
40232226 −−− ++= KThRa CCCI        (3) 

The I-indices value of 1 can be used as a conservative screening tool for identifying materials 

that, during their use, would cause doses exceeding the reference level of 1 mSv per year for 

building materials laid down in Article 75(1) of the 2013/59/EURATOM council directive (CE, 

2014). 

The obtained results show that the 40K content in aggregate samples was approximately 

30% higher than in the case of other components (cement and FA), Table 4. However, it was 

below the value which is considered as the average activity concentration of 40K for aggregate 

in the European Union (EU), Table 5.  

Table 5  

Average activity concentration in concrete and raw building materials  



Material 
40K 226Ra 232Th 

[Bq/kg] [Bq/kg] [Bq/kg] 
Cementb 216 (4-846)a 45 (4-422)a 31 (3-266)a 
Aggregateb,c 333 (3-1700) 21 (1-210) 24 (1-370) 
Fly ash in EUd 546 (301-1049) 207 (27-750) 80 (14-130) 
Fly ash in USAe - (100-1200) (100-600) (30-300) 
Concreteb 392 (7-1450) 60 (1-1300) 35 (1-152) 

a Minimum and maximum values are given in brackets  
b European Union countries, Trevisi et al., 2012 
c Sedimentary origin 
d European Union countries, Nuccetelli et al., 2015 
e IAEA, 2003 
 

As expected, the potassium content of the produced concrete samples was between the 

values of the component material. The 226Ra content was under the detection limit (DL) in the 

aggregate samples. Compared to the cement samples, FA had a 36% higher 226Ra activity 

concentration. The obtained results of the current study show that the used cement has a slightly 

higher radionuclide content than its average value for EU countries, Table 5. The 40K, 226Ra and 
232Th content of the examined Serbian FA samples were relatively low compared to the data 

from a different database, Table 5. Activity concentrations of all three isotopes were below the 

average value for EU samples while the 226Ra content was even below the lower boundary of 

the range for USA samples. 

Regarding the final product e concrete, measured activity concentrations of all three 

radionuclides in all ten concrete mixtures were below the average values in the databased 

presented by Trevisi et al. (2012), Table 5. Radionuclide content increase in the case of 150 

kg/m3 (HVFAC_150) and 200 kg/m3 (HVFAC_200) mixtures as FA content increased, for 
226Ra and 232Th. The increments of 226Ra and 232Th activity concentrations and obtained 

Iindexes of different mixtures can be seen as a function of FA content in Fig. 2. 



 
Fig. 2. Activity concentration of HVFAC as a function of the amount of used FA. 

 

For that purpose, the 40K, 226Ra and 232Th activity concentrations and I-indices of all 

HVFAC samples were calculated from the measured activity concentrations of the concrete 

components taking into account their mass portion in a concrete mass of unit volume (Table 4). 

An example for calculating the 226Ra activity concentrations in concrete is given below: 

( ) ( ) ( ) ( ) ( ) ( )calc. meas. meas. meas.
Ra 226 Ra 226 Ra 226 Ra 226

m FA m A m CM
C (C) C FA C A C CM

(C) (C) (C)− − − −= ⋅ + ⋅ + ⋅
γ γ γ

  (4) 

where C, A and CM are designations for concrete, aggregate and cement, respectively, while g 

is the hardened concrete density. 

Afterwards, calculated values of activity concentrations and Iindices derived from these 

results were compared to the measured activity concentration and I-indices of the analysed 

HVFAC samples, Table 6. 

 

Table 6  

Comparison of measured and theoretically calculated activity concentration of investigated 

samples 

ID of sample 
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C200_F200_0.488 247 260 1.05 27 21 0.76 22 25 1.14 0.28 0.28 0.99 
C200_F250_0.433 249 257 1.03 28 22 0.80 23 26 1.13 0.29 0.29 1.00 
C200_F300_0.390 239 260 1.09 29 25 0.85 24 27 1.14 0.30 0.31 1.03 
C200_F350_0.355 239 254 1.06 34 26 0.77 27 28 1.03 0.33 0.31 0.95 
C200_F400_0.325 248 252 1.02 31 28 0.90 27 29 1.07 0.32 0.32 1.00 



C150_F150_0.610 229 262 1.14 20 17 0.87 18 24 1.33 0.23 0.27 1.14 
C150_F200_0.523 247 264 1.07 22 19 0.88 21 25 1.20 0.26 0.28 1.07 
C150_F250_0.458 235 261 1.11 28 21 0.75 25 26 1.04 0.30 0.29 0.97 
C150_F300_0.407 255 261 1.02 33 23 0.70 28 27 0.97 0.34 0.30 0.89 
C150_F350_0.366 248 259 1.05 32 25 0.78 27 28 1.04 0.32 0.31 0.96 
Average Calc./Meas.   1.06   0.81   1.11   1.00 

 

 

The comparison of measured and calculated values of activity concentrations for 40K 

and 232Th leads to the conclusion that the calculated values were always 6% and 11% higher 

(on average), respectively, than the measured ones. Calculated values for the activity 

concentrations of 226Ra were always 10 – 30% lower than measured values. However, the I-

indices obtained from calculated radionuclide contents were very close to the I-indices 

calculated from the measured activity concentrations. In the group of concretes with higher 

cement content, differences between calculated and measured based values of I-indices are 

within 5%. A larger scatter of these results is observed in the group of concretes with 150 kg/m3 

of cement and increases up to 14% on the conservative side and up to 11% on the underestimate 

side. These differences can be explained by the extraordinarily low radionuclide content of the 

used aggregates and also by the sensitivity of the detector. Another reason for disagreement 

between measured and calculated values most likely originates from uncertainties of the mass 

portion of components in the total mass of particular concrete samples. 

A combination of mechanical property and natural radiation results of radiological 

analysis leads to the conclusion that an increase in FA content in concrete ensures increased 

compressive strength but at the same time higher I-indices. This means that despite the 

beneficial effect of FA on mechanical properties, the risk originating from the gamma dose 

caused by the elevated radionuclide content of FA requires a survey of concrete components 

especially FA. However, obtained I-indices for all concrete mixtures are significantly lower 

than the recommended limit value (1.0) which enables the utilization of HVFAC without any 

elevated gamma radiation exposure to residents. 

However, the accuracy of the measured value of the 226Ra activity concentration can be 

slightly disputable due to the extraordinarily low radionuclide content of the aggregate. It can 

be stated that the calculation of the radionuclide content of mixtures from the results of the 

component materials is suitable for predicting the radionuclide content and I-indices of the final 

concrete products. 



According to these results, HVFACs based on the analysed type of FA in amounts up 

to 400 kg/m3 can be widely used as building materials, both for indoor and outdoor applications 

and for structural as well as for non-structural use. 

 

3.4 Exhalation measurement 

The obtained massic exhalation rate of the investigated samples is listed in Table 7. The 

obtained massic exhalation rate was the lowest in the case of aggregate samples. Despite the 

relatively high 226Ra content of the FA the measured exhalation rate was only 15 ± 4 mBq kg-1 

h-1.  

 

Table 7  

Massic exhalation rate and emanation factor of investigated samples 

ID of sample Massic exhalation rate Emanation 
mBq kg-1 h-1 ± % ± 

Aggregate 6 2 <LD <LD 
Cement 32 2 6 1 

Fly ash (FA) 15 4 2 1 
HVFAC_200_200_0.488 30 4 14 3 
HVFAC_200_250_0.433 31 5 15 5 
HVFAC_200_300_0.390 29 5 13 4 
HVFAC_200_350_0.355 32 5 12 4 
HVFAC_200_400_0.325 28 5 12 4 
HVFAC_150_150_0.610 29 5 19 5 
HVFAC_150_200_0.523 37 6 22 6 
HVFAC_150_250_0.458 33 5 16 5 
HVFAC_150_300_0.407 38 5 15 4 
HVFAC_150_350_0.366 29 5 12 4 

 

 

The emanation coefficient of aggregate samples could be calculated due to the very low 226Ra 

activity concentration which was under the detection limit. In the case of FA the emanation 

factor was only 2%, which explains the very low massic exhalation rate of FA. This fact is not 

unusual since the applied heating temperature used in coal combustion power plants has a great 

effect on internal structural conditions since it reduces the amount of open pores in FA grains. 

In spite of the relatively low 226Ra content of the prepared HVFAC samples the obtained 

massic exhalation results were higher than in the case of concrete ingredients. This can be 



explained by the different microstructure of concrete samples that formed as a result of the 

chemical transformation of ingredients. Although the porosity features were not studied in this 

research previous studies have proven that a significant correlation can be found between the 

nanopores and radon emanation features (Sas et al., 2015b). 

The obtained emanation factors for concrete were 2 – 3 times higher compared to the 

results for cement, which had the highest emanation factor as a concrete component. It can be 

stated that the preparation process of concrete clearly changes (increases) the massic exhalation 

rate of the applied ingredients. However the measured exhalation rates as a function of the FA 

content exhibited no significant changes (Table 7). A strong correlation was found between the 

content of FA and the obtained emanation features (Fig. 3).  

 
Fig.3. Massic exhalation rate of HVFAC and emanation coefficient as a function of FA 

content. 

 

The radon emanation has a decreasing tendency with the increase of FA content for all 

mixtures in spite of the increasing 226Ra activity concentration. This phenomenon can be 

explained by the increasing amount of FA which possesses a lower emanation factor compared 

to cement. 

A correlation was observed between the water-to-binder ratio and the emanation factor, 

as illustrated in Fig. 4.  



 
Fig.4. Emanation factor of HVFAC concretes as a function of the water-to-binder ratio. 

 

According to this diagram, the emanation coefficient increases as the water-to-binder 

ratio increases. In general, the total porosity of concrete increases with the increase of the water-

to-binder ratio (Neville, 1995; Lafhaj et al., 2006, Volz et al., 2012). However, increased total 

porosity does not necessarily imply that radon emanation increases (Ulbak et al., 1984) as the 

radon emanation is mainly affected by nanoporosity of the prepared concrete (Sas et al., 2015b). 

The pore size distribution was not within the scope of the current study and its influence on the 

emanation coefficient will be studied in the future work. 

 

4. Conclusions 

The objective of this work was the investigation of physical, mechanical and radiological 

properties of HVFAC made with different amounts of fly ash from one Serbian coal burning 

power plant. Based on the presented results and discussion, the following conclusions can be 

drawn: 

• Testing of physical and mechanical properties showed that the designed HVFAC can be 

used both for structural and nonstructural applications. 

• Compressive strength of HVFAC increases by approximately 20% as the FA content 

increases from 50% to 70% of the mass of total cementitious materials. 

• The natural radionuclide content of 226Ra, 232Th and 40K in all solid components (aggregate, 

cement and FA) for all concrete samples was significantly lower than the recommended 

limit value for the I-index of 1.0. As a result, the investigated FA from a Serbian coal 



burning power plant does not require any restrictions on the amount for HVFAC production 

from a radiological point of view. 

• The 226Ra activity concentration of the investigated FA was 90 Bq/kg, which was the highest 

value among all investigated components. As the FA content in the HVFAC samples 

increased, an increase in the I-index was observed. 

• Differences in the I-index for HVFAC obtained from measured activity concentrations of 

concrete and calculated from the activity concentrations of solid concrete components were 

within 5% for higher cement content mixtures and within 14% for lower cement content 

mixtures. Generally, the I-index of the final product (HVFAC) can be predicted from the 

activity concentrations of the concrete components with acceptable accuracy. 

• The massic exhalation features of the studied HVFAC samples were nearly constant in spite 

of the increase in FA (and its 226Ra) content due to the decreasing emanation factor of the 

final products.  

• Generally, an increase of the water-to-binder ratio in concrete mixtures increased the 

emanation factor, but further investigation is required to explain this phenomenon. 
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