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ABSTRACT
We study the growth of the explosion energy after shock revival in neutrino-driven explosions
in two and three dimensions (2D/3D) using multi-group neutrino hydrodynamics simulations
of an 11.2 M� star. The 3D model shows a faster and steadier growth of the explosion energy
and already shows signs of subsiding accretion after one second. By contrast, the growth of
the explosion energy in 2D is unsteady, and accretion lasts for several seconds as confirmed
by additional long-time simulations of stars of similar masses. Appreciable explosion energies
can still be reached, albeit at the expense of rather high neutron star masses. In 2D, the binding
energy at the gain radius is larger because the strong excitation of downward-propagating g
modes removes energy from the freshly accreted material in the downflows. Consequently, the
mass outflow rate is considerably lower in 2D than in 3D. This is only partially compensated by
additional heating by outward-propagating acoustic waves in 2D. Moreover, the mass outflow
rate in 2D is reduced because much of the neutrino energy deposition occurs in downflows
or bubbles confined by secondary shocks without driving outflows. Episodic constriction of
outflows and vertical mixing of colder shocked material and hot, neutrino-heated ejecta due to
Rayleigh–Taylor instability further hamper the growth of the explosion energy in 2D. Further
simulations will be necessary to determine whether these effects are generic over a wider range
of supernova progenitors.

Key words: hydrodynamics – instabilities – neutrinos – radiative transfer – supernovae: gen-
eral.

1 IN T RO D U C T I O N

After decades of research, the mechanism powering core-collapse
supernovae is still one of the outstanding problems in theoretical as-
trophysics. The so-called delayed neutrino-driven mechanism cur-
rently remains the most popular and best explored explanation (see
Janka 2012; Burrows 2013 for current reviews) for ‘ordinary’ super-
nova explosions not exceeding ∼1051 erg. In its modern guise, the
neutrino-driven mechanism relies on additional support for shock
expansion in the form of hydrodynamic instabilities like convection
(Burrows & Fryxell 1992; Herant, Benz & Colgate 1992; Herant
et al. 1994; Burrows, Hayes & Fryxell 1995; Janka & Müller 1996;
Müller & Janka 1997) and the standing accretion shock instability
(SASI; Blondin, Mezzacappa & DeMarino 2003; Foglizzo et al.
2007; Laming 2007; Guilet & Foglizzo 2012). Indeed, many suc-
cessful multi-dimensional simulations of neutrino-driven shock re-
vival (mostly in 2D, i.e. under the assumption of axisymmetry) have
strengthened our confidence in the neutrino-driven mechanism over
the recent years (Buras et al. 2006b; Marek & Janka 2009; Suwa
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et al. 2010, 2013; Yakunin et al. 2010; Janka et al. 2012; Müller,
Janka & Marek 2012a; Müller, Janka & Heger 2012b; Bruenn et al.
2013; Pan et al. 2015). However, both the long-time evolution of
the successful 2D models and the advent of three-dimensional (3D)
simulations have revealed two serious challenges for the neutrino-
driven paradigm. With the exception of Bruenn et al. (2013), the
majority of successful 2D simulations tended to produce explosions
that are probably underenergetic. Moreover, the most ambitious self-
consistent 3D simulations with multi-group neutrino transport have
so far either failed to yield explosions (Hanke et al. 2013; Tamborra
et al. 2014a,b) or, in the few successful cases, showed a considerable
delay in shock revival (Lentz et al. 2015; Melson et al. 2015a) and
significantly smaller explosion energies (Takiwaki, Kotake & Suwa
2014). Only the explosion of a 9.6 M� star recently simulated by
Melson, Janka & Marek (2015b) is an exception from this trend.
Whether the neutrino-driven mechanism provides a robust explana-
tion for shock revival and can account for the observed explosion
properties of core-collapse supernovae may appear doubtful in the
light of these results.

There is now an emerging consensus about the reasons underlying
the more fundamental problem of missing or delayed explosions in
3D. Both simple light-bulb- and leakage-based simulations (Hanke
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et al. 2012; Couch 2013a,b; Couch & O’Connor 2014; Couch &
Ott 2015) as well as models with multi-group transport (Hanke
et al. 2013; Takiwaki et al. 2014) find an artificial accumulation
of turbulent kinetic energy on large spatial scales in 2D due to
the action of the inverse turbulent cascade (Kraichnan 1967). Ef-
fectively, the forward cascade in 3D provides for more efficient
damping/dissipation of the turbulent motions in the post-shock re-
gion, resulting in smaller turbulent kinetic energies. Since the tur-
bulent kinetic energy is directly related to the Reynolds stresses
(i.e. loosely speaking, the ‘turbulent pressure’) that have been iden-
tified as the primary agent fostering shock expansion in multi-D
(Burrows et al. 1995; Murphy, Dolence & Burrows 2013; Couch &
Ott 2015; Müller & Janka 2015), this affects the critical neutrino
luminosity Lcrit (Burrows & Goshy 1993; Murphy & Burrows 2008)
required to power an explosive runaway. However, even though the
higher explosion threshold in 3D has emerged as a systematic effect,
it none the less remains a small effect. Current light-bulb models
(Hanke et al. 2012; Couch 2013b; Dolence et al. 2013) invariably
show a similar reduction of 20–30 per cent in critical luminosity in
2D/3D compared to 1D, with Dolence et al. (2013) still finding a
slightly lower explosion threshold in 3D. Likewise, neutrino hy-
drodynamics simulations (Hanke et al. 2013; Takiwaki et al. 2014)
show very similar heating conditions in 2D and 3D prior to shock
revival [and even transient phases with better heating conditions in
3D in Hanke et al. (2013)], although the small differences between
2D and 3D eventually thwart shock revival in the 3D models of
Hanke et al. (2013) and Tamborra et al. (2014a,b). Even though the
adverse effects of the forward cascade in 3D may still be underes-
timated by the relatively crude grid resolution that current models
can afford (Hanke et al. 2012; Couch 2013b; Abdikamalov et al.
2014), it thus emerges that 3D models of neutrino-driven super-
nova explosions are very close to the explosion threshold. Con-
sequently, relatively small refinements in the simulations and the
initial models may be sufficient to obtain explosions, e.g. moderate
rotation (Nakamura et al. 2014), magnetic fields (Obergaulinger,
Janka & Aloy 2014), asphericities in the progenitor core (Couch &
Ott 2013; Couch et al. 2015; Müller & Janka 2015), or modifica-
tions to the standard neutrino interaction rates (Melson et al. 2015a).
The emergence of the spiral mode of the SASI could even allow
strongly SASI-dominated models to explode earlier in 3D than in 2D
(Fernández 2015).

By contrast, the problem of underenergetic neutrino-driven explo-
sions in 2D has so far gone without a convincing theoretical explana-
tion, and fewer suggestions have been made to remedy it, although
it may be more serious in the sense that it affects even models with
successful shock revival. While recent analyses of well-observed
supernovae (Tanaka et al. 2009; Utrobin & Chugai 2011; Poznan-
ski 2013; Chugai & Utrobin 2014; Pejcha & Prieto 2015) suggest
a broader range of explosion energies for Type II-P supernovae
within ∼(0.1−2) × 1051 erg instead of a single ‘canonical’ value of
1051 erg, there is arguably still a discrepancy, since almost none of
the successful 2D and 3D models with multi-group neutrino trans-
port show explosion energies considerably above 1050 erg, e.g. the
final values at the end of the simulations are a few 1049 erg in Marek
& Janka (2009) for progenitors with 11.2 and 15 M�, � 1050 erg
for a 13 M� progenitor in Suwa et al. (2010), and 4 × 1049 erg
(11.2 M� progenitor), 1.3 × 1050 erg (15 M�), and 1.3 × 1050 erg
(27 M�) in Janka et al. (2012). Moreover, these estimates are not
corrected for the ‘overburden’, i.e. the binding energy of the layers
outside the shock, so that it remains unclear whether the explosions
become energetic enough to shed the envelope at all. At first glance,
the low explosion energies may simply be due to the fact that the

simulations typically terminate before the explosion energy reaches
its asymptotic value. While it can be argued that the final explosion
energies may yet be higher by a factor of several because continued
accretion sustains strong neutrino emission after shock revival that
can power outflows from the gain region for �0.5 s, this assump-
tion creates several other problems. Sustained accretion over �0.5 s
might shift the resulting remnant mass distribution well above the
average birth mass of neutron stars Mgrav ≈ 1.35 M� (Schwab, Pod-
siadlowski & Rappaport 2010) inferred from observations (which
may, however, suffer from a selection bias). Only the 2D models
of Bruenn et al. (2014) form an exception from this trend; they
obtain explosion energies in the range of (3.4–8.8) × 1050 erg for
progenitors between 12 and 25 M� as well as reasonable nickel
masses.

While this is encouraging, explosion energies above 1051 erg
still remain unexplained, and the problem of underenergetic su-
pernova explosion will arguably still linger as long as the discrep-
ancies between the different simulation codes are not resolved.
Interestingly, Melson et al. (2015b) recently reported that 3D ef-
fects, while apparently detrimental for shock revival in more mas-
sive progenitors, actually boost the explosion energy in a 9.6 M�
progenitor by ∼10 per cent by reducing the infall velocity in the
accretion downflow and hence the cooling below the gain layer.
Here, we further investigate their intriguing premise that 3D ef-
fects, while hurtful for shock revival, can prove beneficial in other
situations and contribute to solving the problem of low explosion
energies.

In this paper, we present a successful 3D multi-group neu-
trino hydrodynamics simulation of an 11.2 M� progenitor with the
COCONUT-FMT code (Müller, Janka & Dimmelmeier 2010; Müller &
Janka 2015) as further evidence that 3D turbulence plays a positive
role after the onset of the explosion. By comparing the dynam-
ics and energetics of the 3D explosion model to several long-time
simulations of 2D progenitors in the mass range between 11 and
11.6 M�, we demonstrate how 3D effects can lead to a faster,
more robust growth of the explosion energy provided that shock
revival can be achieved. So far, the long-time effects of the di-
mensionality during the first hundreds of milliseconds to seconds
after shock revival have received less attention than the role of the
third dimension in shock revival. Successful first-principle mod-
els are still scarce and cannot be evolved for a sufficiently long
time yet to address this phase in detail, while light-bulb-based
studies of supernova energetics in 2D and 3D (Handy, Plewa &
Odrzywołek 2014) cannot adequately account for the feedback of
the subsiding accretion on to the neutrino heating and do not show
the drawn-out long-time accretion characteristic of first-principle
models. In this paper, we show that this phase deserves a closer
look.

Our paper is structured as follows. In Section 2, we review the
numerical methods for hydrodynamics and neutrino transport used
in our version of the COCONUT code, including a brief sketch of the
modifications used in the 3D version. In Section 3, we first give a
descriptive overview of the differences in shock propagation and
explosion properties between the 2D and 3D models. Since the
question of shock revival in 3D is not the objective of our current
study, we only provide a brief, cautionary assessment of shock re-
vival in the 3D model against the backdrop of recent first-principle
models in Section 4. In Section 5, we then analyse the physical ef-
fects underlying these differences by combining a separate analysis
of the outflows and downflows in the spirit of Melson et al. (2015b).
Finally, we summarize our results and discuss their implications in
Section 6.
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Figure 1. Density ρ and entropy s for the four progenitors s11.0 (red), s11.2
(black), s11.4 (light brown), and s11.6 (green) as a function of enclosed mass.

2 N U M E R I C A L M E T H O D S A N D M O D E L
SE TUP

2.1 Progenitor models

We simulate the collapse and post-bounce phase of the (non-
rotating) 11.2 M� solar-metallicity progenitor s11.2 of Woosley,
Heger & Weaver (2002) in 2D and 3D. In order to gauge the effect
of stochastic model variations, we perform two different 2D sim-
ulations (s11.2_2Da and s11.2_2Db1) for this progenitor, and we
also conduct simulations for three other solar-metallicity progeni-
tors of Woosley et al. (2002) with similar zero-age main-sequence
(ZAMS) mass and density structure (11, 11.4, 11.6 M�). We ran-
domly perturb the radial velocity vr at the beginning of collapse
using a perturbation amplitude δvr/vr = 10−5.

In Fig. 1, we show density and entropy profiles for the four pro-
genitors simulated in the different 2D and 3D runs. Despite small
differences in the location of the interfaces between the different
shells, the models are very similar in terms of structure with a pro-
nounced density jump between the silicon shell and the convective
shell above the active oxygen burning zone. As we shall see, the
2D models of the different progenitors are qualitatively very simi-
lar in terms of explosion dynamics and energetics and should thus
illustrate the generic behaviour of supernova explosions originating
from progenitors in this mass range.

2.2 Numerical methods

The simulations are performed with the general relativistic (GR)
neutrino hydrodynamics code COCONUT (Dimmelmeier, Font &
Müller 2002; Müller et al. 2010; Müller & Janka 2015). Our ver-

1 Scattering on nuclei (including α-particles) was switched off after bounce
for model s11.2_2Db, which leads to minor changes in early shock propa-
gation, but is inconsequential for the long-time evolution. Since the energy
exchange due to recoil in neutrino–nucleon scattering was taken to be pro-
portional to the total scattering opacity instead of the neutrino–nucleon
scattering opacity only (see equation A31 in Müller & Janka 2015) in model
s11.2_2Da and all other models, the runs with neutrino scattering on nuclei
overestimate pre-heating from heavy flavour neutrinos outside the shock
during the early post-bounce phase (whereas nuclei actually receive negli-
gible recoil in scattering reactions), which leads to a slight reduction of the
heavy flavour neutrino luminosity and a slightly slower contraction of the
proto-neutron star compared to s11.2_2Db.

sion of COCONUT uses piecewise parabolic reconstruction (Colella &
Woodward 1984) combined with a hybrid HLLC/HLLE Riemann
solver (Mignone & Bodo 2005) to obtain higher order spatial accu-
racy. COCONUT employs spherical polar coordinates (r, θ , ϕ), which
leads to strong time-step constraints near the polar axis in 3D due
to the converging grid geometry. We circumvent this problem using
an adapted version of the mesh coarsening scheme of Cerdá-Durán
(2009). While the equations of hydrodynamics are solved on a fine
grid with constant spacing δϕ in longitude everywhere, a filter is ap-
plied to the solution after each time step to remove short-wavelength
noise in the ϕ-direction by projecting the conserved variables on to
piecewise linear/quadratic2 functions in ‘supercells’ that contain
2n(θ ) fine cells in the ϕ-direction. The projection algorithm is imple-
mented conservatively, and the slopes for the filtered solution are
obtained using the monotonized-central limiter of van Leer (1977).
The supercell size 2n(θ ) is chosen such that nsin θ > 1/2 is main-
tained at any latitude. This ensures that the allowed CFL time step
at high latitudes is at most shorter by a factor of ∼2 compared to the
equatorial region, and limits the filtering to a region of 30◦ around
the pole, which corresponds to 13.3 per cent of the total volume.
Similar techniques have long been used in numerical meteorology,
cp. Kageyama & Sato (2004) and chapter 18 in Boyd (2001). Polar
filtering allows us to maintain the same effective angular resolution
of 1◦4 in 2D and 3D with grids of Nr × Nθ = 550 × 128 zones
(2D) and Nr × Nθ × Nϕ = 550 × 128 × 256 zones (3D, fine grid)
covering the innermost 105 km of the star, respectively.

Like any other solution to avoid the coordinate singularity and
the excessive time-step constraint near the axis such as Cartesian
coordinates, overset grids (Kageyama & Sato 2004; Wongwatha-
narat, Hammer & Müller 2010; Melson, Janka & Marek 2015b),
or cubed-sphere grids (Ronchi, Iacono & Paolucci 1996; Koldoba
et al. 2002; Zink, Schnetter & Tiglio 2008; Fragile et al. 2009),
this polar filtering procedure has specific advantages and disadvan-
tages. Unlike Cartesian codes, polar filtering allows us to maintain
spherical symmetry in the initial conditions and explicit symmetry-
breaking terms can be avoided. Different from cubed-sphere grids,
the grid remains orthogonal, and global conservation laws are easier
to enforce than for overlapping overset grids. On the other hand,
projecting the solution to piecewise linear function effectively in-
troduces an anisotropy in the numerical viscosity and diffusivity
(an unwelcome effect that is minimized by overset or cubed-sphere
grids but also manifests itself for Cartesian grids that are prone to
the development of m = 4 modes).

The space–time metric is computed using the extended conformal
flatness condition (xCFC; Cordero-Carrión et al. 2009). Because
the asphericities in the gravitational field are small for non-rotating
core-collapse supernovae, we use the monopole approximation for
the gravitational field, i.e. the lapse function α, the conformal factor
φ, and the radial component β r of the shift vector only depend on
r, and the non-radial components βθ and βϕ of the shift vector are
set to zero.

For the neutrinos, we use the fast multi-group transport (FMT)
scheme of Müller & Janka (2015), which is based on a stationary
two-stream solution of the relativistic transfer equation that is com-
bined with an analytic variable Eddington factor closure at low op-
tical depths. This scheme includes GR effects under the assumption
of a stationary metric, but neglects velocity-dependent effects like

2 For example, we use linear functions for the Eulerian density D and the
mass fractions Xi so that the conserved partial masses DXi are represented
by quadratic functions.
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Figure 2. Shock propagation and diagnostic explosion energy Eexpl for the
11.2 M� progenitor in 2D and 3D. The top panel shows the maximum,
minimum (solid), and average (dashed) shock radius for model s11.2_2Da
(black), s11.2_2Db (blue), and s11.2_3D (red). The middle and bottom
panels show the diagnostic explosion energy Eexpl and its time derivative
dEexpl/dt.

Doppler shift and aberration. The neutrino rates include emission,
absorption, and elastic scattering by nuclei and free nucleons [along
the lines of Bruenn (1985)] as well as an effective one-particle rate
for nucleon–nucleon bremsstrahlung and an approximate treatment
of the energy exchange in neutrino–nucleon scattering reactions.
Comparisons of the FMT scheme with the more sophisticated rel-
ativistic neutrino transport solver VERTEX (Rampp & Janka 2002;
Müller et al. 2010) showed excellent qualitative and good quantita-
tive agreement. For more details, we refer the reader to Müller &
Janka (2015).

In order to further alleviate the time-step constraint, the inner-
most part of the computational domain (where densities exceed
∼5 × 1011 g cm−3) is calculated in spherical symmetry using a con-
servative implementation of mixing-length theory for proto-neutron
star convection, a procedure that has been used in the context of su-
pernova simulations before (e.g. Wilson & Mayle 1988; Hüdepohl
2014). The transition density is adjusted such that it lies inside the
convectively stable cooling layer.

In the high-density regime, we use the equation of state (EoS) of
Lattimer & Swesty (1991) with a bulk incompressibility modulus
of nuclear matter of K = 220 MeV. At low densities, we employ an
EoS accounting for photons, electrons, and positrons of arbitrary
degeneracy, an ideal gas contribution from baryons (nucleons, pro-
tons, α-particles, and 14 other nuclear species). Nuclear reactions
are treated using ‘flashing’ as described in Rampp & Janka (2002).

Figure 3. Shock propagation and diagnostic explosion energy Eexpl for the
different progenitors in 2D. The top and middle panels show the maximum
and average shock radius, respectively. The bottom panel shows the diag-
nostics explosion energy Eexpl as a function of time (solid lines). Dashed
lines show the time evolution Eexpl − Eov, i.e. the diagnostic energy cor-
rected for the binding energy (overburden) Eov of the material ahead of the
shock. Red, black, blue, light brown, and green curves are used for models
s11.0_2D, s11.2_2Da, s11.2_2Db, s11.4_2D, and s11.6_2D.

3 OVERV I EW O F SI MULATI ON R ESULTS

In all our simulations, runaway shock expansion sets in when the
Si/SiO interface reaches the shock and the mass accretion rate drops
rapidly. Figs 2 (all 2D/3D 11.2 M� models) and 3 (long-time evo-
lution of all 2D models) provide an overview over the propagation
of the shock and the growth of the explosion energies for the dif-
ferent models; they show the maximum, minimum (only Fig. 2),
and angled-averaged shock radius, as well as the ‘diagnostic ex-
plosion energy’ Eexpl, which we define as the total net energy (i.e.
gravitational+internal+kinetic energy) of all the material that is
nominally unbound and is moving outwards with positive radial ve-
locity at a given time (cp. Müller et al. 2012a; Bruenn et al. 2014).
The nucleon rest masses are not included in the internal energy, i.e.
nucleon recombination only contributes to the diagnostic energy
once it actually takes places. Fig. 2 also shows the time derivative
of the diagnostic energy. Key results of the simulations, including
the diagnostics energy and the baryonic remnant mass at the end of
the simulations as well as estimates for the final remnant mass (see
Section 3.3 below), are given in Table 1.

3.1 Differences between 2D and 3D during the first second

For the 11.2 M� progenitor, the first second after bounce is shown in
detail in Fig. 2 both in 2D and 3D. In addition, Figs 4 and 5 illustrate

MNRAS 453, 287–310 (2015)
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Table 1. Overview of simulations. The extrapolation of the final remnant masses (last column) is discussed in Section 3.3.

Model Progenitor Dimensionality Post-bounce Diagnostic energy Baryonic neutron star Extrapolated baryonic
time reached (s) reached (erg) mass reached (M�) remnant mass (M�)

s11.0_2D s11.0 2 8.195 1.3 × 1050 1.62 1.62
s11.2_3D s11.2 3 0.944 1.3 × 1050 1.33 1.48
s11.2_2Da s11.2 2 1.044 5.0 × 1049 1.37 –
s11.2_2Db s11.2 2 6.003 7.8 × 1049 1.47 1.69
s11.4_2D s11.4 2 6.129 1.0 × 1050 1.56 1.63
s11.6_2D s11.6 2 11.453 2.1 × 1050 1.62 1.63

Figure 4. Specific entropy for model s11.2_2Da (top row) and model s11.2_3D (in a slice almost perpendicular to the equatorial plane, bottom row) at
post-bounce times of 80, 140, and 181 ms (left to right). Note that a different colour scale for the entropy is used for each of these snapshots.

the multi-dimensional flow morphology for models s11.2_2Da and
s11.2_3D on meridional slices, and 3D ray-cast images of neutrino-
heated convective bubbles in model s11.2_3D before and after shock
revival are shown in Fig. 6.

Prior to the infall of the Si/SiO interface, we find very similar
shock trajectories independent of dimensionality. However, prompt
convection develops slightly differently in 2D and 3D, and its resid-
ual effect on the entropy and lepton number profiles leads to a slight
divergence between the 2D and 3D models already at early times
in many quantities (neutron star radius, gain radius, cooling pro-
files, etc.). This effect is not unphysical per se, but is most probably
exaggerated in our models because the FMT scheme tends to over-
estimate the strength of prompt convection. In view of the large
systematic effects that we shall discuss later, it is also inconsequen-
tial, but needs to be borne in mind when comparing the different
models.

After the infall of the Si/SiO interface, the shock expands slightly
faster in 3D than in 2D, and the explosion energy starts to reach ap-
preciable positive values several tens of milliseconds earlier. Snap-
shots of the entropy for models s11.2_3D and s11.2_2Da during
this phase can be seen in the middle and right columns of Fig. 4,

which show the development of large convective plumes in both
cases. The reader will note that the plumes are somewhat aligned
with the coordinate axis in 3D, which is clearly a result of the co-
ordinate choice but need not be considered harmful as discussed in
Section 4. At later times, the morphology of the 3D model is quite
different; instead of the broad, laminar downflows characteristic for
2D explosions, the interface between the downflows and the hot,
neutrino-heated ejecta eventually becomes turbulent during the in-
fall, resulting in corrugated downflows and partial mixing with the
neutrino-heated ejecta, as can be seen most perspicuously in the
middle column of Fig. 5.

Soon after shock revival, the 2D models start to go through
episodes of halting shock expansion or even transient shock re-
cession. While the growth rate dEexpl/dt of the diagnostic explosion
energy reaches values comparable to 3D for 100–200 ms, the ex-
plosion energy grows much less steadily in the long term and has
reached only (4–5) × 1049 erg after 1 s. By contrast, the 3D model
shows a steady growth of the explosion energy (1.3 × 1050 erg by
the end of the simulation), and considerably faster shock expansion.
As illustrated by the mass shell trajectories in Fig. 7, the spherically
averaged radial velocity behind the shock becomes positive about

MNRAS 453, 287–310 (2015)
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Figure 5. Specific entropy for model s11.2_2Da (top row) and model s11.2_3D (in a slice almost perpendicular to the equatorial plane, bottom row) at
post-bounce times of 241, 471, and 944 ms (left to right). Note that a different colour scale for the entropy is used for each of these snapshots.

300 ms after bounce, and the mass shells shocked later than 500 ms
after bounce appear to move outwards steadily instead of eventually
falling back on to the proto-neutron stars.

3.2 Shock propagation during the first seconds

Before we attempt to extrapolate the final remnant masses, it is
useful to point out a simple analytic relation between the diagnostic
energy and the shock velocity. During the later phases of the ex-
plosion when the explosion energy has saturated, simple analytic
models (Sedov 1959; Kompaneets 1960; Laumbach & Probstein
1969; Klimishin & Gnatyk 1981; Koo & McKee 1990; Matzner &
McKee 1999) provide a useful qualitative description of shock prop-
agation in hydrodynamical simulations (Woosley & Weaver 1995;
Kifonidis et al. 2003; Wongwathanarat, Müller & Janka 2015).
These underlying models typically rely on the assumption of self-
similarity and/or exponential or power-law approximations for the
envelope, neglect the effect of gravity, do not account for continu-
ous energy input into the ejecta, and have been derived under the
assumption of spherical symmetry. During the first seconds covered
in our simulations, all these conditions are violated. It is remarkable
that the approximate formula of Matzner & McKee (1999),

vsh,MM = 0.794

√
Eexpl

m

(
m

ρprer3

)0.19

, (1)

none the less provides a reasonable estimate for the shock velocity
vsh already a few hundreds of milliseconds after shock revival if it
is evaluated using appropriate definitions for the explosion energy
Eexpl, the ‘ejecta’ mass m, and the pre-shock density ρpre. We find
that equation (1) works well if vsh is taken to be the angle-averaged
shock velocity, i.e. the time derivative of the angle-averaged shock
radius rsh, avg, if the pre-shock density is evaluated at rsh, avg, if Eexpl

is identified with the time-dependent diagnostics energy, and if the

‘ejecta’ mass includes the entire mass enclosed by the shock from
above and the gain radius from below [and thus cannot properly be
termed ‘ejecta’ mass as in the original work of Matzner & McKee
(1999)]. This is illustrated in Fig. 8, which shows the ratio of the
angle-averaged shock velocity vsh to the analytic estimate vsh, MM of
Matzner & McKee (1999). While there is considerable scatter, the
numerical models fall in a band with 1 < vsh/ vsh, MM < 1.6 most of
the time, especially at time later than 1 s after bounce. Our models
suggest vsh = 1.3vsh, MM as a good analytic estimate for early shock
propagation in core-collapse supernovae.

3.3 Explosion energies and neutron star masses

Although the explosion energy in model s11.2_3D has not yet
reached its final value and there is still some accretion on to the
proto-neutron star, there is no doubt that the incipient explosion
will eventually expel the envelope. This is not only clear from the
steady outward movement of the shocked mass shells at late times
visible in Fig. 7 and in the velocity profiles depicted in Fig. 9; the
diagnostic explosion energy is also significantly higher than the
residual binding energy of the pre-shock matter [the ‘overburden’
in the terminology of Bruenn et al. (2013, 2014)] of 5 × 1049 erg.
This is clearly different from models s11.2_2Da and s11.2_2Db and
the similar 2D explosion models of the same progenitor discussed
in Buras et al. (2006b), Marek & Janka (2009), and Müller et al.
(2012a).

None the less, the long-time simulations of the 2D models over
several seconds show that even such supposedly tepid models even-
tually develop steady shock propagation and reach sufficiently high
diagnostic explosion energies to shed the envelope (Fig. 1). For
the low-mass progenitors simulated here, the outgoing and infalling
mass shells inevitably separate as the post-shock velocities behind
the entire shock front become positive once it reaches the edge of
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Figure 6. Volume rendering of the entropy in model s11.2_3D at post-bounce times of 89 ms (top left), 134 ms (top right), 210 ms (bottom left), and 580 ms
(bottom right).

the relatively small C/O core (1.7–1.8 M�), which happens already
after a few seconds in these models. The acceleration of the shock
at the steep density gradient between the C/O core and the He shell
and the small binding energy of the He shell then result in a steady
outward movement of the shocked matter. At that point, the over-
burden of the unshocked envelope becomes almost negligible (e.g.
1049 erg for s11.2_2Db, 5 × 1048 erg for s11.6_2D), and we can
determine relatively firm lower limits for the final explosion energy.

Continuous accretion over several seconds provides for sufficient
neutrino heating to power outflows and pump additional energy into
the ejecta over this long time-scale, albeit at a rather modest rate.
As a result, models that appear woefully underenergetic during the
first second can still develop appreciable explosion energies, the
best example being the 11.6 M� model, where Eexpl grows from
3.5 × 1049 erg at 1 s to 2.0 × 1050 erg after 11 s. The explosion
energies obtained after several seconds are comparable to the 3D

case and compatible with supernova explosion energies at the lower
end of the observed spectrum (see, e.g., Pejcha & Prieto 2015).

The fact that the diagnostic explosion energies increase more
or less steadily over several seconds in the 2D models (except for
transient phases where the explosion geometry changes because a
neutrino-driven outflow is shut off as discussed in Section 5.2.4)
has important implications for the usefulness of the diagnostic en-
ergy as a predictor of the final explosion properties. On the basis of
artificial 1D explosions of Perego et al. (2015), they have recently
pointed out that the diagnostic energy overshoots the final explosion
energy and only approaches its asymptotic value very slowly on a
time-scale of seconds, and suggest that a better estimate for the final
explosion energy can be obtained by subtracting the overburden Eov,
i.e. the binding energy of the mass shells outside the shock, from
Eexpl. As illustrated by the comparison of Eexpl and Eexpl − Eov in
Fig. 3, our 2D models show a somewhat different behaviour; similar
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Figure 7. Selected mass shell trajectories (black) for model s11.2_3D com-
puted from spherically averaged density profiles. The trajectories start with
roughly equal spacing in log r shortly before bounce. The plot also shows the
maximum, average, and minimum shock radius (red), the gain radius (light
brown), and the radii corresponding to densities of 1011 and 1012 g cm−3

(blue).

Figure 8. Ratio vsh/vsh, MM between the angle-averaged shock velocity
vsh = drsh, avg/dt and the shock velocity vsh, MM = 0.794(Eexpl/Mexpl)1/2

[Mexpl/(ρprer3)]0.19 predicted by the model of Matzner & McKee (1999).
Note that rsh, avg and its numerical derivatives need to be smoothed consid-
erably to allow for a useful comparison. vsh/vsh, MM is only shown until 5 s
after bounce because the automatic smoothing procedure becomes ineffec-
tive towards the end of simulations s11.0_2D, s11.2_2Db, and s11.4_2D
and vsh/vsh, MM becomes highly oscillatory.

to the simulations of Bruenn et al. (2014), there is no overshoot-
ing of Eexpl above its prospective final value for which it appears
to furnish a lower bound rather than an upper bound. This is the
result of a fundamentally different way to power the explosion in
multi-D compared to 1D. Once an explosion is triggered in 1D, the
outflow rate quickly drops and only a weak neutrino-driven wind
can still pump energy into the ejecta over time-scales of seconds.
The accumulation of shocked material with negative total energy
therefore quickly dominates the total energy budget of the ejecta
region and Eexpl decreases, while Eexpl − Eov remains roughly con-
stant by virtue of total energy conservation. The case for Eexpl −
Eov as a more compelling predictor of the final explosion energy
is weaker in multi-D, however, where neutrino-driven outflows can
continuously pump energy into the ejecta at a high rate, and a con-
siderable part of the shocked material with negative total energy

Figure 9. Angle-averaged, density-weighted velocity profiles for model
s11.2_3D at different post-bounce times. At the end of the simulation, the
angle-averaged velocity is positive outside a mass coordinate of 1.35 M�,
but the zero-point is still moving outwards in mass. Note that the angle
average extends over the post-shock and pre-shock region and cannot be
used to infer the post-shock velocity directly.

Figure 10. Baryonic neutron star masses (comprising all matter at densities
higher than 1011 g cm−3) for the different 2D and 3D simulations as a
function of time.

is channelled on to the proto-neutron star instead of being swept
along by the ejecta and reducing the diagnostic energy. Eexpl may
still decrease somewhat on time-scales longer than 5–10 s as the
shock propagates through the helium shell, and this introduces a
residual uncertainty of up to ∼15 per cent in the final explosion en-
ergy, which we expect to lie in the range bracketed by Eexpl and Eexpl

− Eov. It is also noteworthy that Eexpl − Eov does not appear to be a
good predictor for the final explosion energy at early times simply
because its rise phase is much more drawn out than in artificial 1D
explosions and it only becomes positive ∼1 s after bounce or later.

While our simulations reach final explosion energies of the order
of 1050 erg, this comes at the expense of rather high neutron star
masses. Fig. 10 shows that the baryonic neutron star masses Mby in
the 2D models all end up at values � 1.47 M� and will definitely ex-
ceed 1.6 M� in cases like s11.0_2D and s11.6_2D. Unless selection
effects favour the production of less massive neutron stars in binary
systems for some reason, this potentially presents a serious conflict
with the inferred neutron star mass distribution. Even if the lowest-
mass neutron stars are presumed to originate from electron-capture
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supernovae, the masses of the neutron stars in the 2D models would
end up well above the mean value of inferred baryonic masses of
1.5 M� (Schwab et al. 2010). Since the simulated models represent
progenitors with relatively small cores and a relatively early onset
of the explosion, this is highly problematic. It is interesting to note
that the 2D models of Bruenn et al. (2014) also show such a ten-
dency towards high neutron star masses despite their relatively high
explosion energies (although this tendency is less striking than in
our long-time simulations), with Mby = 1.461 M� for their 12 M�
model B12-WH07 and values well above 1.6 M� for the three
remaining simulations.

The faster rise of the explosion energy in 3D could help to re-
solve this discrepancy. Although the neutron star mass has not yet
converged to a final value, the spherically averaged velocity pro-
files in Fig. 9 indicate that the final ‘mass cut’ is slowly emerging.
At the end of the simulation, the net mass accretion rate on to the
neutron star in s11.2_3D is lower by a factor of ∼2 compared to the
corresponding 2D models.

To obtain a quantitative estimate for the final neutron star mass,
we follow Marek & Janka (2009), who argued that accretion must
subside once the post-shock velocity vpost becomes comparable
to the escape velocity vesc. For a strongly asymmetric explosion
geometry, vpost is of course strongly direction dependent. Hence,
material ahead of the neutrino-heated plumes originating from a
given mass coordinate m in the progenitor will be accelerated to a
higher post-shock velocity by the shock than material with the same
initial m that is hit later in a direction where the shock expands more
slowly, so that the actual ‘mass cut’ does not correspond to a single
mass shell m in the progenitor. Instead, the dividing line in initial
mass coordinate will depend on angle. None the less, one can argue
that the criterion vpost = vesc still yields a fairly reliable estimate for
the final mass of the neutron star if an appropriate spherical average
for vpost is used.

Equation (1) for the average shock velocity allows us to extrapo-
late the evolution of the vpost if necessary to estimate a spherically
averaged ‘mass cut’.3 If the pre-shock velocity is assumed to be
negligible, the post-shock velocity becomes

vpost = β − 1

β
vsh, (2)

in terms of the ratio β of the post- and pre-shock density, and
equating this to the escape velocity yields the criterion

β − 1

β
vsh =

√
2 G(Mby + Mgain)

r
, (3)

where we include the entire mass interior to the shock and not just
the mass of the neutron star when computing the escape velocity.
At late stages, the compression ratio β typically drops below the
value β = 7 for a radiation-dominated ideal gas with adiabatic in-
dex γ = 4/3 because of nuclear burning and/or because the strong
shock approximation is not strictly applicable over the downflows.
We therefore compare vsh in model s11.2_3D to the critical velocity
β/(β − 1)vesc for two different values of β in Fig. 11. Fig. 11 sug-
gests a final baryonic remnant mass of 1.41–1.48 M� for s11.2_3D
(to which late-time fallback might be added). This would imply that
the shock has already passed the initial mass cut in some directions.
Estimates along the same lines for the long-time simulations in 2D

3 Equation (1) is also more convenient to use from the numerical point of
view because the computation of the shock velocity as a numerical derivative
of the shock position typically yields very noisy results.

Figure 11. Comparison of the post-shock velocity computed from equa-
tion (1) (red curve) to the required shock velocity β/(β − 1)vesc for the
separation of outgoing and infalling mass shells for two different values of
the compression ratio β (black curves) for model s11.2_3D.

yield baryonic remnant masses of 1.62 M� for s11.0_2D, 1.63 M�
for s11.4_2D, 1.69 M� for s11.0_2Db, and 1.63 M� for s11.6_2D
assuming β = 4.

Using the approximate formula of Timmes, Woosley & Weaver
(1996) for the gravitational neutron star mass Mgrav,

Mgrav ≈ Mby − 0.075 M�
(

Mgrav

M�

)2

, (4)

which provides a reasonable fit across different nuclear EoS, the
estimated baryonic neutron star mass for s11.2_3D can be converted
to a gravitational mass of 1.34 M�, which would be well within the
range of observed neutron star masses and slightly below the mean
value of the higher mass population of neutron stars from iron
core progenitors suggested by Schwab et al. (2010). For the 2D
simulations, the estimated gravitational masses are higher by more
than 0.1 M�. The 3D effects responsible for the steeper rise of the
explosion energy thus improve the agreement with the observational
constraints considerably.

4 A SSESSMENT O F SHOCK R EVI VAL
I N T H E 3 D M O D E L

In the remaining part of the paper, our main thrust will be to ex-
plain the physical mechanisms behind the pronounced differences
between 2D and 3D simulations in the explosion phase presented in
Section 3. We do not investigate the differences in the pre-explosion
phase, because the numerical methodology used in this study only
allows limited conclusions concerning the problem of shock revival
in 3D for reasons detailed below. None the less, a few remarks about
shock revival in model s11.2_3D are in order, if only to motivate
why the remainder of this paper focuses completely on the explo-
sion phase, and why simulations with a more rigorous treatment of
the neutrino transport and the neutrino rates are needed to decide
the fate of this particular progenitor model.

Superficially, our results for the 11.2 M� star in 3D may appear
to be at odds with the recent core-collapse supernovae; simulations
with multi-group neutrino transport that find either no shock re-
vival at all in 3D or only delayed shock revival compared to 3D
(Hanke et al. 2012; Hanke 2014; Tamborra et al. 2014b; Lentz et al.
2015; Melson et al. 2015a). Specifically, the 11.2 M� model failed
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to explode in 3D (Tamborra et al. 2014b) in a simulation using the
VERTEX-PROMETHEUS code (Rampp & Janka 2002; Buras et al. 2006a).
However, one should not attach undue importance to the different
outcomes of the VERTEX-PROMETHEUS and COCONUT-FMT models. Al-
though reasonably close agreement with the more rigorous transport
scheme in VERTEX can be reached with the FMT scheme, the dif-
ferences noted by Müller & Janka (2015) are sufficiently large to
matter for a marginal model like s11.2. The fact that we find an ex-
plosion merely underscores how close the 11.2 M� VERTEX model
of Hanke (2014) and Tamborra et al. (2014b) comes to an explosive
runaway, and that the extreme sensitivity of the supernova prob-
lem to the neutrino transport treatment and the microphysics (Lentz
et al. 2012a,b; Melson et al. 2015a) requires highly accurate first-
principle models in order to reliably decide whether an individual
progenitor close to the explosion threshold explodes or fails (al-
though ‘imperfect’ simulations may already unearth much of the
relevant physics from such cases). Considering that the comparison
between the FMT scheme and VERTEX revealed slightly better heat-
ing conditions for a 15 M� progenitor at early times, and that the
average shock radius initially expands somewhat further in 3D than
in 2D in the simulations of the 11.2 M� progenitor with VERTEX,
the different outcome of the FMT and VERTEX runs is by no means
unexpected.

Potentially, the emergence of large-scale bubbles aligned with
the coordinate axis (Figs 4–6) also helps in pushing the 3D model
above the explosion threshold at an early time (cp. Thompson 2000;
Dolence et al. 2013; Fernández 2015 for the role of the bubble size
in the development of runaway shock expansion). The alignment
is clearly a consequence of our coordinate choice and may also be
connected to the coarsening procedure for the polar region. Such
artefacts are unavoidable for standard spherical polar, cylindrical,
or Cartesian coordinates (where they manifest themselves as a pre-
ferred excitation of m = 4 modes instead), because the grid geometry
and spacing dictate the effective numerical diffusivity and viscos-
ity of a code, and physical instabilities will grow preferentially in
directions where they are least suppressed (or even aided) by nu-
merical dissipation. If there is sufficient time for instabilities like
convection and the SASI to reach saturation and go through several
overturn time-scales or oscillation periods, these initial artefacts
from the growth phase are eventually washed out, but in a situation
where the growth of certain modes accelerates rapidly (e.g. after the
infall of the Si/SiO interface) and then freezes out, they can subsist
throughout the simulation. None the less, we do not view this as a
concern; the convective flow does not show any grid alignment prior
to the infall of the interface, and outflows eventually develop in the
equatorial plane as well. Moreover, we found no grid alignment of
sloshing/spiral motions in SASI-dominated models (which will be
reported elsewhere). In more realistic simulations, the explosion ge-
ometry will be dictated by anisotropies in the initial model, e.g. due
to convective nuclear burning (Arnett 1994; Bazan & Arnett 1994,
1998; Asida & Arnett 2000; Kuhlen, Woosley & Glatzmaier 2003;
Meakin & Arnett 2006, 2007a,b; Arnett & Meakin 2011; Couch &
Ott 2015) or rotation. In a sense, the alignment of the most promi-
nent high-entropy bubbles with the axis in model s11.2_3D is even
fortunate for our further analysis because it eliminates the unavoid-
able grid alignment of 2D explosion models as a potential cause for
the different energetics in 2D and 3D.

5 A NA LY SIS O F 2 D/3D DIFFERENCES

We now turn to the underlying physical mechanism responsible for
the different evolution of the 2D and 3D models during the explosion

phase. The first step towards understanding the different dynamics
of the 2D and 3D models consists in considering the outflows and
downflows separately [in the vein of Melson et al. (2015b)] to
analyse the injection of mass and energy into the ‘ejecta region’
with positive binding energy [similar to Bruenn et al. (2014)]. We
partition the computational domain into two regions with positive
radial velocity (vr > 0) and negative radial velocity (vr < 0) and
then compute total fluxes and averages of several hydrodynamic
quantities. In order not to detract the reader from the physics, we
work with Newtonian definitions here, and the generalization to the
relativistic case is discussed in Appendix instead. Unless explicitly
stated otherwise, the analysis is based on models s11.2_2Da and
s11.2_3D, i.e. we always refer to model s11.2_2Da and not to
model s11.2_2Db when talking about the 2D case.

5.1 Mass and enthalpy flux into the ejecta region

The first quantities to consider are the mass fluxes Ṁ in and Ṁout in
the downflows and outflows,

Ṁ in/out =
∫

vr≶0
ρvrr

2d�, (5)

where ρ is the density, and the less- and greater-than signs refer to
downflows and outflows, respectively. Furthermore, we define total
enthalpy4 and energy fluxes Fh and Fe,

Fh,in/out =
∫

vr≶0

[
ρ(ε + v2/2 + ) + P

]
vrr

2d� (6)

Fe,in/out =
∫

vr≶0
ρ(ε + v2/2 + )vrr

2d�, (7)

where ε is the mass-specific internal energy, v is vectorial fluid
velocity, and  is the Newtonian gravitational potential. The ra-
tionale for including the gravitational potential in these fluxes
is that there is a conservation law for the total energy density
etot = ε + v2/2 + ,

∂

∂t

[
ρ

(
ε + v2

2
+ 

)]
+ ∇ ·

[
ρ

(
ε + v2

2
+ 

)
v + P v

]
= 0,

(8)

if the gravitational potential is time independent and the conversion
of rest-mass energy is either disregarded or nuclear rest masses
are included in the internal energy. Since the diagnostic explosion
energy is defined as an integral over the total energy of the ejecta,
the energy budget of the ejecta naturally involves the total enthalpy
flux from lower regions of the gain layer to the ‘ejecta region’ with
etot if the boundary of the ejecta region remains at a roughly constant
radius.

In Fig. 12, we show Ṁout and the average total enthalpy and
energy h̄tot and ēout (defined as h̄out = Fh,out/Ṁout and ēout =
Fe,out/Ṁout, and excluding rest-mass contributions) in the outflows
at a radius of 400 km as a function of time. This radius has been
chosen because recombination into α-particles, which roughly sets
the final mass-specific total energy in the ejecta (Scheck et al. 2006),
is already complete at this point, so that Fh, out roughly represents

4 The quantity htot = ε + P/ρ + v2/2 + , which we shall usually desig-
nate in this paper as ‘total enthalpy’, is also referred to as Bernoulli integral
or stagnation enthalpy in other contexts (including the case without gravity).
In this paper, we prefer the term ‘total enthalpy’ to keep the terminology
compact and stress its close relation to the total energy per unit mass.
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Figure 12. Comparison of key properties of the neutrino-driven outflows
in 2D (black curves) and 3D (red curves) as measured at a radius of 400 km.
The top panel shows the mass outflow rate Ṁout. The middle panel shows the
total enthalpy flux Fh, out as defined in equation (6) (thick lines) alongside the
time derivative dEexpl/dt of the explosion energy (thin lines). The average
total enthalpy h̄out (thick lines) and total energy ēout in the outflows are
shown in the bottom panel.

the rate at which the net total energy is pumped into the ejecta re-
gion assuming steady-state conditions (i.e. small variations of Fh, in

with time and radius). This is indeed a very good approximation as
the comparison for Fh, out with the time derivative dEexpl/dt of the
explosion energy as shown by the middle panel in Fig. 12. dEexpl/dt
correlates extremely well with Fh, out, but is slightly smaller. The dif-
ference is due to the accumulation of shocked material with slightly
negative total energy and energy exchange with the downflows due
to turbulent diffusion. The similarity of dEexpl/dt and Fh, out also
indicates that explosive nuclear burning does not play a major role
for the 11.2 M� model in agreement with earlier 2D simulations
with the VERTEX-COCONUT code (Müller et al. 2012a).

On average, the total enthalpy flux into the ejecta region is larger
in 3D than in 2D as expected from the different evolution of the ex-
plosion energy. Interestingly, the relative difference between 2D and
3D in the mass outflow rate Ṁout is even larger than for Fh, out. The
smaller outflow rate in 2D is partially compensated by a larger aver-
age mass-specific total enthalpy and energy in the outflows, which
can be larger than the recombination energy (7–8.8 MeV/nucleon).
Thus, care must be exercised in explaining differences between 2D
and 3D based on the mass outflow rate or the total mass in the gain
region alone (Scheck et al. 2006; Melson et al. 2015b) assuming the
same contribution to the explosion energy per unit mass from nu-
cleon recombination into α-particles and heavy nuclei irrespective
of the dimensionality. That assumption would require similar aver-

Figure 13. Volume-integrated heating/cooling rates Q̇heat and Q̇cool in the
gain and cooling region for models s11.2_2Da and s11.2_3D. The inner
boundary of the cooling region is defined (somewhat arbitrarily) by a density
of 1013 g cm−3. Note that a different scale is used for both rates.

age enthalpies and energies in the outflows in 2D and 3D, which
is clearly not the case in general; the differences can be as large
as several MeV/nucleon. Recombination still sets the scale for the
asymptotic total energy per unit mass of neutrino-heated ejecta, but
hydrodynamic effects modify its precise value in 2D and 3D in
different directions as we shall explain below.

These differences are all the more astonishing because the
volume-integrated neutrino heating rate Q̇heat in the gain region
(Fig. 13) is very similar in 2D and 3D. Especially at late times, Q̇heat

is consistently higher in 2D than in 3D (as is the time-integrated
neutrino energy deposition). Assuming that the outflow rate is de-
termined by the total heating rate and the binding energy egain at
the gain radius as Ṁout ∼ Q̇heat/|egain|, the lower outflow rate in 2D
suggests that the material at the gain radius is more strongly bound
in this case. This is borne out by Fig. 14, which shows that the
binding energy at the gain radius is larger in 2D by up to a factor of
∼2 at late times. This is partly due a stronger recession of the gain
radius rgain (bottom panel of Fig. 14) as a result of which the typical
energy scale GM/rgain (M being the neutron star mass) at the gain
radius is larger. However, it is evident that this effect cannot fully
account for the difference in egain. The small value of egain in 3D
indicates that it is not determined by the gravitational energy scale
alone. Indeed, a much better estimate for the scale of egain can be
obtained if we suppose that the Bernoulli integral (including rest
masses) at the gain radius is roughly zero,

ε + v2

2
+ P

ρ
+  = 0. (9)

If we split the internal energy ε into a thermal component εtherm

and a rest-mass contribution εrm (normalized to 56Fe), and assume
vanishing velocities as well as an ideal gas equation P = εtherm/3
of state for photons and non-degenerate relativistic electrons and
positrons, this leads to

εtherm + εrm + P

ρ
− GM

rgain
= 0, (10)

4

3
εtherm + εrm − GM

rgain
= 0, (11)

εtherm = 3

4

(
GM

rgain
− εrm

)
, (12)
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Figure 14. Properties of the gain radius in 2D and 3D. The top panel shows
the binding energy (i.e. the sum of the gravitational, kinetic, and internal
energy) at the gain radius in 2D (black solid curve) and 3D (red solid curve)
alongside the Newtonian potential of the neutron star GM/rgain (dashed
lines), which sets the typical energy scale at the gain radius. Here, M is the
neutron star mass and rgain is the gain radius. The estimate for egain from
equation (13), which is based on the assumption that the Bernoulli integral
at the gain radius is zero, is shown in blue for comparison. The middle
panel shows rgain itself, and the bottom panel shows the angle-averaged
temperature at the gain radius, Tgain.

where M is the neutron star mass. For an electron fraction of
Ye = 0.5, εrm would be identical to the recombination energy of
εrec ≈ 8.8 MeV/nucleon from protons and neutrons with equal mass
fractions into iron group elements, and for our purposes this still
provides a sufficient approximation even though we have Ye < 0.5 at
the gain radius. For the binding energy egain (in which we excluded
rest masses), we thus obtain

egain ≈ εtherm − GM

rgain
≈ −3

4
εrec − GM

4rgain
. (13)

As shown in Fig. 14, this still overestimates |egain| a bit, but accounts
for the slow rise of |egain| compared to the gravitational energy scale
GM/rgain during the contraction of the neutron star.

While the different absolute value of the binding energy at
the gain radius is part of the explanation for the different mass
outflow rates, there is also an additional effect at play. In gen-
eral, the mass outflow rate will only be approximately given by
Ṁout ∼ Q̇heat/|egain|, and one can introduce an efficiency parameter
ηout to compare the actual mass outflow rate with this fiducial rate,

ηout = |egain|Ṁout

Q̇heat
. (14)

Figure 15. Outflow efficiency ηout, for models s11.2_2Da and s11.2_3D.
ηout is defined as the ratio between the actual mass outflow rate Ṁout and a
fiducial scale Q̇heat/|egain| for the mass-loss rate, see equation (14). Note that
ηout is not limited to values ηout ≤ 1 because fresh matter for the neutrino-
heated outflows is also supplied by lateral mixing with the downflows above
the gain radius (where the matter is less tightly bound than at the gain radius)
and because recombination also partly contributes in lifting the material out
of the gravitational potential well.

ηout is plotted in Fig. 15. On average, the outflow efficiency ηout is
also considerably larger in 3D (where it fluctuates around ηout ≈ 1)
than in 2D (ηout ≈ 0.5).

Our analysis of the outflows has thus revealed two reasons for
lower explosion energies in 2D. The mass-loss rate (and hence the
energy flux into the ejecta region) is lower because the ejected
material is initially bound more tightly at the gain radius before
being lifted out of the gravitational potential well, and for a given
binding energy egain at the gain radius, the conversion of neutrino
heating into an outflow is less efficient.

5.2 Causes for weak explosions in 2D

These two effects, as well as the higher asymptotic energy per unit
mass in 2D, can be traced to the constrained axisymmetric flow
geometry and a fundamentally different behaviour of the accretion
downflows in 2D compared to 3D. The different flow morphology
is illustrated qualitatively in Fig. 16, which shows snapshots (for
different spatial scales) of the radial velocity and entropy in 2D and
3D for a representative post-bounce time of 400 ms.

5.2.1 Morphology and dynamics of outflows and accretion
downflows in 2D and 3D

These snapshots reveal that the interface between the outflows
and the colder, low-entropy material becomes turbulent due to the
Kelvin–Helmholtz instability in 3D, which distorts the downflows
as they approach the proto-neutron star (as already mentioned in
Section 3), whereas Kelvin–Helmholtz instabilities are noticeably
absent at the shear interfaces between the broad equatorial down-
flow and the polar bubbles in 2D (middle and bottom row in Fig. 16).
The tendency of the downflows to become more turbulent in 3D has
been recognized already by Melson et al. (2015b) in their 9.6 M�
model, although the morphological difference between 2D and 3D
is much more pronounced in a continuously accreting model like
the 11.2 M� progenitor. Moreover, although there may be a deeper
connection between the two phenomena, the stability of the shear
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Figure 16. Snapshots of the specific entropy s (left column, measured in kb/nucleon) and the radial velocity vr (right column, measured in cm s−1) for model
s11.2_2Da (left halves of the individual panels) and for a slice of model s11.2_3D (right halves) at a post-bounce time of 400 ms. The same data are shown
in all plots, only the zoom level is different. Note the broad equatorial accretion downflow and the formation of a secondary accretion shock at a radius of
∼100 km in 2D.

interfaces in 2D is likely due to a different reason than the emer-
gence of large-scale structures in the pre-explosion phase (Hanke
et al. 2012) that has been explained by the inverse turbulent energy
cascade in 2D (Kraichnan 1967). Despite the inverse turbulent cas-
cade, subsonic shear layers/interfaces remain prone to the Kelvin–
Helmholtz instability in 2D, and 2D supernova simulations are eas-

ily able to resolve the instability (Müller et al. 2012b; Fernández
2015) even without extraordinary high resolution.

The situation changes, however, for the supersonic shear inter-
faces between the downflows and the neutrino-heated bubbles that
we encounter during the explosion phase. Here, the classical growth
rate ω = k� u/2 (where k is the wavevector and �u is the transverse
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velocity jump across the interface) in the vortex sheet approximation
for incompressible flow is no longer applicable. Instead, modes with
a sufficiently high effective Mach number Ma = �ucos θ/cs (where
cs is the sound speed and θ is the angle between the wavevector and
the vectorial velocity jump) are stabilized (Gerwin 1968), although
the stability analysis is more complicated if finite-width shear lay-
ers are considered (Blumen 1970; Blumen, Drazin & Billings 1975;
Drazin & Davey 1977; Choudhury & Lovelace 1984; Balsa & Gold-
stein 1990).5 This implies that the Kelvin–Helmholtz instability can
be partially or completely suppressed in 2D (where cos θ = 1), while
there are always unstable modes in 3D since cos θ can be arbitrarily
small.6 In principle, it is conceivable that numerical diffusivity and
viscosity further help to suppress the Kelvin–Helmholtz instability
more strongly and earlier than the physics might dictate, but the
fact that the instability evidently operates in the 3D model provides
evidence that the numerical resolution cannot be faulted for the be-
haviour of the 2D models. Furthermore, the stability of the accretion
downflows is a persistent feature even in high-resolution 2D models
with continuing accretion (Bruenn et al. 2014); it is thus without
doubt physical in origin.

The ‘turbulent braking’ of the downflows in 3D is reflected quan-
titatively in radial profiles of the average velocity v̄in/out, entropy
s̄in/out, and mass-specific total energy ētot,rm,in/out of the downflows
and outflows. We define these quantities as density-weighted aver-
ages (denoted by bars) of the radial velocity vr, the specific entropy
s, and the total energy etot as

v̄in/out =
∫

vr≶0 ρvr d�∫
vr≶0 ρ d�

(15)

s̄in/out =
∫

vr≶0 ρs d�∫
vr≶0 ρ d�

(16)

ētot,in/out =
∫

vr≶0 ρetot,rm d�∫
vr≶0 ρ d�

, (17)

and show the results for models s11.2_2Da and s11.2_3D at a
post-bounce time of 400 ms in Fig. 17. Moreover, we consider
radial profiles of the mass and total enthalpy fluxes Ṁ in/out and
Ḟh,rm,in/out in both streams in Fig. 18; these are computed according
to equations (5) and (6). However, for computing radial profiles
we include rest-mass contributions in the total energy and the total
enthalpy flux (as denoted by the additional subscript ‘rm’). This

5 It is noteworthy that laser-driven plasma experiments may be able to cap-
ture this effect and quantify the reduced growth or suppression of the Kelvin–
Helmholtz instability in 2D (Malamud et al. 2013).
6 Loosely speaking, a small value of cos θ guarantees that sound waves
on either side of the vortex sheet can propagate in both directions along
the wavevector k of a given perturbation mode to mediate the pressure
feedback required for the growth of the Kelvin–Helmholtz instability. For
a given vectorial velocity ±u/2 of the fluid on either side of the interface,
the sound waves with direction n and velocity cs in either of the fluids
will have a velocity component (±u/2 + ncs) · k/|k| = ±u/2 cos θ + csn ·
k/|k| along the direction of k in the rest frame. If cos θ is sufficiently small,
this velocity component can take on either sign depending on n in both
fluids. In 2D, we always have ±u/2 · k/|k| = u/2, and sound waves cannot
propagate in both directions any longer for sufficiently large u. Note that
this is only a heuristic explanation that cannot predict the critical Mach
number correctly; section B in Gerwin (1968) and the other aforementioned
references should be consulted for a rigorous derivation of the dispersion
relation.

Figure 17. Radial profiles of the average velocity (top panel), entropy
(middle panel), and total energy (bottom) per nucleon in the outflows (thin
lines) and downflows (thick lines) in 2D (black) and 3D (red) at a post-
bounce time of 400 ms. Note that rest-mass contributions are included in the
total energy here.

definition has the advantage that both Ṁ in,out and Ḟh,rm,in/out are
constant in the limit of stationary streams without mass, energy,
and momentum exchange, so that changes in these fluxes serve
as useful indicators for lateral mixing between the outflows and
downflows.

Due to turbulent braking (i.e. by an effective turbulent eddy vis-
cosity), the average infall velocity in the downflows reaches only
1.4 × 109 cm s−1 in 3D, and decreases in magnitude once the down-
flows penetrate further down than a radius of ∼200 km. By contrast,
the downflows reach a sizeable fraction of the free-fall velocity in 2D
before they are abruptly decelerated at a secondary accretion shock
at r ≈ 100 km. However, the outflow velocities are also higher in
2D.

During the phase considered here, the entropy of the downflows
does not vary considerably in 2D between r ≈ 100 and r ≈ 1000 km
(where the equatorial downflow forms from two converging lateral
flows). Similarly, the ‘flux-averaged enthalpy’ Fh,rm,in/out/Ṁ in/out

(bottom panel of Fig. 18) does not change appreciably in this re-
gion. This is a further indication for a lack of dissipation by tur-
bulent eddy viscosity and of lateral mixing between the downflows
and outflows. By contrast, the slope in s̄in and s̄out and the ‘flux-
averaged’ total enthalpy Fh,rm,in/out/Ṁ in/out point to lateral mix-
ing between the downflows and outflows in 3D. The increase of
Fh,rm,in/out/Ṁ in/out in the downflows during the infall from the shock
is mirrored by a decrease of Fh,rm,in/out/Ṁ in/out with radius in the
outflows due to turbulent mixing of the hot ejecta with colder matter
from the downflows. This explains why the neutrino-heated ejecta
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Figure 18. Overview of the mass and energy fluxes in the outflows and
downflows in 2D. The top panel shows the total enthalpy fluxes Fh, rm, in/out

in the outflows (positive values) and downflows (negative values) in 2D
(black) and 3D (red) at a post-bounce time of 400 ms. The middle panel
shows the mass inflow/outflow rates Ṁ in/out, and the bottom panel shows
the average flux-weighted total enthalpies Fh,rm,in/out/Ṁ in/out. Note that
rest-mass contributions are included in the total entropy here, unlike in
Figs 12 and 17.

contribute only ∼5−6 MeV/nucleon to the diagnostic explosion
energy, instead of the 7–8.8 MeV/nucleon available from nucleon
recombination.

There is thus ample evidence that turbulent viscosity and diffusion
brake the accretion funnels and transfer energy from the outflows.
It is tempting to invoke this as an explanation for the lower binding
energy at the gain radius in 3D (Fig. 14). At first glance, the fact
that both the downflows and outflows are less strongly bound in
3D at the bottom of the gain layer (bottom panel of Fig. 17) may
seem to conflict with this assumptions, but the lower binding ener-
gies of the outflows at small radii are to be expected because the
supply for outflow comes from freshly accreted matter that has un-
dergone turbulent braking in the downflows. Turbulent braking and
turbulent diffusion are perfectly acceptable explanations for internal
energy distribution within the gain region (but not the higher en-
thalpy flux into the ejecta region, see below), and may thus account
for the lower |egain| in 3D and hence for the higher mass outflow
rates.

Moreover, the turbulent braking in 3D may have implications
for the final neutron star masses. In Section 3.3, we assumed
that the ‘mass cut’ occurs roughly when the shock accelerates the
newly swept-up material to the escape velocity. Without efficient
lateral momentum transfer and without pressure support from an
expanding hot bubble from below, it seems inevitable that mate-
rial over existing downflows must eventually fall on to the neutron
star if this condition is not met. Since the free-fall time-scale at
radii of several thousands of kilometres (where the initial mass
cut estimated in Section 3.3 is located) is of the order of sec-
onds, accretion must necessarily last over a correspondingly long
duration. On the other hand, if the downflows are braked by a
turbulent eddy viscosity below a certain radius in 3D, slowly mov-
ing matter in the downflows may instead be entrained by the high-
entropy bubbles in regions where the angular-averaged velocity
is already positive, so that the residual accretion on to the neu-
tron star may cease earlier and the total mass accreted during the

Figure 19. Left: entropy s in kb/nucleon in the vicinity of the proto-neutron star in 2D (left half of panel) and 3D (right half of panel) at a post-bounce time
of 400 ms (identical to Fig. 16 except for the zoom level). Right: heating/cooling rate in MeV/nucleon in 2D (left half of panel) and 3D (right half of panel).
Isovelocity contours for a radial velocity of vr = −109 cm s−1 are shown to indicate the location of the accretion downflows. Note that much of the neutrino
heating occurs in the downflows and the confined high-entropy bubble in the equatorial region and hence does not drive an outflow.
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Figure 20. Top: radial velocity dispersion 〈(vr − 〈vr〉)2〉 in 2D and 3D
at a post-bounce time of 400 ms. Bottom: radial profiles of the ‘acoustic’
energy flux r2

∫
δP δvr d� in 2D and 3D at a post-bounce time of 400 ms.

The curves show temporal averages over several time steps.

explosion phase may be considerably lower than that estimated in
Section 3.3. Longer 3D simulations will be necessary to investigate
this hypothesis.

However, the internal redistribution of energy within the gain re-
gion in 3D cannot account for the significantly higher total enthalpy
flux in the outflows and the faster rise of the explosion energy. The
higher outflow rate will come at the expense of energy loss from the
outflows to the downflows – the overall conservation law cannot be
cheated. Consequently, there must be additional mechanisms that
remove energy from the gain region in 2D and reduce the outflow
efficiency ηout (Fig. 15) compared to 3D. The different dynamics
of the outflows and downflows none the less remains a crucial el-
ement of the explanation because it provides the basis for three
mechanisms discussed in the subsequent sections.

5.2.2 Energy loss by wave excitation

The lack of turbulent braking in 2D implies that the accretion funnels
either hit the neutron star directly with a high impact velocity or
are decelerated abruptly in a secondary accretion shock (top row
of Fig. 16). Even in the latter case, thin accretion funnels still
penetrate the hot, neutrino-heated matter all the way down to the
gain radius, cutting off a confined high-entropy bubble from the
outflows. In the snapshots shown in Figs 16 and 19 (with an even
higher zoom level), these narrow downflows strike the proto-neutron

star surface with velocities of up to 6 × 109 cm s−1. As a result, they
overshoot considerably into the convectively stable cooling layer
and excite strong wave activity. The emission of strong acoustic
waves that steepen into shocks and then dissipate is immediately
evident from the top-right panel of Fig. 16, but the deceleration
of the downflows also excites strong g modes in the neutron star
surface region (a phenomenon that has been thoroughly analysed
in the context of gravitational wave emission; cp. Marek, Janka
& Müller 2009; Murphy, Ott & Burrows 2009; Müller, Janka &
Marek 2013). In 3D, overshooting is much less pronounced, and
so is the excitation of acoustic waves and g modes. This can be
seen from the conspicuous absence of sawtooth-like features in the
velocity and by considering the radial velocity dispersion 〈(vr −
〈vr〉)2〉, which is significantly smaller in 3D below the gain radius
(top panel of Fig. 20). This result is in agreement with other 3D
simulations of supernova explosions using self-consistent neutrino
transport (Melson et al. 2015b) and parametrized neutrino heating
(Murphy et al. 2013; Handy et al. 2014) and linear theory, which
suggests that the excitation of waves (g modes in particular) at
convective boundaries is strongly sensitive to the convective Mach
number Ma and becomes very efficient for Ma ∼ 1 (Goldreich &
Kumar 1990; Lecoanet & Quataert 2013).

What has been missed so far, however, is that the excitation of g
modes constitutes a non-advective energy drain in 2D; it transports
energy from the lower layers of the gain regions deep into the
cooling region without the need to transport mass. If the g-mode
energy flux is sufficiently high, it provides a very likely explanation
for the permanently higher binding energy at the gain radius in 2D.
Unfortunately, the g-mode energy flux in our simulations cannot
readily be quantified; this would not only require performing a
full spherical Reynolds decomposition, but also detailed knowledge
about the dispersion relation of the g modes, which is beyond the
scope of this paper. However, since the transfer of the kinetic energy
from the downflows into g modes involves P dV-work on to the
neutron star surface and any turbulent energy flux into deeper layers
should show up in correlated pressure and velocity fluctuations
in a transition layer between the convective gain region and the
convectively stabilized cooling layer, we can formulate a crude
estimate for the g-mode flux by computing what is nominally an
acoustic luminosity, namely

LP dV = r2
∫

δP δvr d�, (18)

where δP and δvr denote the deviations of the pressure and radial
velocity from their respective angular averages. The resulting esti-
mates for the flux are shown in the bottom panel of Fig. 20 and point
to a sizeable energy flux of the order of several 1050 erg s−1 from
the vicinity of the gain radius into the deeper layers of the proto-
neutron star surface (carried by g modes) and to the outer regions
of the gain layer (carried by acoustic waves). Such large fluxes are
comparable to the typical total enthalpy flux in the outflows and
even to the volume-integrated neutrino heating rate, and therefore
need to be accounted for in the total energy budget of the gain
region.

Incidentally, the excitation of acoustic waves also provides an ex-
planation for the high entropy (Fig. 17) and total enthalpy (Figs 12
and 18) in the outflows in 2D, which can still increase somewhat
at radii where neutrino heating is essentially irrelevant. The dis-
sipation of the acoustic waves in the expanding hot bubble helps
to increase the total energy and entropy in the ejecta region be-
yond the ∼7−8.8 MeV available from nucleon recombination,
but since these waves carry only part of the energy lost by the
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Figure 21. Top: surface fraction occupied by the outflows in models
s11.2_2Da (black) and s11.2_3D (red) at a radius of 400 km. The sur-
face fraction is relatively stable with some fluctuations around 0.5 in 3D. In
2D, it reaches similar values while the outflows are stable, but occasionally
drops to significantly smaller values as a result of outflow constriction. Bot-
tom: long-time evolution of the outflow surface fraction for the 2D models
s11.0_2D, s11.2b_2D, s11.4_2D, and s11.6_2D.

downflows due to their interaction with the convective boundary,
this effect cannot compensate for the lower mass outflow rate in 2D,
and the net effect of wave excitation in 2D remains a detrimental
one.

The importance of wave excitation at the convective boundary
will inevitably vary between different 2D models depending on
the explosion geometry and the duration of accretion. If neutrino
heating is strong, the explosion energy rises steeply, and shock
expansion is fast as in the models of Bruenn et al. (2013, 2014),
it may play a less prominent role. The formation of secondary
accretion shocks as in our 2D models is likely to increase the energy
loss by wave excitation tremendously because the efficiency of
this process also depends on the frequency overlap between the
convective forcing and the excited modes (Goldreich & Kumar
1990; Lecoanet & Quataert 2013). The formation of a secondary
accretion shock provides for fluctuations with typical frequencies
inversely proportional to the short sound-crossing time-scale (of
the order of milliseconds) in the confined bubble. Furthermore, the
stochastic forcing of g modes in 2D by one or two strong downflows
is presumably also more efficient than in 3D, where there are more
smaller and uncorrelated downflows.

Finally, we comment on similarities and differences between
g mode and acoustic wave excitation between our models and the

acoustically driven explosion models of Burrows et al. (2006, 2007),
where a strong flux acoustic wave, excited by an � = 1 core g mode
with amplitudes of several kilometres, is responsible for shock ex-
pansion in the first place. Our 2D models are similar to those of
Burrows et al. (2006, 2007) only in the sense that energy deposition
by acoustic waves contributes to the growth of the explosion en-
ergy, but different from their simulations the acoustic contribution
remains subdominant compared to the volume-integrated neutrino
heating rate, which is more than four times larger at the time shown
in Fig. 20 [a constellation that Burrows et al. (2007) anticipated
when postulating a ‘hybrid mechanism’ with combined heating by
neutrinos and acoustic waves]. Moreover, the excitation mechanism
for acoustic waves is genuinely different in our case; they are excited
directly by the interaction of the downflows with the convectively
stable neutron star surface layer without the need to channel the ac-
cretion power through an � = 1 core g mode as a ‘transducer’ as in
the models of Burrows et al. (2006, 2007). Such a large-amplitude
core g mode is not found in our simulations (and could not have
arisen simply because of the spherically symmetric treatment of the
neutron star core), and the outer g modes of rather modest ampli-
tude excited in our models could not act as an efficient transducer
in the vein of Burrows et al. (2006, 2007) due to neutrino losses
(see below). It is interesting to note that direct excitation at the con-
vective boundary still allows acoustic waves to contribute (albeit at
a minor level) to the explosion energy in 2D even without such a
transducer.

Acoustic energy deposition also remains a secondary effect in so
far as this direct excitation mechanism works efficiently only after
the onset of the explosion once the typical Mach number of the
downflows is sufficiently high. Moreover, contrary to Burrows et al.
(2006, 2007) the net effect of wave excitation in our models is still
harmful because the power pumped into outer g modes constitutes
an energy drain that outweighs the rate of energy deposition by
acoustic waves by far. Different from their models where the energy
in the core g mode is eventually ‘recycled’ into an acoustic energy
flux that drives shock expansion, the energy pumped into the outer g
mode is manifestly lost due to neutrino cooling in our case, and the
mode coupling analysis of Weinberg & Quataert (2008) suggests
that this should also happen if the core g mode is excited due to
non-linear mode coupling.

5.2.3 Steric hindrances

In addition to energy loss by wave excitation, which contributes
to the higher binding energy at the gain radius, the growth of the
explosion energy in 2D is further hampered by the fact that much of
the neutrino energy deposition occurs in regions where the heated
matter cannot directly escape in an outflow, i.e. either directly in
the accretion funnels or in high-entropy bubbles confined by down-
flows and a secondary accretion shock like the equatorial bubble
in Figs 16 and 19, a phenomenon for which we borrow the term
‘steric hindrance’ from chemistry. In principle, such bubbles could
eventually push the secondary accretion shock out by undergoing
‘secondary shock revival’, but as long as the amount of heating is
insufficient, the bubble cannot break through the surrounding and
overlying downflows.

In the snapshot shown in the right-hand panel of Fig. 19, the
surface fraction covered by the confined bubble and the downflows
exceeds 50 per cent, and the heating rate per unit mass is also largest
in the downflows. Since the fast downflows generally occupy a sur-
face fraction of �50 per cent in 2D outside the typical location of a
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Figure 22. Constriction and partial shredding of an outflow in model s11.2_2Da, shown by snapshots of the entropy at post-bounce times of 592, 611, 628, and
655 ms. A downflow (cyan) originating from a Rayleigh–Taylor plume of cold matter penetrates the hot neutrino-heated bubble in the northern hemispheres
(top left), constricts the neutrino-heated bubble to a tenuous outflow as it approaches the axis (top right), and eventually a considerable amount of cold material
is mixed into the outflow (bottom left). While the ejection of matter continues (bottom right), the mixing event lowers the average total energy per unit mass
in the ejecta.

secondary shock at �100 km (see Fig. 21), roughly half of the neu-
trino heating is not used to power outflows in 2D, and consequently
the outflow efficiency oscillates around ηout ∼ 0.5 with some excur-
sions to higher values during the early explosion phase (Fig. 15). By
contrast, the neutrino-heated material can escape unhindered in any
direction in 3D apart from some limited turbulent energy and mo-
mentum loss to the downflows, and the resulting outflow efficiency
is of the order of ηout ∼ 1.

5.2.4 Constriction of outflows and vertical mixing

Finally, the outflows in axisymmetric 2D simulations are less ‘sta-
ble’ than in 3D in other respects as illustrated in Fig. 22. While the
Kelvin–Helmholtz instability between the downflows and outflows
is largely suppressed in 2D, this also implies that plumes of cold
material can penetrate far into the neutrino-heated high-entropy
bubbles provided that they develop in the first place. Because of the
symmetry of the system, these plumes are actually toroidal struc-
tures, and can therefore completely constrict an outflow if they reach
the symmetry axis (Fig. 22). Similarly, a downflow that wanders to-

wards the pole can also constrict a polar outflow and cut it off from
fresh supply of neutrino-heated material.

These events typically reduce the surface fraction covered by
outflows at the recombination radius (where they start to contribute
to the diagnostics explosion energy) for a considerable amount of
time and thus reduce the rate of increase of Eexpl. Very often the
explosion geometry changes dramatically after such an event and the
surface fraction of the outflows remains small permanently. In some
cases, a high-entropy bubble is cut off completely from the supply
of neutrino-heated matter from below (Fig. 23) for several seconds.
Even if an outflow is eventually re-established in the same direction,
or if it is strong enough to survive because the cold plumes reach the
axis at a relatively large radius (Fig. 22), the ejecta will then typically
contain a large amount of cold material whose total net energy is
barely positive, and the growth of the explosion energy will still be
delayed. Such events explain excursions or even a permanent drop
of the average total enthalpy h̄tot in the outflows to low values <0.3
in 2D (bottom panel of Fig. 12).

In 3D, the lack of symmetry as well as the Kelvin–Helmholtz
instability prevents the constriction of outflows by cold plumes.
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Figure 23. Snapshots of the radial velocity in units of 109 cm (left half of panels, lower colour bar) and the specific entropy s in kb/nucleon (right half of
panels, upper colour bar) depicting the separation of the high-entropy outflow from the gain region in model s11.6_2D and the re-establishment of an outflow
after ‘secondary shock revival’ in model s11.0_2D. Red isovelocity contours are used to separate outward-moving matter with radial velocities larger than
107 cm s−1 from infalling matter. At 4.4 s (top left), matter is still being ejected in the Southern hemisphere, but at 4.5 s (top right) the outflow has become
extremely thin, and matter in its wake starts falling back on to the neutron star. By 7.5 s (bottom left) a new outflow has developed in the Northern hemisphere,
and the expansion of the secondary accretion shock in the Southern hemisphere stops further fallback from the outflow that was cut off earlier. By the end of
the simulation at 8.2 s (bottom right), the newly formed bubble has expanded further to several thousands of kilometres in diameter. The post-shock velocities
have become positive in all directions at this point, and only 0.035 M� in the downflows is still falling towards the proto-neutron star.

While the Kelvin–Helmholtz instability provides for some level of
energy and momentum exchange between the accretion funnels and
the expanding high-entropy bubbles as discussed in Section 5.2.1,
it also prevents cold plumes from penetrating overly far into the
neutrino-heated bubbles.

Mixing between downflows and outflows is thus not completely
absent in 2D, it merely takes on a different guise and occurs only
episodically, but with a more catastrophic effect than in 3D. Interest-
ingly, there even appears to be an effect that compensates somewhat
for the suppression of the Kelvin–Helmholtz instabilities in 2D due
to the supersonic velocities in the downflows. Rayleigh–Taylor in-
stabilities between the high-entropy bubbles and the cold overlying
post-shock matter develop more readily in 2D. This is a natural
consequence of higher entropies in the neutrino-heated bubbles in
2D (middle panel of Fig. 17), which implies a higher Atwood num-

ber between the bubbles and the colder post-shock matter. Thus,
the lack of mixing by Kelvin–Helmholtz instabilities in 2D and the
entropy boost due the dissipation of acoustic waves can also have a
detrimental side effect on the robustness of the explosion.

5.2.5 Absence of a spherically symmetric neutrino-driven
wind in 2D

In the most extreme cases of outflow constriction in 2D, the out-
flows are shut off altogether, and the outflow surface fraction drops
to zero permanently, or at least over several seconds (bottom panel
of Figs 21 and 23). This does not imply, however, that the explosion
has failed; it only implies that neutrino heating is not strong enough
to establish a wind that prevents the fallback of slowly moving mat-
ter in the wake of the shock. The pockets of cold, slowly moving
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matter from the C/O shell in the 2D models that will undergo this
kind of ‘early fallback’ (bottom-right panel of Fig. 23) only contain
a few hundredths of a solar mass by the end of the simulations, and
therefore will not change the neutron star mass considerably. More-
over, the mass accretion rate on to the secondary accretion shock
is so low at late times that it can start to expand after ‘secondary
shock revival’, thus re-establishing an outflow (bottom-right panel
of Fig. 23).

While not indicative of a failure of the explosion, the small or
vanishing outflow surface fraction in the long-time simulations none
the less indicates [like the models of Bruenn et al. (2014)] that the
separation of outgoing and infalling mass shells in 2D works differ-
ently from the usual picture where a high-entropy neutrino-driven
wind with an approximately spherical flow geometry eventually de-
velops. The polar outflows can be viewed as a confined wind driven
jointly by neutrino heating and acoustic waves, but they never cover
the entire sphere, and because of their flow geometry and the strong
activity of acoustic waves, the outflow dynamics is completely dif-
ferent from spherical winds driven purely by neutrino heating.

From the foregoing, it is clear that the inhibition of the neutrino-
driven wind in 2D is probably largely artificial, and we only mention
this peculiarity for that reason. As discussed in Section 5.2.1, the
presence of a larger effective eddy viscosity in 3D could terminate
accretion earlier than in 2D (where supersonically infalling matter is
hardly decelerated by lateral momentum transfer), or at least decel-
erate infalling matter sufficiently to be swept along by an incipient
spherical wind after a few seconds. Moreover, our models likely un-
derestimate the diffusive neutrino luminosity from the neutron star
core and hence the neutrino heating at late times because we ignore
the effect of nucleon correlations (Burrows & Sawyer 1998, 1999;
Reddy et al. 1999), which shorten the proto-neutron star cooling
time-scale considerably (Hüdepohl et al. 2010). It is conceivable
that the concomitant increase of the wind mass-loss rate could still
lead to a volume-filling outflow for more realistic neutrino opacities
after a few seconds even in 2D.

5.2.6 Reduced cooling due to 3D turbulence?

Based on a successful supernova simulation of a 9.6 M� star, Mel-
son et al. (2015b) recently suggested that the more efficient braking
of the accretion downflows can be responsible for slightly higher
explosion energies in 3D because the less violent impact of the
downflows on the neutron star surface leads to reduced cooling. In
our comparison of models s11.2_2Da and s11.2_3D, we observe
some of the same symptoms noted by these authors, i.e. turbulent
braking of the downflows and a reduced cooling rate Q̇cool at late
times (Fig. 13). Obviously, this raises the question whether the
mechanism proposed by Melson et al. (2015b) also operates in our
3D simulation, and how the physical processes we discussed so far
in Sections 5.2.1–5.2.4 are related to it. Unfortunately, a comparison
with Melson et al. (2015b) is not straightforward. While they found
a sizeable increase of the explosion energy of 10 per cent in 3D com-
pared to 2D, their explanation involved relatively tiny differences
in some quantities (e.g. the gain radius and the temperature profiles
in 2D and 3D) that cannot be confidently diagnosed in simulations
like ours where the 2D and 3D models start to deviate from each
other already shortly after bounce once prompt convection develops
[which was not simulated by Melson et al. (2015b)]. None the less,
there is sufficient evidence that we observe some rather different
phenomena than Melson et al. (2015b).

Essentially, the mechanism proposed by Melson et al. (2015b)
involves a recession of the gain radius in 3D compared to 2D due to
reduced cooling to eject slightly more material in the explosion. Our
simulations agree with Melson et al. (2015b) in showing a smaller
volume-integrated cooling rate in 3D in the long term as accretion
slowly subsides (Fig. 13).

However, we do not find a faster recession of the gain radius in
3D during the explosion phase (middle panel of Fig. 14), and the
situation is ambiguous for the temperature at the gain radius Tgain

(bottom panel of Fig. 14). In 3D, the temperature Tgain stagnates
and falls below the 2D value around 250 ms at a time when the
explosion is already considerably more vigorous in 3D than in 2D.
We believe that the stagnation of Tgain is more indicative of the
slower recession of the gain radius rather than of a higher cooling
efficiency. The higher values of the Bernoulli integral and the total
energy of the downflows at the gain radius in 3D (Figs 17 and 18)
imply that there is actually more energy per unit mass available
that can be radiated away in neutrinos as the accreted matter settles
down in the cooling region.

Instead, the faster decline of the accretion rate on to the proto-
neutron star in 3D is the dominant factor behind the lower cooling
rate, making the lower cooling rate a symptom rather than a cause
of the more vigorous explosion. Detailed comparisons would be
required to check whether this true for the 9.6 M� model of Mel-
son et al. (2015b) as well. Since outflow constriction is unlikely to
happen for a model with robust shock expansion, the 2D/3D differ-
ences found by Melson et al. (2015b) as well as in the parametrize
simulations of Handy et al. (2014) are probably most closely related
to the different outflow efficiency in 2D and 3D, i.e. a more efficient
‘rerouting’ of freshly accreted matter into outflows. This tallies with
their finding of a smaller surface filling factor of the downflows in
3D, which implies that a smaller fraction of the neutrino heating
is wasted in regions where it cannot directly power an outflow. It
also accounts for reduced mass accretion into the gain region and
hence a recession of the gain radius in mass coordinate. While this
mechanism is similar to the one discussed in Section 5.2.3 for our
models, the effect is apparently smaller in the simulations of Mel-
son et al. (2015b) because the accretion subsides fast enough to
avoid the formation of secondary shocks and confined high-entropy
bubbles in 2D, which can reduce the outflow efficiency by a factor
of ∼2 in 2D.

Potentially, wave excitation at the convective boundary could also
contribute to the 2D/3D differences in the simulations of Melson
et al. (2015b). While they take reduced convective overshooting in
3D as an indication for reduced wave excitation, the effect probably
plays a minor role in their case. The relatively small average speeds
of the downflows at the gain radius (∼108 cm s−1 compared to
∼109 cm s−1 in our model) are bound to make the excitation of g
modes rather inefficient and thus rule them out as a major energy
drain on the gain region in 2D. This is also suggested by the fact
they find similar internal energies (and hence binding energies) in
the outer regions of the cooling layer in 2D and 3D despite the
stronger recession of the gain radius in 3D, which is quite different
from what we discussed in Sections 5.2.1 and 5.2.2.

6 SU M M A RY A N D C O N C L U S I O N S

We have presented a successful 3D GR simulation of the explosion
of an 11.2 M� star using the FMT multi-group transport scheme
of Müller & Janka (2015). The model has been evolved to almost
1 s after bounce, and has reached a diagnostic explosion energy of
1.3 × 1050 erg at that point, which is still growing by the end of the
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Figure 24. Sketch of the different energy budget between the outflows (yellow), the downflows (red), and the cooling region (blue) in 2D (left) and 3D (right).
In 3D, turbulent eddy diffusivity leads to a persistent, small energy flux (short solid arrow) from the neutrino-heated outflows to the downflows, whereas mixing
between the outflows and downflows only occurs episodically in 2D, but has more dramatic consequences in this case because it leads to large-scale mixing
of cold matter into the outflows (long dotted arrow). There is a considerable energy transfer from the gain region to the cooling region due to wave excitation
in 2D and an indirect transfer of energy from the downflows to the gain region by the excitation of acoustic waves in 2D (which can lead to larger asymptotic
energies per unit mass in the ejecta); this is absent in 3D. Moreover, a considerable amount of neutrino heating (red arrows) is wasted in 2D because it is
deposited in confined bubbles, whereas almost the entire neutrino heating in 3D is used to lift matter out of the gravitational well.

simulation. The baryonic neutron star mass Mby at the end of the
simulations has reached 1.33 M� and estimates of the final neutron
star mass yield Mby ≈ 1.41–1.48 M� and a gravitational mass
not exceeding 1.34 M�, which is compatible with the measured
neutron star mass distribution (Schwab et al. 2010). The fact that
we obtain an explosion for this progenitor with a relatively accurate
multi-group transport scheme further illustrates that even the non-
exploding state-of-the-art models (Hanke et al. 2013; Tamborra et al.
2014a,b) with the best available neutrino transport and microphysics
are apparently very close to shock revival, something which is also
suggested by the recent successful 3D explosion models of the
Garching (Melson et al. 2015a,b) and Oakridge groups (Lentz et al.
2015).

A comparison of the explosion dynamics after shock revival
with 2D long-time simulations of different progenitors with ZAMS
masses between 11.0 and 11.6 M� revealed a faster and more sta-
ble growth of the explosion energy in 3D compared to 2D. Because
accretion downflows and neutrino-driven outflows coexist over sev-
eral seconds in 2D, the explosion energy in the 2D models can still
reach values of up to 2 × 1050 erg, but this comes at the expense
of high neutron star masses (Mby � 1.6 M�) that are likely incom-
patible with the observed neutron star mass distribution. A detailed
comparison of the 2D and 3D models unearthed several physical
mechanisms responsible for the more robust rise of the explosion
energy in 3D and the slower growth of the proto-neutron star mass,
which is a symptom of the faster subsidence of accretion. The spe-
cific effects that we find are summarized below, and we also provide
a schematic visualization of the different flow geometry and the en-
ergy budget of the downflows, the outflows, and the gain region in
Fig. 24 to aid the reader’s understanding.

(1) In 2D, the interfaces between the accretion funnels and the
neutrino-heated bubbles tend to become laminar after shock revival,
while they are corrugated by the Kelvin–Helmholtz instability in 3D.
We ascribe the different behaviour to the suppression of the purely
two-dimensional modes of the Kelvin–Helmholtz instability in the
supersonic regime (Gerwin 1968). The effect is thus distinct from
the inverse turbulent energy cascade in 2D (Kraichnan 1967), which
has been invoked as an explanation for the different behaviour of
2D and 3D models prior to shock revival, since the different energy
cascade in 2D and 3D is not related to the Mach number of the flow.

(2) As a consequence, the effective eddy viscosity and diffusiv-
ity between the downflows and outflows is larger in 3D than in
2D during most phases, i.e. there is more exchange of energy and

momentum between the outflows and downflows. On the one hand,
this implies that the outflows contribute only ∼6 MeV/nucleon
to the explosion energy in 3D, as some of the net total (i.e.
thermal+kinetic+potential) energy gained from nucleon recom-
bination of ∼8.8 MeV/nucleon is lost to the downflows by tur-
bulent diffusion. On the other hand, the turbulence effectively
‘brakes’ the downflows, and they arrive at the gain radius with
smaller velocities but higher total energy per unit mass than
in 2D.

(3) The higher impact velocities of the downflows and the for-
mation of secondary accretion shocks at small radii in 2D lead to a
more efficient excitation of g modes and acoustic waves at the gain
radius that transport energy into deeper regions of the cooling layer
and into the neutrino-heated ejecta, respectively. Our analysis sug-
gests that the energy loss from the gain region by wave excitation
becomes comparable to the volume-integrated neutrino heating rate
at late times, and by increasing the absolute value of the binding
energy |etot| at the gain radius significantly reduces the mass outflow
rate that can be sustained by neutrino heating. In 3D, the turbulent
energy flux into the gain region is small, and the binding energy
at the gain radius is smaller by factor of �2 at late times, which
allows for a higher mass outflow rate than in 2D. The dissipation
of acoustic waves in the outflows in 2D provides only for a partial
‘recycling’ of the energy lost by wave excitation, but can increase
the total energy per unit mass in the outflows to values larger than
the recombination energy of 8.8 MeV/nucleon.

(4) In addition, the outflow efficiency ηout = Ṁout/(Q̇heat/|egain|)
is also higher in 3D (ηout ∼ 1 with strong fluctuations) than in 2D
(ηout � 0.5 at late times), i.e. for a given amount of neutrino heat-
ing and a given binding energy at the gain radius, more mass is
channelled into outflows and contributes to the explosion energy
in 3D. The low outflow efficiency in 2D stems from the large sur-
face fraction occupied by fast downflows and ‘confined bubbles’
between downflows whose expansion is inhibited by the formation
of secondary accretion shocks.

(5) Episodic mixing between the outflows and downflows still
occurs in 2D, e.g. by the formation of new downflows as a result
of the Rayleigh–Taylor between the cold shocked material and the
neutrino-heated high-entropy bubbles. While mixing only occurs
sporadically in 2D, the consequences of these mixing events are
more catastrophic than in 3D. Not only do they slow down the rise
of the explosion energy by mixing cold material into the outflows;
the penetration of accretion funnels into the high-entropy bubbles
can also lead to the constriction of outflows, sometimes shutting
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them off completely and permanently decreasing the outflow surface
fraction to values of � 0.3.

Our simulations thus provide ample evidence that 3D effects
can play a beneficial role in core-collapse supernova explosions
after shock revival. However, since our current 3D model has only
been evolved to ∼1 s after bounce and does not yet permit us to
deduce the final explosion and remnant properties directly because
of continuing accretion (and forced us to resort to indirect arguments
about the final neutron star masses), a number of open questions
remain and invite speculation. Moreover, limited conclusions can
be drawn from a single 3D simulation of one progenitor. Given the
recent progress on other fronts in supernova theory, the questions
and perspectives for future research on the role of 3D effects during
the explosion phase can be summarized as follows.

(1) Longer 3D simulations with higher resolution are necessary to
determine final explosion energies, nickel masses, and neutron star
masses precisely for comparison with observations without recourse
to indirect methods. Our estimate for the final baryonic neutron star
mass of 1.48 M� for the 3D model of the 11.2 M� progenitor still
assumes the accretion of an additional 0.15 M�, which is much
more than a visual inspection of Fig. 10 suggests given the very
slow rise of the neutron star mass in 3D. If the turbulent braking of
the downflows terminates accretion before the post-shock velocity
equals the escape velocity as speculated in Section 5.2.1, the final
baryonic and gravitational neutron star mass might be as low as
∼1.35 and ∼1.24 M�, respectively. This would indicate that a
plausible distribution of neutron star masses spanning the entire
range of observed values down to the lower end is within reach of
modern multi-D simulations of neutrino-driven supernovae.

(2) A more rigorous analysis of the turbulent multi-dimensional
flow in the spirit of Reynolds decomposition would be highly de-
sirable in order to further bolster our qualitative interpretation of
3D effects in the post-explosion phase. Such quantitative analysis
methods have considerably advanced our understanding of the tur-
bulent flow during the accretion phase (Murphy & Meakin 2011).
After shock revival, the non-stationarity of the flow presents a chal-
lenge for such methods, however. Our relatively crude two-stream
analysis based on a separation of the outflows and downflows could
also be improved in order to account more directly and rigorously
for the turbulent exchange of mass, momentum, and energy between
the two streams, but such an analysis faces a major challenge in the
form of the complicated flow geometry.

(3) Whether and to what extent the positive 3D effects described
in this paper come into play obviously depends on whether shock
revival can be accomplished in 3D in the first place and on the delay
compared to the 2D case. If there is a significant delay in shock
revival, 3D models may not be able to equalize the ‘head start’ of
the 2D models at least of relatively powerful explosions where the
diagnostic energy shows first signs of levelling off after ∼300 ms
or less (Bruenn et al. 2014; Pan et al. 2015). Even in this case,
the mechanism discussed in this paper could none the less help
to mitigate the ‘penalty’ incurred by the delay of the explosion in
3D and allow the models to remain compatible with observational
constraints. Moreover, if accretion lasts longer – as in the 2D sim-
ulations of Müller et al. (2012a,b) and Janka et al. (2012) – the
beneficial 3D effects in the phase after shock revival may outweigh
the ‘penalty’ of delayed shock revival. Furthermore, it is conceiv-
able that the problem of missing or delayed explosion in 3D may yet
be resolved by the inclusion of better, multi-dimensional progenitor
models with large-scale initial perturbations that aid shock revival
(Couch & Ott 2013, 2015; Müller & Janka 2015), unknown micro-

physics (Melson et al. 2015a). Strongly SASI-dominated models
may even explode more easily in 3D (Fernández 2015).

(4) The robustness of the mechanisms described in this paper
needs to be studied further for a wider range of progenitors. The 2D
simulations (Buras et al. 2006b; Müller et al. 2012a) of the 11.2 M�
progenitor considered here have been particularly noteworthy ex-
amples for suspiciously low explosion energies and long-lasting
accretion. This behaviour is due to the specific characteristics of
progenitors around 11 M�, including a relatively small silicon core
and a very pronounced density jump at the Si/SiO interface. These
properties result in a small proto-neutron star mass M immediately
after shock revival and hence low neutrino energies [cp. the scal-
ing of the electron antineutrino energy with M found by Müller &
Janka (2014)] as well as a small accretion luminosity. Both of these
factors contribute to relatively weak neutrino heating after shock
revival and a small mass outflow rate. The tepid nature of our 2D
explosions may thus hinge very much on the peculiar structure of
low-mass supernova progenitors.

It therefore remains to be seen whether 3D effects provide a sim-
ilarly strong boost for the growth of the explosion energy in other
progenitors. Whenever 2D models develop the characteristic broad
downflows and secondary shocks indicative of long-lasting accre-
tion during a relatively weak explosion, such as the 15 and 27 M�
models of Müller et al. (2012a) and Janka et al. (2012), the physical
mechanisms identified here likely come into play eventually. On the
other hand, they may play a negligible role if the volume fraction
of the downflows drops very quickly as in the models of Bruenn
et al. (2014) and Lentz et al. (2015) or the parametrized models of
Handy et al. (2014). Since 2D supernova simulations of different
groups have not yet converged sufficiently to decide whether there
is a generic problem of ‘weak explosions’ in 2D, it is impossible
to judge the generic character of our findings. By the same token,
however, it cannot be ruled out that 2D models should be generi-
cally underenergetic and overestimate the amount of accretion after
shock revival due to the mechanisms we identified, and that realistic
explosion energies and remnant masses will only be obtained in 3D.
If so, prematurely confronting the 2D models with the observational
constraints could lead to wrong conclusions.

Thus, more work is necessary to substantiate the intriguing per-
spective that 3D effects could help to achieve agreement between
simulations of neutrino-driven supernovae and observational con-
straints such as explosion energies and neutron star masses. Far from
offering a complete solution due to the limitations of computational
resources that have always plagued supernova theory, our present
study can only take a first step in this direction and adumbrate some
of the physical mechanisms that could help to boost 3D explosions
after shock revival. None the less, even our current results already
serve an antidote against undue pessimism after initial setbacks in
3D multi-group neutrino hydrodynamics simulations. Along with
the recent successful explosions in first-principle models, the iden-
tification of other beneficial effects of the third dimension on the
explosion threshold and energetics, and plausible ideas for solving
the problem of missing explosions with the help of multi-D pro-
genitor models and/or non-standard microphysics, they are another
piece that fits well into the overall puzzle, suggesting that a solution
for the supernova problem is slowly taking shape.

AC K N OW L E D G E M E N T S

The author acknowledges fruitful exchange with H. Andressen, A.
Burrows, Th. Foglizzo, A. Heger, W.R. Hix, H.-Th. Janka, Y. Levin,

MNRAS 453, 287–310 (2015)

 at Q
ueen's U

niversity B
elfast on July 18, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Dynamics of neutrino-driven explosions 309

T. Plewa, and T. Waters. He has been supported by the Australian
Research Council through a Discovery Early Career Researcher
Award (grant DE150101145) and by the Alexander von Humboldt
Foundation through a Feodor Lynen fellowship. The computations
were performed on Raijin at the NCI National Facility (project
fh6) using computer time contingents obtained through NCMAS,
ASTAC, and a Monash LIEF top-up grant, on the Monash eGrid
Cluster, and on the IBM iDataPlex system hydra at the Rechenzen-
trum of the Max-Planck Society (RZG).

R E F E R E N C E S

Abdikamalov E. et al., 2014, ApJ, preprint (arXiv:1409.7078)
Arnett D., 1994, ApJ, 427, 932
Arnett W. D., Meakin C., 2011, ApJ, 733, 78
Asida S. M., Arnett D., 2000, ApJ, 545, 435
Balsa T. F., Goldstein M. E., 1990, J. Fluid Mech., 216, 585
Banyuls F., Font J. A., Ibanez J. M. A., Martı́ J. M. A., Miralles J. A., 1997,

ApJ, 476, 221
Bazan G., Arnett D., 1994, ApJ, 433, L41
Bazan G., Arnett D., 1998, ApJ, 496, 316
Blondin J. M., Mezzacappa A., DeMarino C., 2003, ApJ, 584, 971
Blumen W., 1970, J. Fluid Mech., 40, 769
Blumen W., Drazin P. G., Billings D. F., 1975, J. Fluid Mech., 71, 305
Boyd J. P., 2001, Chebyshev and Fourier Spectral Methods, 2nd ed. Dover

Press, New York
Bruenn S. W., 1985, ApJS, 58, 771
Bruenn S. W. et al., 2013, ApJ, 767, L6
Bruenn S. W. et al., 2014, preprint (arXiv:1409.5779)
Buras R., Rampp M., Janka H.-T., Kifonidis K., 2006a, A&A, 447, 1049
Buras R., Janka H.-T., Rampp M., Kifonidis K., 2006b, A&A, 457, 281
Burrows A., 2013, Rev. Mod. Phys., 85, 245
Burrows A., Fryxell B. A., 1992, Science, 258, 430
Burrows A., Goshy J., 1993, ApJ, 416, L75
Burrows A., Sawyer R. F., 1998, Phys. Rev. C, 58, 554
Burrows A., Sawyer R. F., 1999, Phys. Rev. C, 59, 510
Burrows A., Hayes J., Fryxell B. A., 1995, ApJ, 450, 830
Burrows A., Livne E., Dessart L., Ott C. D., Murphy J., 2006, ApJ, 640, 878
Burrows A., Livne E., Dessart L., Ott C. D., Murphy J., 2007, ApJ, 655, 416
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A P P E N D I X : D E F I N I T I O N O F E N E R G I E S A N D
E N E R G Y F L U X E S IN G E N E R A L R E L AT I V I T Y

While the computation of mass fluxes and spherically averaged
profiles of hydrodynamic quantities can be readily generalized to the
relativistic case just by including the correct three-volume element,
the definition of energies and energy fluxes in the relativistic case
is less straightforward, and is therefore briefly expounded in this
appendix. We use geometric units (G = c = 1) throughout this
section.

After adopting a 3 + 1 foliation of space–time and projecting the
components of the stress–energy tensor into components orthogo-
nal and parallel to the 3-hypersurfaces, the energy equation in GR
hydrodynamics can be written in the formulation of Banyuls et al.
(1997) in terms of a new conserved variable τ as

∂
√

γ τ

∂t
+ ∂

√−g
(
τ v̂i + Pvi

)
∂xi

=α
√−g

(
T μ0 ∂ ln α

∂xμ
−T μν�0

μν

)
.

(A1)

Here, τ is defined in terms of the baryonic mass density ρ in the fluid
frame, the Lorentz factor W, the internal energy density ε (includ-
ing all rest-mass contributions), the pressure P, and the relativistic
enthalpy h = 1 + ε + P/ρ as

τ = ρhW 2 − P − ρW = ρ(1 + ε + P/ρ)W 2 − P − ρW. (A2)

Furthermore, γ and g are the determinants of the three- and
four-metric, respectively, and the advection term contains v̂i =
vi − βi/α instead of the Eulerian three-velocity vi. By pushing

the lapse function α into the temporal and spatial derivatives, it is
possible to formulate a strict conservation law (without a source
term) analogous to the limit of a stationary space–time with a zero
shift vector (cp. equation A35 in Müller et al. 2010, where the
right-hand side reduces to zero in this limit):

∂

∂t

[√
γα (τ + D) − √

γD
]

+ ∂

∂xi

[√−g
(
ατ v̂i + αDv̂i − Dv̂i + αPvi

)] = 0. (A3)

Here, we have introduced the baryonic mass density in the Eulerian
frame D = ρW to simplify the equation.

This suggests that in the limit of a vanishing shift vector and
a stationary metric, the Newtonian expression etot = ε + v2/2 + 

for the total energy per unit mass (including rest-mass contributions)
can be generalized to

etot,rm = ατ

D
+ (α − 1), (A4)

and the role of the total Newtonian enthalpy in the flux is taken by

htot,rm = ατ/D + (α − 1) + αP/D. (A5)

It is noteworthy that the internal energy and rest-mass contributions
(which enter the equations through τ ) always appear in conjunction
with factors W and α. Strictly speaking, it is therefore no longer
possible to formulate the energy equation in general relativity with-
out including rest-mass contributions in the conserved quantities
and the fluxes by pushing them into a nuclear source term instead
(as least not in a simple form). Computing fluxes and total ener-
gies excluding rest-mass contributions is therefore somewhat less
meaningful in general relativity. However, since we have α ≈ 1 and
v � 0.3c in the gain region, the higher order relativistic corrections
are small enough to be neglected, it is still reasonable to compute
total energies and enthalpies without rest-mass contributions by us-
ing just the thermal energy contribution εtherm to the internal energy
density ε instead of ε = εtherm + εrm.

For the other quantities, considered in this paper, the generaliza-
tion is trivial. Mass fluxes through the surface of a sphere or parts
of it are computed as

Ṁ =
∫

αDvrr
2φ4 d�, (A6)

where vr is the radial velocity component measured in the orthonor-
malized Eulerian frame and φ is the conformal factor in the xCFC
metric, and the computation of energy/enthalpy fluxes works anal-
ogously. The density-weighted spherical average X̄ of a quantity X
is computed as

X̄ =
∫

DXφ4 d�∫
Dφ4 d�

. (A7)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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