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Multi-Device Selection Scheduling in

Non-Identically Distributed Fading Channels

Youngwook Ko,Member, IEEE,Atta Ul Quddus, and Rahim TafazolliSenior

Member, IEEE

Abstract

Multiuser selection scheduling concept has been recently proposed in the literature in order to

increase the multiuser diversity gain and overcome the significant feedback requirements for the op-

portunistic scheduling schemes. The main idea is that reducing the feedback overhead saves per-user

power that could potentially be added for the data transmission. In this work, we propose to integrate the

principle of multiuser selection and the proportional fairscheduling scheme. This is aimed especially at

power-limited, multi-device systems in non-identically distributed fading channels. For the performance

analysis, we derive closed-form expressions for the outageprobabilities and the average system rate of the

delay-sensitive and the delay-tolerant systems, respectively, and compare them with the full feedback

multiuser diversity schemes. The discrete rate region is analytically presented, where the maximum

average system rate can be obtained by properly choosing thenumber of partial devices. We optimize

jointly the number of partial devices and the per-device power saving in order to maximize the average

system rate under the power requirement. Through our results, we finally demonstrate that the proposed

scheme leveraging the saved feedback power to add for the data transmission can outperform the full

feedback multiuser diversity, in non-identical Rayleigh fading of devices’ channels.

Index Terms

Opportunistic scheduling, reduced feedback, multiuser selection scheduling, heterogeneous fading

I. INTRODUCTION

In wireless communications, the significant increase of thenumber of battery-powered devices

over the last decade has drawn research interest in the area of power-efficiently scheduling them
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to the shared wireless resources, for example, 1000 wireless devices per person are envisaged

by 2020 [1]. With such large number of distributed devices, the concept of multi-user schedul-

ing scheme, which use independent and time-varying multipath fading of users’ channels for

exploiting multiuser diversity (MUDiv), is important particularly for power-constrained wireless

systems, such as sensor systems.

The MUDiv has been well studied in the literature [2]–[5] andis included in the next evolution

of WiFi (e.g., IEEE 802.11 ac). Exploiting the MUDiv gain, advanced scheduling schemes have

been extensively developed in [4], [5]. In the MUDiv systems, the random channel fading con-

dition is treated as an opportunistic resource. That is, theuser having the most favorable channel

fading condition is opportunistically scheduled to transmit/receive over the entire transmission

interval. For example, in maximum-rate scheduling (referred to as greedy multiuser scheduling)

[4], [5], the ”best” user having the maximum signal-to-noise ratio (SNR) is scheduled and

thus the system rate is maximized. However, users sufferingfrom poor channel conditions

(due to, e.g., highly shadow fading) may be deprived from gaining access to the channel. To

avoid such disadvantage, maximum normalized-SNR scheduling (referred to as proportional-fair

multiuser scheduling) (see [5] and references therein) schedules the user having the maximum

SNR (normalized to its own average gain). This way of scheduling maximizes the system rate

while guaranteeing the rate of each user proportional to theuser’s channel condition, and provides

proportional fairness. The MUDiv gain is applied to a range of emerging multiuser applications,

e.g., multiuser spectrum aggregation, simultaneous wireless information and power transfer

(SWIPT), multiuser multiple-input multiple-output (MU-MIMO) systems, orthogonal frequency-

division multiple access (OFDMA) systems and the third generation partnership programme

(3GPP)’s small cells [6]–[12].

To further improve the MUDiv gain, practical scheduling strategies and various system per-

formance measures have been investigated [5], [13]–[16]. For example, the performance of

the conventional MUDiv is limited as the required channel-state-information feedbacks are too

complex to operate in a time-varying channel. In [13], it is shown that, due to the fact that the

feedback channels are in practice outdated, determining the best user over the user scheduling

steps cannot be realistically computed and this hinders theuse of any effective scheduling. In

[14], the sum capacity imposed by the MUDiv has been studied with respect to two MUDiv

system performance measures such as scheduling complexityand scheduling fairness. In [15],
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partial users and limited bits feedback were studied to reduce the feedback overhead. For small

cell multiuser systems, a joint admission and power controlmethod was studied to maximize

the number of acceptable users in [16]. In [5], it is argued that, to overcome the heavy feedback

requirements of the conventional scheduling schemes, reducing the achievable MUDiv gain can

be an acceptable traded-off for saving the required channelfeedbacks.

As for the reduced number of required channel feedbacks, several MUDiv methods have

been recently presented in [17]–[20]. The idea is to allow only a fraction of the users to be

active in the MUDiv schemes, being not limited to full channel feedbacks (e.g., full feedback

multiuser scheduling). In [17], the authors proposed the multiuser switched-diversity scheduling

scheme, where the idea is to find any acceptable user under good channel condition, instead of

finding the best user among all. The enhanced multiuser switched-diversity scheduling scheme

is presented in [18], where the concept of the per-user thresholds was suggested to improved

the performance of the multiuser switched-diversity scheduling scheme. On the other hand, the

authors in [19] proposed multiuser selective scheduling scheme in which a fraction of random

users send the required feedbacks and per-user power savingobtained by the reduced feedbacks

is added for the data transmission. Considering independent, and identically distributed fading of

users’ channels, [19] showed that decreasing the number of active users (i.e., required feedbacks)

can decrease the overall bit error probability along with the reduced channel feedbacks. In [20],

two types of channel feedback methods were proposed, both quantifying how many users should

feedback channel information, i.e., the amount of the available MUDiv to be used from the

perspective of the system throughput. However, in the existing literature, the MUDiv systems

have been investigated with fixed power allocation to the data: reducing the required feedbacks

does not influence the potential data power amount. To the best of the authors’ knowledge, multi-

user scheduling schemes that investigatejointly the reduced feedbacks and opportunities of the

associated power saving per userhave not been analyzed, especially focusing onheterogeneous

fading multi-device systems, which differs from [19] addressing only homogeneously fading

cases. Taking into account the increasing number of the heterogeneous fading user devices in

the future wireless systems, it is important to study the sensitivity of the MUDiv system to the

heterogeneous fading under the limited power usage.

In this work, we consider power-efficient multi-device scheduling scheme over non-identically

distributed fading channels. Particulary, extending the work in [19], we propose proportional-
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fair multiuser selective scheduling scheme over non-identically distributed fading multi-device

systems. Consider two cases: (1) delay-sensitive case; (2)delay-tolerant case. Thus, this work

aims not only to evaluate outage probability, but also to maximize system rate under the given

power requirements. To this end, we mathematically analyzeboth the cumulative distribution

functions and the average system rate, deriving their closed-form expressions over the heteroge-

neous Rayleigh fading of devices’ channels. Towards improving the performance, we optimally

develop the opportunity for jointly finding the number of active devices and exploiting the per-

device potential power saving by reduced feedbacks. Based on our results, it will be demonstrated

that compared to the conventional schemes, introducing only a subset of devices chosen randomly

to the scheduling is a better choice not only to increase the average system rate, but also to

decrease the outage probability. Higher the heterogeneousfading, larger the achievable MUDiv

gain is. Referring to the optimum results, it will be demonstrated that a percentage of the active

devices among the available ones should decrease in order tomaximize the average system rate

when the number of available devices increases.

The paper is organized as follows. The system and channel models are introduced in Section II,

and the proportional fair multiuser selection scheduling scheme is described formally in Section

III. In Section IV, the power-loading balance and the outageprobability of the proposed scheme

are addressed, followed by the mathematical analysis of thesensitivity of the proposed scheme in

the non-identically distributed fading case. Section V contains the analysis of the average system

rate and, in Section VI, the extension to multiple antenna systems is discussed, deriving upper

bound expressions for the average system rate and comparingit to the conventional schemes. In

Section VII, the optimization solution to the maximum average system rate is presented, while

in Section VIII further asymptotic analysis for several cases are provided. Section IX presents

numerical and simulation results and is followed by conclusions in Section X.

II. SYSTEM MODEL

A. System model

We now outline the system model for our power-limited multi-device scheduling scheme.

Suppose thatN distributed devices opportunistically communicate to thecentral device unit

(CU). For the uplink transmission byN devices, the signal to be transmitted is denoted bysl
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for l ∈ {1, · · · , N}. The received signal at the CU withM receiving antennas is given by

rl = hlsl + nl (1)

wherenl denotes the complex-valued zero-mean additive backgroundnoise vector, i.e.,nl ∼
CN (0, I), andhl =

√
ρl gl =

[√
ρl gl,0, · · · ,√ρl gl,M−1

]T
is the general composite fading channel

vector where its element
√
ρl gl,m represent the Rayleigh fading channel, at receiving antennam,

being independent and non-identically distributed complex Gaussian, i.e.,hl ∼ CN (0, ρlI), and

ρl 6= ρj, ∀l, j. Due to dynamic environments, here,ρl are modelled as random variables resulting

from both user-specific shadowing and path loss.

In the conventional device-to-device system, each data symbol is an element of a given

constellation. That is,sl ∈ S whereS represents the signal constellation. Suppose thathl is

known at the CU, the data rate of devicel per channel use can be obtained as

Rl = log2
(
1 + Pd‖hl‖2

)
,

wherePd denotes the transmission power ofsl and the normalized noise variance in (1) is used.

Thus, the performance depends on the channel vector,hl, and no scheduling diversity can be

exploited.

B. Selective Scheduling for multi-device MIMO

Denote byl∗ the index of the device scheduled for the data transmission.Then, the received

signal from devicel∗ is

rl∗ = hl∗sl∗ + nl∗ (2)

wherehl∗ ∈ Σh = {h(1), · · · ,h(n)} andΣh ⊆ {h1, · · · ,hN}. In selective scheduling (SS), only

n devices are chosen to participate in scheduling and contribute to data symbols. To this end, a

subsetΣh and its sizen are properly chosen every scheduling interval, in the following.

Denote byΣD a subset ofn devices. For a givenN , let the CU properly choosen(≤ N) and

comprises of aΣD with no priori knowledge of the channel state information (CSI). The subset

is given by

ΣD = {D(1), · · · , D(n)} (3)

whereD(l) denotes the(l)th device element ofΣD and ΣD ⊆ {D1, · · · , DN}. For example,

given N = 10 devices andn = 4, the CU receivessl∗ opportunistically from only4 among
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10 devices. It differs from the conventional scheduling schemes, e.g., proportional fair (PF)

scheduling, which receives opportunistically from allN devices.

ProvidedΣD is chosen, the SS applies the principle of the PF scheduling to D(l)’s. Particularly,

the SS has following subsequent planes: (1) multiple accesscontrol (MAC) plane; and (2) multi-

device diversity (MD) plane.

The MAC plane randomly comprises ofΣD in (3) and activates the subset ofn devices inΣD,

every scheduling interval. It requires one feedback bit to each device for the acknowledgement of

its activation. Here, letDl, ∀l be equally likely chosen as an element ofΣD, i.e., mathematically

Dl has the uniform probabilityn/N of its activation. GivenD(l)’s in ΣD, then, a combination

of n sub-channels is reserved for the training transmission between the CU andD(l)’s. The CU

is assumed to obtain the CSI,Σh, of theD(l)’s.

The MD plane refers toΣh in which CU schedules the best device to the best sub-channel

for the data transmission. The scheduling criterion is to find the best amongD(l)’s having the

relatively best channel to its own channel statistics. Thus, l∗ in (2) can be given by

l∗ , argmax
(l)

‖h(l)‖2
ρ(l)

. (4)

Here, employing the principle of the PF scheduling, the relatively best channel for the scheduling

is considered. This ensures that each device can be scheduled at an equal probability, due to

the fact thath(l)/
√
ρ(l) ∼ CN (0, I), and detailed proof is referred to Appendix. Based on (4),

the finiten bits feedback (i.e., one feedback bit toD(l)) are employed to informD(l)’s a binary

decision on, that is, accessing (or not accessing) the channel. The data rate by the SS is given

by

R = log2
(
1 + ρl∗‖gl∗‖2Pd

)
(5)

wherePd denotes the data power by the SS and recall thatga = ha/
√
ρa, being the normalized

channel vector, i.e.,ga ∼ CN (0, I), at devicea.

III. POWER-LOADING BALANCE AND PERFORMANCE ANALYSIS

We now analyze the performance of the proposed scheme for twocases: (i) delay-sensitive

multi-device system; and (ii) delay-tolerant multi-device system. We examine the outage prob-

ability and the average system rate for cases (i) and (ii), respectively. We assume thathl are
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non-identically distributed fading with their shadowingρl 6= ρj, ∀l, j. We first address power-

loading balance for the scheduling.

A. Training and data power-loading balance

Denote byPT the total transmit power by then devices. The transmit power of both the

training and the data by then devices can be balanced so that every realization ofΣh, the

instantaneous power usages remain below the target level,P0. We will refer to this balance as

“power-loading balance”. It is also worth mentioning that the power-loading balance is associated

with a feedback cost. That is, a feedback cost of the multiuser scheduling can be quantified with

the number of feedback users (e.g., see [5], [20]) or with thesum of per-user feedback message

power (or training power).

In the conventional scheduling schemes,N devices transmit the training and the best among

them transmits the data. Thus,PT imposed by theN devices can be

PT = NPd α + Pd (6)

whereα denotes the given power ratio of the training and the data transmissions. That is,(Pd α)

is used to quantify the training power (as feedback cost) by each device, whilePd is for the

data power.

On the other hand, the SS enables a subset ofn devices to transmit the training and the data.

The power of the training (as feedback cost) byn devices can be small for a givenN . Thus,

PT of the SS is

PT = nPd α + Pd(n). (7)

Inserting (6) into (7), the data power of the SS can be chosen as a function ofn:

Pd(n) = (Nα + 1)Pd − nPd α
︸ ︷︷ ︸

Training power

(8)

= Pd + (N − n)Pd α
︸ ︷︷ ︸

Potential data power

(9)

In (8), Pd(n) can be obtained by subtracting fromPT in (6) the training power by then devices.

Smaller n, larger the remaining power(N − n)Pd α is saved. This saving power could be

potentially added forPd(n) in (9).
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It is worth pointing out that unlike the conventional schemes, the SS can take into account the

above power-loading balance between the training and the data power through the ration/N .

This flexibility will be leveraged to improve the average system rate later in this paper.

B. Outage Probability

Consider a delay-sensitive multi-device case. As a measureof merit, we analyze the outage

probability, deriving its expression with the statistics of the best SNR over the heterogeneous

shadowing environments.

Firstly denote byFy(·) the cumulative distribution function (cdf) ofy. Wheny = ρl∗‖gl∗‖2

in (5), Fy(x) is also referred to as the outage probability that the channel strength of the best

devicel∗ remains belowx, and is given by

Fy(x) = Pr
[
ρl∗‖gl∗‖2 ≤ x

]
. (10)

We rewrite (10) for further analysis. Particularly, noticethe fact that the fairness in scheduling

is obtained among devices via subsetΣD, since the best indexl∗ is selected according to its

potential channel gain related with the average gain. For givenn andΣD, thus,D(l) in ΣD are

uniformly chosen as the best with the equal probability of1/n. Also, referring to (4), the best

index l∗ relies on‖gl∗‖2, statistically being independent ofρ(l). Based on this observation,Fy(x)

in (10) can be re-written, using the union bound expression [21], as

Fy(x) ≤
1

n

n∑

(l)=1

Pr
[
ρ(l)‖gl∗‖2 ≤ x

]
(11)

=
1

n

n∑

(l)=1

Pr

[

‖gl∗‖2 ≤
x

ρ(l)

]

(12)

wherePr[·] in (12) represents the cdf of the normalized best channel gain. Using the higher

order statistics [22], this probability can be obtained as

Pr

[

‖gl∗‖2 ≤
x

ρ(l)

]

= γ

(

1,
x

ρ(l)

)n

whereγ(1, z) , (1− e−z), whenM = 1 at the CU. Hereinafter, for simple analysis,M = 1 is

considered and its extension to multiple antenna system will be addressed in Section IV.

Notice that the inequality in (11) can become the equality inthe SS case due to the fact that

only one device as the best is scheduled every channel use. Using (12), therefore, we can express
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(10) in the following form, for givenΣD andn, as

Fy(x) =
1

n

n∑

(l)=1

γ

(

1,
x

ρ(l)

)n

. (13)

To validate the accuracy of (13), Fig. 1 depicts the comparison of the simulated cdfs of

y = ρl∗‖gl∗‖2 with the theoretical cdfs of (13) for variousn’s. For the illustrations on this

purpose, we use whenn = N ∈ {5, 10, 20, 50} devices andρ(l) are heterogeneous, log-normal

shadowing with standard deviationσ, i.e., σ = 1 (dB). As seen in Fig. 1, (13) is very close to

the simulation results for variousn’s, which validates the accuracy of (13).

Also, it is worth mentioning from Fig. 1 that with largern, Fy(·) increases slower. This

indicates that the heterogeneous multi-device system is less influenced by the channel hardening

effect [23] predominant in homogeneous case. Particularly, whenn = 5 increases ton = 50,

Fy(·) = 0.6 can be reduced down to0.08. This implies that, for givenn = 50 devices,55

per-cent less outage can occur.

Fig. 2 illustrates the impact of the heterogenity on the theoretical cdfs in (13). To validate

its accuracy, (13) is compared with the simulated cdfs for various σ’s. As seen in the figure,

(13) performs close to the simulations. Also, it can be seen in the figure that asσ decreases,

the achievable cdfs are closer to each other. This leads to the fact that less heterogeneous fading

results in higher outage probability. In other words, the more the heterogeneous fading, the larger

the scheduling power gain.

C. Average system rate

Consider a delay-tolerant multi-device case. According tothe information theory, one can

achieve the channel capacity through an extremely large number of coding bits. Using such

large number of coding bits, the achieved channel capacity is available with long delay and is

valuable as performance metric, particularly in a delay tolerant system. The channel capacity

can be referred to as the achievable system rate in our work. Accordingly, the system rate of

our work is achieved at long delay and thus, the corresponding system can be referred to as

a delay-tolerant system For this, denote byR̄ the average system rate. Based on the results

in Section III, R̄ can be formulated as the weighted sum of the average individual rates. In
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Fig. 1. Cumulative distribution functions of a random variable y = ρl∗‖gl∗‖
2 where the theoretical value in (13) is shown

without markers and the simulatedy are shown with makers only, andn = {5, 10, 20, 50}.

particular, whenn ≤ N , we have, using (5) and (13),

R̄ =
1

N

N∑

l=1

∫ ∞

0

log2 (1 + ρlPd(n) x) p‖gl∗‖2(x) dx (14)

wherep‖gl∗‖2(·) denotes the probability density function (pdf) of‖gl∗‖2. The equality is based

on the fact observed in (13): the best indexl∗ is related to‖gl∗‖, being independent ofρl.

Applying the higher order statistics [22], whenM = 1, p‖gl∗‖2(·) in (14) is found, for given

N andn, as

p‖gl∗‖2(x) = n e−xγ(1, x)n−1.
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Fig. 2. Cumulative distribution functions of a random variable y for various heterogeneous fading wheny = ρl∗‖gl∗‖
2,

n = 10, and the heterogeneous fading componentsσ ∈ {0.1, 0.5, 1, 2} (dB).

Insertingp‖gl∗‖2(·) andPd(n) in (9) into (14), thus,R̄ can be written as

R̄ =
n

N

N∑

l=1

∫ ∞

0

log2 (1 + Pd(n) ρl x) e
−xγ(1, x)n−1 dx (15)

where we havePd(n) = ((N − n)α+ 1)Pd as a decreasing function ofn. It can be seen in

(15) thatR̄ increases with a proper selection ofn, for givenN andPd.

Refer to the fact that
∫∞

0
log2(1+ax)p(x)dx = a/ ln 2

∫∞

0
(1−F (x))/(1+ax)dx, wherep(x)

andF (x) are the pdf and the cdf ofx, respectively. Using this fact, the integral in (15) can be

given by
a

ln 2

∫ ∞

0

1− F (x)

1 + ax
dx,
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whereF (x) = (1− exp(−x))n anda = Pd(n)ρl. Using the Taylor series formulation and [24,

(3.352.4)] and after simplifications, this integral can be given in closed-form as

a

ln 2

∫ ∞

0

1− F (x)

1 + ax
dx =

−1

ln 2

n∑

m=1

(
n

m

)

(−1)m+1 em/a Ei
(

−m

a

)

,

whereEi(·) is the exponential integral function. From these, the exactexpression for (15) can

be obtained in closed-form as

R̄ =
−n

N ln 2

N∑

l=1

n∑

m=1

(
n

m

)

(−1)m+1 em/a Ei
(

−m

a

)

, (16)

where recall thata = Pd(n)ρl.

IV. EXTENSION TO MULTIPLE ANTENNA MULTI -DEVICE SYSTEM

The performance analysis in the previous section can be extended to multiple antenna multi-

device systems. This will also allow to use the benefits of multiple antenna techniques. Toward

this end, a generalized expression for the average system rate has to be derived. For brevity, we

address only the approximate average system rate case.

A. Upper bound expression for the average system rate

Let M be the multiple antenna diversity order. Then, in the multiple antenna case, the degrees

of freedom (DOF) ofx in (15) extends to2M , that is,x ∼ χ2
2M whereχ2

2M stands for the

Chi-squared distribution with2M DOF (refer also to [19]). Therefore, for givenn(≤ N) and

M , the expression forp‖gl∗‖
2(x) in (14) can be generalized as [3]

p‖gl∗‖
2(x) = n

(x)M−1 e−x

Γ(M)n
γ (M,x)n−1 (17)

where γ(·, ·) and Γ(·) represent the incomplete gamma and the complete gamma functions,

respectively [24].

Inserting (17) into (14),R̄ of the multiple antenna case can be

R̄ =
1

N

N∑

l=1

E
(
log2

(
1 + ρl‖gl∗‖2Pd(n)

))

whereE(·) stands for the expectation operator. Using Jensen’s inequality, we can have

R̄ ≤ 1

N

N∑

l=1

log2
(
1 + ρl Pd(n)E‖gl∗‖2

)
. (18)
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To further analysis, we refer to the fact that whenn is large, the distribution of‖gl∗‖2 in (18)

satisfies [25]:
(
‖gl∗‖2 − µ(n,M)

)
/β(n,M) = z,

z ∼ G(z) = exp (− exp(−z))
(19)

whereµ(n,M) = F−1
x (1− 1/n), β(n,M) = F−1

x (1− 1/ne)−µ(n,M), Fx(·) = γ(M,x)/Γ(M) is the

cdf of ‖g(l)‖2, z denotes a Gumbel distribution random variable, andG(z) denotes the cdf ofz.

Using this asymptotic distribution (19), (18) can be approximated in closed–form as

R̄ ∼= 1

N

N∑

l=1

log2
(
1 + ρlPd(n) (µ(n,M) + β(n,M)ω)

)
(20)

whereω denotes the mean ofz (i.e., E(z)) that is Euler’s constant.

B. Comparison with the conventional scheme

1) Power gain for the same average system rate:Denote byR̄c the average system rate of

the conventional scheme wheren = N is fixed. Accordingly,R̄c is a special case of̄R with

n = N and we have

R̄c =
1

N

N∑

l=1

log2
(
1 + ρlPd (µ(N,M) + β(N,M)ω)

)
.

For comparison tōRc, R̄ can be represented with respect to onlyn andPd, for a givenn ≤ N :

R̄ ∼= 1

N

N∑

l=1

log2
(
1 + ρl PdG(n)

(
µ(N,M) + β(N,M)ω

))
(21)

whereG(n) is given by

G(n) = ((N − n)α + 1)
µ(n,M) + β(n,M)ω

µ(N,M) + β(N,M)ω
(22)

and denotes theachievable power gain. Notice thatG(n) is achieved, using the power-loading

balance under the total power requirement (PT ≤ P0) and the selective multi-device scheduling.

It can be shown from (21)–(22) that, for givenN andρ, R̄ benefits from properly selectingn. In

particular, for givenN andρl, R̄ depends only on the achievable gainG(n). FromG(n) in (22),

notice that, asn increases, the terms((N − n)α + 1) and
(
µ(n,M) + β(n,M)ω

)
monotonically

decrease and increase, respectively. The latter is due to the fact thatµ(n,M) and β(n,M) are

monotonic in terms ofn, according to their definitions in (19). The former results from the power-

loading balance throughn. Therefore, it is inferred from (21)–(22) thata proper selection ofn can
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increaseG(n), taking into account the trade-off between(Nν − nν + α) and
(
µ(n,M) + β(n,M)ω

)
,

and thus, higher the average system rateR̄.

2) Power gain for the same outage probability:Denote byFyc(·) the cdf ofyc and byyc the

normalized SNR, i.e.,yc = ρl∗‖gl∗‖2. Conventionally let the data powerPd(N) be fixed for all

n’s. Accordingly, we have, for a given thresholdµ,

Pr [yc Pd(N) ≤ µ] = Fyc

(
µ

Pd(N)

)

=
1

N

N∑

l=1

Pr

[

‖gl∗‖2 ≤
µ

ρlPd(N)

]

=
1

N

N∑

l=1

Fx

(
µ

ρlPd(N)

)n

,

(23)

where recall thatFx(x) = γ(M,x)/Γ(M).

For comparison toFyc(·), the cdf of the proposed schemeFy(·) can be given with a power

gain, for a givenn ≤ N , as:

Fy

(
µ

Pd(n)

)

=
1

N

N∑

l=1

Fx

(
µ

ρlPd(n)

)n

=
1

N

N∑

l=1

Fx

(
µ

ρlPd(N)

1

Go(n)

)n

= Fyc

(
µ

Pd(N)Go(n)

)

,

(24)

whereGo(n) = 1 + (N − n)α.

From (23)-(24), it can be clearly found that the power gain achievable for the same outage

probability isGo(n) = 1 + (N − n)α and decreases monotonically withn.

V. OPTIMIZATION PROBLEM

We formulate the optimization problem in order to maximizeR̄ under the total power require-

ment at the devices level. In particular, notice from (21)–(22) thatR̄ can be given as a function

of only n for givenN andM . Thus, for givenN andM , the problem is posed as

max
n∈{1,··· ,N}

R̄ = max
n∈{1,··· ,N}

1

N

N∑

l=1

log2
(
1 + ρl PdG(n)

(
µ(N,M) + β(N,M)ω

))

subject to PT ≤ P0.

(25)

Interestingly, notice from (25) that̄R can increase with the achievable power gainG(n),

regardless ofρl’s. This observation leads to the fact that the valuen maximizing G(n) is
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eventually maximizingR̄, resulting in the variable power ratio between the trainingand the

data in (7). Therefore, we equivalently present the following objective, maximizingG(n) for

givenN andM , as

max
n

G(n) = max
n∈{1,··· ,N}

((N − n)α + 1)
µ(n,M) + β(n,M)ω

µ(N,M) + β(N,M)ω

subject to PT ≤ P0.

(26)

To solve this problem, let us consider a simple example, having a single receiving antenna

M = 1. In this context, we can obtain thatµ(N,1) = log(N) andβ(N,1) = 1, straightforwardly

from their definitions in Section IV-A. Using these, it can beshown that (26) is the convex

optimization problem because the second derivatives ofG(n) with respect ton is negative. We

can use the well–known Lagrangian multiplier method to find the optimalnopt. Accordingly,

nopt can be given by1

nopt , arg min
n∈[1,N ]

| G′(n) | (27)

whereG′(·) , ∂
∂n
G(n).

EquatingG′(n) to zero, we can representnopt in closed–form for a givenN as

nopt = arg min
n∈[1,N ]

∣
∣(Nα + 1)n−1 − α (log n+ ω + 1)

∣
∣ . (28)

It can be found from (28) that, in the case whenM = 1, nopt depends onN , andα. Particularly,

the argument of| · | in (28) is a decreasing function ofn as its first derivative in terms ofn is

negative in practice. This reveals that for a givenN , the optimalnopt satisfying(28) can be less

than the maximum numberN so thatR̄ is maximized.

VI. A SYMPTOTIC ANALYSIS

In this section, we consider an extreme case when the total numberN of devices is very large.

We study how the optimal number of active devices and the average system rate behave in the

extreme case.

1For the simplicity in analysis but without loss of generality, we assume thatG(·) is continuous and is differentiable at all

values ofn. But, in practice,n is an integer and thereby the optimaln results in an integer nearest tonopt towards zero.
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A. Impact of largeN on nopt

As N grows very large (i.e.,N → ∞), the behavior ofnopt in (28) is investigated. First, letn

be n = Nτ for a fixed τ ∈ [1/N, 1] such thatn (≤ N) remains an integer. So, asN increases,

n also increases at the fixed rateτ = n/N .

WhenN → ∞, then the power gainG(n) in (21) is for a givenP0(i.e., PT = P0)

lim
N→∞

G(n) = lim
N→∞

(N(1− τ)α + 1)
log (τN) + ω

log (N) + ω
(29)

≈







ωN(1−τ)α
logN

if τ → 1
N

1 else if τ → 1

(N(1−τ)α+1)(log(τN)+ω)
logN

elseτ ∈ ( 1
N
, 1).

(30)

We can asymptotically observe from this equation that, asN grows for a givenP0, G(n) scales

with N/ logN when τ approaches1/N ; becomes one whenτ approaches one; and can be

maximized with a proper selection ofτ over its intermediate rangeτ ∈ (1/N, 1). Therefore, we

can represent that, for largeN , nopt is approximated as

nopt = arg max
n=τN

(30), for τ ∈ {1/N, ..., 1}. (31)

B. Impact of largeN on R̄

Similarly, these asymptotic results can be observed in terms of R̄. Particularly by inserting

(30) into (21), we can observe that for largeN , R̄ behaves asymptotically as

R̄ =
1

N

∑

l

log2 (1 + ρl(1− τ)P0 logN)

=
1

N

∑

l

Θ (log2 logN + log2 (ρl(1− τ)P0))

(32)

whereΘ(·) denotes the big Theta notation in mathematics. It can be shown from (32) that for

largeN , R̄ increases inversely with respect toτ . That is, asN grows large,R̄ is maximized by

using the smallest candidateτ (i.e., nopt = 1).

From (29)–(32), we present asymptotic summary remarks. Forlarge N , the round robin

transmission is the optimum in order to maximizeR̄ of the power-limited multi-device scheduling

system. The intuition is that for very largeN , the convention scheme makes all the devices waste

most of their power for the training towards a small possibility of the data transmission. Such
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training power usage can be potentially used for the data. Thus, to avoid wasting their power, the

proposed scheme suggests the round robin scheduling for largeN . Interestingly, this behavior is

opposite to the conventional opportunistic transmission,which is under the fixed power-loading

and no selection in scheduling.

Moreover, it is worth pointing out that as per (30)–(32),nopt is asymptotically shown to rely

on moreP0, rather thanρl. The former is related to the power requirement at devices level,

while the latter to the heterogeneous propagation channels.

VII. SIMULATIONS AND NUMERICAL RESULTS

We illustrate simulations and numerical results for the performance of the proposed selective

scheduling scheme. For illustrations, letN ∈ [2, 50] andn ∈ {1, · · · , 30} are used, along with the

training and data power ratioα = 3/4 in [26]. For comparison, simulations of the conventional

schemes such as the greedy and the PF scheduling are performed over both homogeneous and

heterogeneous channels.

A. The cdf performance

In Fig. 3, the cdf of the proposed scheduling scheme with a fixed n = 8 is depicted when

N = 10, α = 3/4 and σ = 1 dB are used. For comparison, the conventional schemes of

both the greedy and the PF scheduling are depicted at the samenumberN = 10 of devices

available under the total power requirement. As illustrated in this figure, the greedy scheme

slightly outperforms the PF scheme whenσ = 1 dB. Interestingly, Fig. 3 clearly depicts that

the proposed scheme can significantly outperform the well-known greedy scheme. For example,

to achieve the cdf of0.3 (or, equivalently, the outage probability of0.3), it can be shown in

Fig. 3 that the proposed scheme obtains the power gain of4.5 dB over the greedy scheme. The

intuition is that the proposed scheme exploits the trade-off between the power-loading balance

and the flexible selection scheduling gain while the greedy one is known as the optimum with

only the full-selection scheduling.

In Fig. 4, when randomly selectingn = 6 devices in scheduling, the cdf of the proposed

scheme is depicted whenN = 10, α = 3/4 and σ = 1 dB are used. For comparison, the

conventional schemes of both the greedy and the PF scheduling are also depicted at the same

numberN = 10 of devices available under the total power requirement. Similar to Fig. 3, Fig. 4

May 6, 2016 DRAFT



18

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f O
ut

pu
t S

N
R

Output SNR (dB)

 

 

PF Scheduling
Greedy Scheduling
Selective Scheduling (Proposed)

4.5 dB gain

Fig. 3. Comparison of the cumulative distribution functions of the output SNR for the proposed selective scheduling over the

conventional schemes (such as the greedy and the proportional fair scheduling). For illustrations, we consider the heterogeneous

propagation channels whenN = 10, n = 8, α = 3/4, andσ = 1 dB.

depicts that the proposed scheme can outperform both the conventional schemes (i.e., the greedy

and the PF scheduling), with the larger power gain. For example, when havingn = 6 over

σ = 1 dB moderate heterogeneity in scheduling, to achieve the cdfof 0.3 (or, equivalently, the

outage probability of0.3), Fig. 4 shows that the achievable power gain by the proposedscheme

is 9.5 dB over the greedy scheme. From the illustrations, we can observe that smallern, less

the outage probability of the system in scheduling.

Consideringσ = 3 dB for higher heterogeneity in scheduling, Fig. 5 depicts the impact of

n on the cdfs of the proposed scheme. For comparison, the cdfs of the conventional schemes

are illustrated. LetN = 10, n ∈ {6, 8, 9}, α = 3/4 be used. Compared to Fig. 4, it can be seen
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Fig. 4. Comparison of the cumulative distribution functions of the output SNR for the proposed selective scheduling over the

conventional schemes (such as the greedy and the proportional fair scheduling). For illustrations, we consider the heterogeneous

propagation channels whenN = 10, n = 6, α = 3/4, andσ = 1 dB.

from Fig. 5 that the superiority of the greedy scheme to the PFscheme is larger over higher

heterogeneous channels ofσ = 3 dB. Moreover, as for the impact ofn at σ = 3 dB, this

figure depicts that for a given thresholdy, smallern results in less the outage probability of

the proposed scheme. Therefore, it can be observed from Fig.5 that the proposed scheme still

outperforms both the greedy and the PF schemes, properly selecting the value forn even over

highly heterogeneous channels.
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Fig. 5. Impact of the numbern of selectively scheduling devices on the cdf. For comparison, the cdfs of the conventional

schemes (i.e., the greedy and the proportional fair scheduling) are depicted. We use whenN = 10, n ∈ {6, 8, 9}, α = 3/4, and

σ = 3 dB.

B. The average system rate performance

In Fig. 6, with several values ofn(≤ N), the average system ratēR is depicted as an increasing

function of the number (N) of devices available. For the illustrations, we consider the proposed

scheme that exploits the approximate expression forR̄ in (20). To validate this approximation,

simulations are also depicted in Fig. 6 whenn ∈ {4, 8, 10}, N ∈ {10, · · · , 50}, α = 3/4 and

homogeneous channels withρ = 10 dB. As seen in this figure, the accuracy between the

numerical and simulation results is verified to be good within 0.01 bps/Hz/cell for a wide

range ofN ’s.

Moreover, as seen in Fig. 6, there exist turning points ofN ’s beyond whichR̄ with larger
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Fig. 6. Average system ratēR of the proposed scheme has been illustrated with respect toN at several values forn. We use

whenN ∈ {10, · · · , 50}, n ∈ {4, 8}, α = 3/4, and homogeneous channels withρl = 10 dB for all l. To validate the accuracy

of the theoretical results, the simulations are depicted only with markers and no lines while the theoretical ones only with lines

and no markers.

n outperforms one with smallern. For example, it can be shown in Fig. 6 that whenN ≥ 18,

selectingn = 8 results inR̄ higher than ones withn ∈ {4, 10}. This validates the analytical

results in Section IV.

To further express the impact ofn, Fig. 7 now depicts̄R as a concave function ofn, for given

N ∈ {10, 20, 30}. In this illustration, we use whenα = 3/4, σ = 3 dB, andn ∈ [0, 100] (in

percentage) for a givenN . As verified in our optimization problem, this figure shows that there

exists the optimum value forn to maximizeR̄. For example, whenN = 20, it is shown in this

figure that the maximum̄R = 6.933 is obtained by selectingn = 6 (i,.e., 30 per-cent). Also,
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Fig. 7. Average system ratēR has been illustrated with respect ton at several values forN . For curves, we use when

N ∈ {10, 20, 30}, α = 3/4, andσ = 3 dB. For a givenN , the optimaln maximizing R̄ can be found in this figure.

it is worth mentioning from Fig. 7 that the rate of such an optimum n to N , maximizing R̄,

decreases asN grows.

As for the impact ofN under the power requirement, Fig. 8 depictsR̄ as a monotonically

increasing function ofN . For illustration in this figure, we now normalize the total powerPT at

the devices level, regardless ofN , and thusPT remains the same even asN grows. This aims to

depict how a large deployment ofN devices is allowed to increasēR of the power-limited multi-

devices system. In this figure, we use thatN ∈ {2, · · · , 50}, n ∈ {1, 2, 4, 8, 30}, α = 3/4, and

σ = 3 dB. For comparison, we also depict the conventional PF scheme, having a fixedn = N .

Interestingly, Fig. 8 clearly depicts that the proposed scheme enables̄R to increase in log-scale

with N while the PF scheme suffers from decreasingR̄. Intuitively, this is because, for large
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Fig. 8. Average system ratēR of the proposed scheme has been depicted with respect toN in the case whenPT is normalized,

regardless of allN ’s. For comparison, the conventional proportional fair scheduling is also depicted. In this figure, we use that

N ∈ {2, · · · , 50}, n ∈ {1, 2, 4, 8, 30}, α = 3/4 andσ = 3 dB.

N , all the devices in the PF scheme wastes their power mostly inthe training whilen devices

randomly selected in the proposed scheduling spend their power, through the power-loading

balance and the flexible selection scheduling, to outperform the PF scheme, which validates the

analysis in Section VI.

VIII. C ONCLUSIONS

We studied the multiuser selection scheduling scheme in thenon-identically distributed Rayleigh

fading channels. We firstly proposed the new proportional fair multiuser selection scheduling

scheme suitable to the power-limited multi-device systems. To evaluate the performance of the

proposed scheme, we analyzed both the cumulative distribution functions and the average system
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rate, deriving their closed-form expressions over the heterogeneous Rayleigh fading channels.

To improve the performance with the reduced feedback requirements, we developed the transmit

power-loading balance and the partial devices selection scheduling criterion. It can be inferred

from this work that, for the power-limited multi-device systems,

• Outage probability performance improves, properly reducing a subset of active devices in

scheduling over heterogeneous fading channels.

• Higher average system rate is achievable by jointly designing the number of the partial,

active devices and exploiting the power-loading balance.

• Optimum selection scheduling in the sense of the maximum average system rate behaves

towards the round–robin scheduling, for very large number of devices. This is opposite to

the conventional greedy scheme, which is the optimum with the full feedback requirement

and no selection in scheduling.

• Higher the heterogeneous fading, larger the MUDiv gain imposed by the multi-device

selection scheduling is.

Based on the outcomes, it is clearly recommended that the proposed scheduling scheme is

suitable to the power-limited multi-device systems, especially over the heterogeneous fading.

APPENDIX

A. Proof of the equal probability of accessing the channel

Denote byPr[l = l∗] the probability that devicel, ∀l are chosen as the best and access

the channel. Consider a single antennaM = 1 for simple analysis without loss of generality.

Pr[l = l∗] can be written, for givenl∗ andΣD, as

Pr[l = l∗] = Pr
[
|gl|2 = |gl∗|2, l ∈ ΣD

]
(33)

= Pr
[
|gl|2 = |gl∗|2 | l ∈ ΣD

]
Pr[l ∈ ΣD] (34)

=
n

N

∏

(j)∈ΣD ,l 6=(j)

Pr
[
|gl|2 ≥ |g(j)|2

]
(35)
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wheren/N in (35) is based on the system model. Referring to the complementary cdf of|gl|2

and the moment generating function of the|g(j)|2, we have

Pr[l = l∗] =
n

N

n∏

(j)∈ΣD ,(j)6=l

Mz{−1}

=
n

N

1

4n−1
, (36)

whereMz(·) is the moment generating function ofz andz = |g(j)|2. Therefore, it can be clearly

observed from (36) that with the PF scheme, the probability that devicel is allowed to access

the channel relies only onN andn, being identical for all devices.
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