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Abstract
Weapply the framework of non-equilibriumquantum thermodynamics to the physics of quenched
small-sized bosonic quantum gases in a one-dimensional harmonic trap.We show that dynamical
orthogonality can occur in these few-body systemswith strong interactions after a quench andwe find
its occurrence analytically for an infinitely repulsive pair of atoms.We further show this phenomena is
related to the fundamental excitations that dictate the dynamics from the spectral function.We
establish a clear qualitative link between the amount of (irreversible)work performed on the system
and the establishment of entanglement.We extend our analysis tomultipartite systems by examining
the case of three trapped atoms.We show the initial (pre-quench) interactions play a vital role in
determining the dynamical features, while the qualitative features of the two particle case appear to
remain valid. Finally, we propose the use of the atomic density profile as a readily accessible indicator
of the non-equilibriumproperties of the systems in question.

1. Introduction

Quantumgases offer a valuable platform for the study of quantumphenomena in interactingmany-body
systems. The availability of high-quality and reliable experimental control techniques and the low-level of
external influencesmakes such systems excellent candidates for the simulation of quantumprocesses [1] and the
exploration of the interplay between these and quantum critical behaviours.

Recent experimental progress has shown the possibility to observe non-equilibriumphysics [2], which is
quickly leading to the establishment of an experimental ultracold-atom framework for the exploration of
complex phenomena, such asmany-body localisation [3]. In particular, this framework can be used to test the
recently developed ideas for the finite-time thermodynamics of closed quantum systems [4], which include tools
for the quantification of thermodynamically relevant quantities, such aswork and entropy, after afinite-time,
non-equilibriumquantumquench. To date, this powerful formalismof non-equilibriumquantum
thermodynamics has found only limited experimental validation and has beenmostly applied to nuclear
magnetic resonance settings [5]. However, notwithstanding the exquisite control available over such systems,
they are hard to scale and offer only few possibilities for the inclusion ofmany-body effects. On the contrary,
ultracold atomic gases offer solutions for both of these issues andwewill therefore in the following study the
connections between the phenomenology of non-equilibriumquantumgases and finite-time thermodynamics.

For this, we consider small-size gases of interacting bosonic atoms that are perturbed out of their
equilibrium configuration. In particular, we focus on the ground state of interacting, harmonically trapped
bosonic atoms in one-dimension, and subject them to a sudden quench of theHamiltonian parameters. Such a
perturbation, which has been recently explored to characterise the occurrence of Anderson’s orthogonality
catastrophe [6–8], embodies the paradigmof a non-equilibriumprocess and has been shown to capture perfectly
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the complexity arising fromquantummany-body effects in quantum spin systems [9]. In [10], the case of a
fermionic systemwas addressed and developed, the study of the statistics of work in bosonic Josephson
junctions was presented in [11], and the study of quenched attractive cold gases has recently been examined in
[12]. Furthermore, [13] proposed realisingmany-particle thermalmachines using harmonically trapped bosons
where a quantumadvantage can be achieved.

Here we explore the non-equilibriumproperties of these trapped ultracold atoms. First, we find the
analytical expressions for relevant thermodynamical quantities, such as the Loschmidt echo (LE) and the average
work, for a single atom subjected to a quench in the trapping frequency and elucidate the relation between the
entropy production and the tendency toward dynamical orthogonality, althoughwefind that the evolved state is
never completely orthogonal to the initial one forfinite quenches in the trapping frequency. Enlarging the
system,we study the role particle interactions play. For the infinitely repulsive Tonks–Girardeu (TG)molecule
wefind analytical expressions for the samefigures ofmerit as in the single atom case.While the qualitative
behaviour is consistent with the single atom case, we now see due to the strong interactions, finite sized quenches
lead to dynamical orthogonality. For finite interactions, wefindnumerically that the average in time of the
entanglement and the (irreversible) averagework are linked. This is a crucial result in this paper, as we find that
even in the smallest interacting system, there exists a link between the establishment of correlations
(entanglement) and thework done.We relate these features to the spectral function, which gives the
fundamental excitations that dictate the dynamics.We complete ourwork studying the smallest possible
mixture of ultracold bosonswith both inter- and intra-species interactions: two atoms of type X and one atomof
type Y and employ the samefigures ofmerit as in the previous cases.We show a relationship between the LE and
the density profile, which is an experimentallymeasurable quantity. Furthermore this gives information about
the correlations established among the atoms and indicates a trend for larger gases subjected to a quench, a
situation of great theoretical interest and experimental relevance [2]. Finally, we remark here that, using
symmetry arguments, we show that themixture of three atoms behaves identically to that of the three
indistinguishable-boson system if both the inter- and intra-species constants are equal.

Our presentation is organised as follows. In section 2we provide a brief introduction to non-equilibrium
quantum thermodynamics, focussing in particular on the consequences arising from a sudden quench. This
formal framework is then applied in sections 3–5 to the single atom, trappedmolecule and three atommixture
when subjected to the quench of theirHamiltonian parameters. Finally, section 6 draws our conclusions, while a
set of technical considerations and details are presented in the appendices.

2.Non-equilibrium thermodynamics of quantumquenches

In the followingwewillfirst briefly summarise the key notions offinite-time thermodynamics in closed
quantum systems. For this we consider a systemwhoseHamiltonian,, depends on an externally controlled,
time-dependentwork parameter lt . The system is assumed to be in contact with a bath at inverse temperatureβ
for a time long enough to have reached equilibrium. At t=0, the system is detached from the reservoir and its
energy is changed bymodifying the value of thework parameter from l0 to lt. The evolution is accounted for by
the unitary propagatorUτ. As the system is detached from the surroundingworld, such a change of energy can
only be interpreted aswork done on/by the system,which can be characterised by introducing thework
probability distribution [4]

( ) ( ) [ ( )] ( )å d= - ¢ -P W p n M W E E, . 1
n M

M n
,

HereEn ( ¢E M) is the nth (M th) eigenvalue of the associated eigenstate ∣ ñn (∣ ñM ), of the initial (final)
Hamiltonian.Moreover, ( ) [∣ ∣ ∣ ∣ ∣ ∣ ]†r= ñá ñá ñát tp n M M M U n n n n U, Tr s is the joint probability offinding
the system in ∣ ñn at time t=0 and in state ∣ ñM at time τ, after the evolution by the time-propagatorUτ.
Obviously, such a joint probability can be decomposed as ( ) = tp n M p p, n M n

0 , where pn
0 is the probability that

the system is found in state ∣ ñn at time t=0 and tpM n
is the conditional probability tofind the system in ∣ ñM at

time τ if it was initially in ∣ ñn . Therefore, P(W) contains information about the statistics of the initial state and the
fluctuations arising fromquantumdynamics andmeasurement statistics. The characteristic function of the
work probability distribution ofP(W) is defined as [4]

( ) ( ) [ ] ( )† ( ) ( ) òc t r= = t
t

t
-u W P W U U, d e Tr e e , 2uW u ui i i 0

eq
0

with req
0 being the initial equilibrium state of the system and ( ) t theHamiltonian of the systemwhen thework

parameter takes the value lt .
For a quasistatic process, the change in free energyDF of the system is equal to the averagework done on/by

it. The former can bewritten as bD = D - DF E S withDE being the change in energy andDS the
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corresponding entropy variation.On the other hand, if the process is fast (i.e. not quasistatic), then the relation
á ñ DW F holds, accounting for the fact that part of thework performed on/by the system is dissipated due to

the abrupt nature of the transformation. By introducing the standard definition of non-equilibrium entropy
production

( )báSñ = D - á ñS Q , 3

where á ñQ is the average heat exchangedwith the environment, wefind for a closed, unitarily evolving system

( ) ( )báSñ = á ñ - DW F . 4

This allows to quantify the irreversible nature of a given process in terms of the discrepancy betweenDF and
á ñW . The definition of áSñallows for the consideration of the so-called irreversible work

( )á ñ = á ñ - DW W F, 5irr

whichwill be extensively used in this work. A general approach to irreversible entropy in open quantum systems
(including non-equilibriumones) can be found in [14], while a different quantifier which is based on the use of
adiabatic transformations (rather than the implicit isothermal ones considered here) has been proposed in [15].

A very useful lower bound to the non-equilibrium entropy production, áSñ, can be based on the unitarily
invariant Bures angle (see [16]). For arbitrary densitymatrices r1,2, the Bures angle is defined as

( ( ) ) r r= Farccos ,1 2 with ( )r rF ,1 2 thefidelity between the two states. Using this wefind

( ) ( )
p

táSñ áSñ =
8

, 6B 2 eq
2

where ( ) ( ( ) ) t r r= t
tFarccos ,eq eq is the angle between the non-equilibrium state rt of a closed quantum

system, and its equilibrium version rteq. Equation (6)defines a thermodynamic distance that is valid arbitrarily
far from equilibrium, and can thus be used to characterise the departure from equilibrium following an arbitrary
driving process.

Sincewe are interested in examining the dynamics of a cold atomic system after a sudden quench, wewill
make use of the fact that we start from the ground state of a given system and that its state remains pure
throughout thewhole dynamics.Wewill use the spectral decomposition of the initial and finalHamiltonians of
the system ∣ ∣ y y= å ñáa

a a aEj j j j with a = I (a = F) denoting the initial (final)Hamiltonian operator. Here
aEj is the jth eigenvalue ofa with associated eigenstate ∣y ñaj .
A keyfigure ofmerit for our system is the LE,which is defined as

( ) ∣ ∣ ∣ ∣ ∣ ( )( )   å y y= áY Y ñ = á ñ- -t e e e , 7t t

n

E E t I
n
F

0
i i

0
2 i

0
2

2

F I n
F I

0

wherewe have assumed that the initial state of the system ∣Y ñ0 coincides with the ground state ∣y ñI0 ofI . The LE
is closely related to the characteristic function of the probability distribution of thework done on/by the system
upon subjecting it to the quench considered here. In fact, for a sudden quenchwe have that =tU 11, with11 the
identity operator, and thus ( ) ( ) [ ]( ) ( ) c t c t rº = t -u, Tr e eu ui i 0

eq
0 . Here, we are taking ∣ ∣r y y= ñáI I

eq
0

0 0 and,

by using the identifications ( ) =0 I and ( ) t = F , we find ( ) ∣ ( )∣ c=t t 2 with

( ) ∣ ∣ ∣ ∣ ∣ ( )( )  åc y y y y= á ñ = á ñ- -t e e e . 8I t t I

j

E E t I
j
F

0
i i

0
i

0
2F I j

F I
0

From this the averagework is given by

( )∣ ( )∣ ∣ ∣ ( )åc y yá ñ = - ¶ = - á ñ=W t E Ei , 9t t
j

j
F I I

j
F

0 0 0
2

while from the definition of irreversible entropy production equation (4), we can introduce a quantifier of the
dissipatedwork due to the non-quasistatic nature of the quench.

3. Single trapped atom

Let us start by considering the simplest possible scenario of a harmonically trapped single atom in one-
dimension. TheHamiltonian of the system reads

( )
 w= - ¶ +

m
m x

2

1

2
10x

2
2

1
2 2

withm themass of the atom and w1 the frequency of the trapping potential. In the followingwewill consider a
quench in the trapping potential frequency w w1 2 and, in order to simplify our notation, we rescale the
position co-ordinate of the atomwith respect to the ground state length  w=a mho 2 , and its energywith

3
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respect to w2. The dimensionless initial Hamiltonian ( )~
  w=I

2/ of the system then reads

˜ ˜ ( )˜


 = - ¶ +
x1

2 2
, 11I

x
2

2

2

where ˜ =x x aho and  w w= 2 1.
The results presented in this section are closely related to those presented in [10, 16]. However an explicit re-

examination of these calculations will be useful for understanding the upcoming sections. To calculate any of the
above quantities requires determining the overlap between the initial (ground) state and the eigenstates of the
scaledHamiltonian ˜

˜
˜ = - ¶ +F

x
x1

2
2

2

2

(see equation (9))which in this case is done using the known
wavefunctions

( ˜) ( ˜)
!

( ˜) ( )˜
˜


y

p
y

p
= =-

-
x x

n
H x

1
e and

1 e

2
, 12I x

n
F

x

n n0 4
1

2
2

4

1
2

2

with the associated energies ( )=E 1 2I
0 and ( )= +E n 1 2n

F , andwhereHn(y) is theHermite polynomial of
order n and argument y. Exploiting the fact that ∣ ( )y yá ñ = Î+ k0I

k
F

0 2 1
0 , wefind

∣
!( )

( )!! ( )






y yá ñ =

+
-
+

-
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟n

n
2

1

1

1
1 , 13I

n
F

0

n1
2 2

which is valid only for even values of n and directly leads to

( )
[ ( )] [( ) ( )]

( )

 


w w
=

+ +
t

t t

2

2 cos 1 sin
, 14

2
2 2

2
2

( )


á ñ =

-
W

1

4
. 15

2

Note that the averagework is dimensionless in our chosen units. As our system is pure, the free energy difference
is simply the difference between the initial and final ground state energies, ( )


D = -F 11

2
, and thus

( ) ( )


á ñ =

-
W

1

4
. 16irr

2

The lower bound of the entropy produced dynamically is given by

( ) ( ) ( ) ( )
( )

  p w
áSñ =

- + + - -

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t

8
arccos

2

1 1 2 1 cos 2
, 17B 2 4 4 2 2

2

2

4

and infigure 1we show the behaviour of these quantities for different representative values of the quench.
Examining panels (a) and (b)we see an oscillating pattern stemming from the harmonic oscillator dynamics and
find that the behaviour of the lower bound on the irreversible entropy is strongly correlated with the behaviour
of the LE. Its value at a given time growswith the strength of the quench as a consequence of the fact that, as 
grows, the ground state of ̃F becomes increasingly different from ∣y ñI0 .When examined against time, we find
that themaximum entropy production is achieved in correspondencewith theminimumvalue of ( ) t . At this
time, the state of the system is as different as possible from the the initial one, which coincideswith themaximum
irreversible entropy generated. By inspection of equation (14), we note that full dynamical orthogonality never
occurs forfinite quenches of the trapping frequency. Infigure 1(c)we show the behaviour of the averagework,
irreversible work and the free energy against the strength of the quench.While, naturally, all quantities grow
with increasingly large quench strengths, á ñWirr growsmuchmore significantly thanDF , precisely inlinewith
the increasingly largemaxima attained in the entropy produced for larger quenches.

Figure 1. (a)The LE for a single trapped atom for increasingly large quenches ò=1.1, 3, 6, 20 (top to bottom). (b) Lower bound on the
irreversible entropy produced by a sudden quench of the trap frequencywith ò=1.1, 3, 6, 20 (bottom to top). (c)Averagework (blue),
irreversible work (red) and free energy (green) for a single trapped atom.

4
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4. Trappedmolecule

Wenowmove to amore complexmulti-particle system and examine the effect of atomic interactions on the
quantities discussed above. For this we consider two atoms of equalmassm, jointly trapped in a harmonic
potential of frequency w1 and then quench the trap frequency to w2, as before. TheHamiltonianmodel of the
system scaled in the sameway as in equation (11) reads

˜
( ˜ ˜ ) ( )˜ å

w
w

d= - ¶ + + -
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

x
g x x

1

2 2
, 18I F

j
x

j k,

1,2

2
2 2

2
2 1 2j

and corresponds to the initial Hamiltonian for k=1 the thefinal one for k=2. The parameter g is the coupling
constant, which characterises the boson–boson interaction in the limit of low temperatures.Wewill assume the
interactions to be repulsive throughout this work and therefore g to be positive. Note that the rescaling leads to a
coupling constant in units of waho 2 and this again allows to define the parameter  w w= 2 1.

It is important to note thatwhile in principle we have the freedom to quench the interaction strength or the
trapping frequency, quenchingωwill implicitly lead to a quench in the interaction strength if it was initially
finite.Wewill show below that this can be dealt with cleanly for two-particle systems, however for larger system
sizesmore caremust be taken (see section 5).

4.1. TGpair of atoms
The coupling constant can range from zero to infinity, which is the so-called TG limit. Since in the non-
interacting case all the results of the previous section still apply, wewill in the following start by carefully
studying the TG limit, where the atoms behave as hardcore bosons and are readily amenable to analytic
treatment. Thewavefunction of the system can be split into its centre-of-mass (COM) and relative (REL)
coordinates, ∣ ∣ ∣y h jñ = ñ ña a a

n n n , where ∣h ñan (∣j ñan ) refers to theCOM (REL) degree of freedom. The LE and
characteristic function depend on the overlap between the initial and final wavefunctions, as before. In fact, the
wavefunctions of theCOM terms are precisely the same as in the single atomproblem and therefore the overlap
is given by equation (13). However, due to the infinite interaction each even REL state becomes degenerate with
the next higher lying odd state, such that it is sufficient towork onlywith the odd states. The required initial and
final eigenstates are

( ˜) ˜

( ˜)
( )!

(∣ ˜ ∣) ( )

˜

˜


j

p

j
p

=

=
+

-

+ +
-

+

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

x x

x
n

H x

4 1
e ,

1

2 2 1

1
e , 19

I x

n
F

n n

1

2 1 2 1 2 1
x

1
4 1

2
2

1
4 2

2

where ˜ ˜ ˜= -x x x1 2, with the associated energies =A 3 2I
1 and ( )= ++A n2 3 2n

F
2 1 .We can then express the

averagework and the LE in terms of these functions as

( ) ∣ ∣ ∣ ∣ ( )( ) å h h j j= á ñá ñ+ - -
+

+t e , 20
n p

E A E A t I
n

F I
p

F

,

i
0 2 1 2 1

2

2

n
F

p
F I F

2 2 1 0 1

( )∣ ∣ ∣ ∣ ( )å h h j já ñ = + - - á ñá ñ+ +W E A E A , 21
n p

n
F

p
F I F I

n
F I

p
F

,
2 2 1 0 1 0 2 1 2 1

2

with the overlap between the RELwavefunctions given by

∣
( ) !!

!( )
( )



 
j já ñ =

+
-

+

+ -

⎜ ⎟⎛
⎝

⎞
⎠

p

p

2 1

2 1 1
1

1
. 22I

p
F

p p1

3

2

p p3
2 4

1
2

Using this expressionwe can calculate the LE using equation (20) and áSñB using equation (6). The infinite sums
can be evaluated explicitly, and the final expression for the averagework turns out to be exactly four times the
single-atomwork

( )


á ñ =

-
W

1
, 23

2

showing that in this regimework is an extensive quantity aswe have performed a quench of the trap frequency
for two atoms (compare to equation (15))6. This can be further understood from the fact that in the TG limit the
bosons behave as non-interacting fermions [10]. Infigure 2we show the behaviour of ( ) t and áSñB.While the
qualitative behaviour is consistent with the single atom case, we see that the effect of the interactions is to
magnify these features as we nowmust account formany-body effects. In particular we also see the system

6
In the TG limit wefind the averagework scales asN2 times the single atom averagework.

5
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periodically evolves into orthogonal states as the interacting two-body system can bemoved further out of
equilibrium, as evidenced by the vanishing values of LEwhich are already less than 10−2 for  = 6.

4.2. Finitely interacting pair of atoms
When the frequency of the trap is quenchedwhile the interaction strength isfinite, i.e.between the non-
interacting and the TG limit, the resulting complexity requires we use a numerical approach to study the system,
andwe refer the reader to [17, 18] for details of the recipes employed heremust still be performed numerically
such an approach is equivalent to the one used here. The dynamics well characterised by the vonNeumann
entropy (vNE) of the atomic state, which is given by

[ ] ( )r r= -S Tr ln , 24

where ρ is the reduced densitymatrix (RDM) for one of the atoms. Sincewe consider the system to be always in a
pure state, the vNE is a goodmeasure of the entanglement in the system. For finite values of g, quenching the trap
frequency implies also a quench of the interaction strength between the atoms and the evolution of the vNEwill
therefore be determined by a competition between these twomechanisms7. The resulting behaviour is shown in
figure 3 for various values of the quench amplitude and the coupling strength g. For small-amplitude quenches
andweakly interacting atoms (lower blue curve infigure 3(a)) the vNE oscillates, as expected for a quench in a
harmonic oscillator, with an amplitudemodulation due to the effective interaction quench. At larger strengths
of the quench (lower blue curve of panel (b)) this behaviour is stronglymodified. The absolute values of the
entanglement increase, as the systembecomesmore strongly correlated, but there is no longer evidence of
regular oscillations as the spectrumhas become anharmonic due to the interactions. Looking at the spectral
function of the out-of-equilibrium state, ( ) ( )òw c= wA t t2Re e dti [20], we can identify these different
excitation frequencies inherent in the evolution, see figure 4. Themajority of themotion is governed by the
quasi-particle peak at the ground state energy of the quenched state +E AF F

0 0 , and smaller contributions stem
fromcombinations betweenCOMandREL even states at higher energies (there are no contributions from the
odd states). At larger interaction strengths the high energy peaks in the spectral function approach each other, as
the systembecomes doubly degenerate in the TG limit, see figure 4 (b). This causes larger interference effects that
are apparent in the entropy evolution (see the upper red curves infigures 3(a) and (b)). The periodic nature of the
revivals is destroyed for the large quench of  = 5 due to the broadening of the high energy peaks (see inset of
figures 4(c) and (d))which highlights the chaotic dynamics of the strongly quenched state. A clear signature of
interference between theCOMandREL states ismanifested in the appearance of Fano-resonances in the spectral
function, a featurewhich is typical in systemswith two scattering amplitudes which overlap (see all insets in
figure 4) [21].

To evaluate thefinite-time thermodynamics of the system following the quench, we show infigure 5 the LE
for the same parameters as used infigure 3. The periodic nature of the echo is visible for the small quench
( = 2) exhibiting breathing dynamics which are a consequence of the non-trivial energy shifts caused by the
interaction [22–24]. In this case the frequency of the fast oscillations are given by the energy of the dominant
quasi-particle peak in the corresponding spectral functions, which are governed by the ground state energy of
the quenched state. The slower frequency envelope is a consequence of the finite interactionswhich cause a
splitting of the first excited state into a pair of COMandREL states of comparable energy (see inset offigures 4 (a)

Figure 2. (a)Temporal behaviour of the LE of the TGmolecule for increasingly large quenches  = 1.1, 3, 6, 20 (from top to bottom
curve, respectively). (b) Lower bound on the irreversible entropy produced through the quench.We have used the same quenching
amplitudes and colour code as in panel (a).

7
In the TG limit the vNE is constant for all quenches due to the infinite value of the interaction.We remark that S=0.68275 (two particles)

and S=1.0574 (three particles).
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and (b)). The interference of these two states causes the breathing observed in the LE and the difference in their
energy controls the breathing frequency. For the larger quench ( = 5) it is clear that this beating is destroyed
resulting in orthogonality and further destructive interference effects from the contributions of higher energy
states.

In the remainder of this sectionwe concentrate on the behaviour of the irreversible work á ñWirr and its
connectionwith the amount of entanglement created between the two atoms and the amount of work

Figure 3. (a)Evolution of the vNE following a quench of the trap frequency against the dimensionless time w t2 for  = 2 and two
values of the coupling strength. The red (blue) curve is for g=20 (g= 1). (b) Same as panel (a)with  = 5.

Figure 4. Spectral function for  = 2 with (a) g=1 and (b) g=20, and for the stronger quenchof  = 5 with (c) g=1 and (d) g=20.
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dissipated. To this aim, we calculate themean vNE

( ) ( )òt
á ñ =

t
S S t t

1
d , 25

0

which is time-averaged over an interval τ that is long enough to includemany periods of oscillation. Infigure 6
we show a clear qualitative link between á ñS and both á ñW and á ñWirr .Wefind all quantities follow the same
qualitative behaviour (predominately linear, although exhibiting a slight systematic curvature) as a function of
the interaction strength, thus suggesting a causal link between these figures ofmerit. This is intriguing as it
evokes a possible cost function-role played by the thermodynamic irreversibility in the establishment of
quantum correlations within an interacting system.

It is worth noting that a number of recent works havemanaged to establish a rigorous link between the
appearance of correlations (both quantum and classical) and the associated thermodynamic cost [25] (albeit
applying a separate formalism to the one considered here), that is complementary to our analysis. Indeed, our
results suggest a significant role for thermodynamicwork in the establishment of quantum correlations between
the atoms. Such a connection has previously been highlighted in the context of spring-like coupled bosons, but it
was limited toGaussian states and quadratic evolutions [26]. Our results go significantly beyond these
restrictions as they address the case of contact-like bosonic interactions, which are highly experimentally
relevant. In the followingwewill use this study on two coupled bosons as a benchmark for contact-like couplings
amongmultiple atoms.

5. Three trapped atoms

Wenow extend theHamiltonianmodel addressed so far to themore complex case of a one-dimensionalmixture
of two identical bosons of the same species X, whose coordinates will be indicated as x1 and x2, and one impurity
atomof a different species Y, with coordinate y.We assume that all atoms have the samemassm and are trapped
with the same oscillator frequencyω. The interactions are of contact form and characterised by the intra- and
inter-species coupling constants gX and gXY. In this situation, theHamiltonian reads

Figure 5. LE for  = 2 with (a) g=1 and (b) g=20, and for the stronger quench of  = 5 with (c) g=1 and (d) g=20. Each lower
panel shows amagnified version of the evolution.
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( ) ( ) ( ) ( ) ( ) å åd d= - ¶ - + ¶ - + - + -
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where the dimensionless coordinates are defined by rescaling energies and coupling rates as above. Note that the
eigenfunctions of equation (26) have to be symmetric with respect to the exchange of theX bosons, but no
symmetry restriction for the interchange of the X atomswith the Y atom exists. A detailed study of the forms and
properties of the eigenstates ( )Y x x y, ,1 2 of equation (26), focusing on the degeneracies of the spectrum, is given
in the supplementarymaterial.

The RDM for the single atoms can be calculated by taking the partial trace of the state of the three-atom
systemover two of the atoms and is given for one of theX atoms by

( ) ( ) ( ) ( ) ( ) ( )ò år y y l¢ = ¢ = ¢x x x y x x y x x y f x f x, d d , , , , . 27
k

k k k
X

2 2 2
X X X

Analogously, for the impurity atomof species Y, we have

( ) ( ) ( ) ( ) ( ) ( )ò år y y l¢ = ¢ = ¢y y x x x x y x x y f y f y, d d , , , , . 28
k

k k k
Y

1 2 1 2 2 2
Y Y Y

Here the functions f
k
X,Y are the natural orbitals that diagonalise the RDMswith natural orbital occupations lk

X,Y.
The vNEof the impurity or of one of the atoms of species X can then be calculated as

( )ål l= -S ln . 29
k

k k
X,Y X,Y X,Y

Asmentioned previously, for anyfinite interaction strength, a quench in the trapping frequency results in an
effective change of the interaction strength.While for the trappedmolecule a quench of either parameter led to
the same behaviour, the presence of two coupling constants in the current system complicates thematter. In
order to clearly identify the role atomic interactions play in the dynamics, we therefore restrict ourselves in the

Figure 6.Time-averaged vNE versus (irreversible)work done on the systemof two trapped bosonic atoms subjected to a quench of the
trapping frequency. In all panels each point represents the value taken by the pair at a set value of g. The (black) straight lines show the
result of a linearfit of the data points. Panel (a) shows the behaviour of á ñS against á ñW and panel (b) shows the behaviour of á ñS
against á ñWirr for  = 2. Panels (c) and (d) are for  = 5.
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following to quenching the interaction strengths directly. It is worth noting that, when8 = =g g 0X XY or
= » ¥g gX XY , the behaviour of the three-atom system is qualitatively the same as the single and two atom

cases, respectively.
For our two-component system there are in principle five different strategies for quenching the coupling

constants ( )g g,X XY , but in the followingwewill focus on just two strategies as illustrated infigure 7, as these
encompass themost relevant features of the thermodynamic properties of the system (see appendix A for a
discussions of the other strategies)

( ) ( )
( ) ( )




g g

g

A: 0, 0 , ,

B: 0, 0 0, .

The energy spectra corresponding to the adiabatic version of these quenches are shown infigure 8 [27–30] and
the visible differences are directly related to the distinct outcomes of the particular quenching protocols. The
spectrum for situations adhering to strategy A shows the emergence of three-fold degenerate states in the limit of
infinite interaction strengths, while in the same limit strategy B leads to a two-fold degeneracy. The differences
among these energy spectramake it clear that each quenching protocol provides distinct thermodynamic and
density evolutions, whichwewill discuss below.Wewill show that both the entanglement and the
thermodynamical quantities of interest are strongly affected by the chosen quenching strategy andwe highlight a
link between these quantities and the behaviour of the atomic density profiles.We remark that a consistent
feature of all results is the periodic nature of these functions, which is due to the gas refocussing in its external
harmonic oscillator potential at approximatemultiples of the trap frequency.

5.1. Thermodynamic quantities
For strategy A the behaviour of the vNE is shown infigure 9(a). It is worth noting that the behaviour for this
quantity is the samewhether twoX atoms or oneX and one Y atom are traced out. This can be understood by
realising thatwhen quenching the two coupling constants to the same value, the systembehaves as one
composed of three indistinguishable atoms. It indicates that only the energy levels that both systems have in

Figure 7. Sketch of the two different quenching strategies, A andB, considered for the three-atom system.

Figure 8.Energy eigenspectra for the quenches A, (*)which denotes a quench of the interaction between three indistinguishable
bosons, and quenchB. The situationA, where symmetric scattering between two of the atoms is required (and absent for the scattering
with the third atom) should be compared to (*), where the existence of a symmetry condition between all atomswas assumed.
In situation B all symmetry requirements are absent and therefore exhibits a unique energy spectrum.

8
In our simulations g=20 is large enough to effectively reach the TG limit.
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common are affected by the quench and there is no difference between the respective RDMs. Amore formal
argument using group theory is presented in appendix B.We can also see that the entanglement increases with
the amplitude of the quench and that dips appear with a periodicity close tomultiples of the trapping frequency.
These aremore harmonic and narrower when the system is quenched close to the TG regime (g= 20), as it can
then bemapped onto non-interacting fermions. Infigures 9(b) and (c)we show the evolution of the vNEs for
strategy B, which nowdiffer for the atoms of different species. Again, the vNE grows for stronger quenches, but
the periodic dips are less pronounced compared to the ones observedwith strategy A. This is not surprising, as
the spectrum for this situation is denser and thereforemore states contribute to the evolution, whichmakes
perfect refocussing less likely.

The LEs following the quenches are shown infigures 10(a) and (c) and, similar to the behaviour of the vNE
above, they display regular revivals, whose periodmoves closer to the harmonic oscillator time scale ofmultiples
of w pt for large quench amplitudes (when the system is quenched to the TG regime). The different behaviours
for each quench aremost clearly visible by looking at the behaviour of the LE around the revivals. Let us first
discuss quenches into the TG regime, for which the LE always displays a periodicity. For strategy A the revivals
have a period w pt , which is due to the evolution being governed by the energy differences between the
quenched states and the initial state,D = ¢ - =E E E qn 0 , where q is an integer as the trapping frequencies do
not change. For case B, the LE ismore varied and shows periodicities with w pt4 and w pt2 . This is a

Figure 9. (a)Evolution of the vNE after a quench of type A,where gX and gXY are quenched from0 to 2 or to 20 (black and red curve,
respectively).This quantity is equal for either species. (b) and (c)Entropies SX and SY for =g 0X with gXY quenched to 2 or 20 (black
and red curves respectively) following the quenching strategy B.

Figure 10.Temporal behaviour of the LE for the different quenching strategies. (a)QuenchAwith = =g g 2X XY (black), 6 (blue), 20
(red); (c) quench Bwith =g 2XY (black), 6 (blue), 20 (red) and =g 0;X panels (b) and (d) show the corresponding averagework (solid
black lines) and irreversible work (dashed blue lines) for such quenches, with the insets showing the free energy change DF against the
quenching amplitude.
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consequence of the symmetry considerations discussed in the supplementarymaterial, which results in energy
differences (a combination of integer and half integerDE) for strategy B. Forweaker quenches, <g 20, the LEs
show complex temporal patterns which is a sign that the energy spectrum is not as degenerate as in the TG limit.

The correspondence between the LE and the characteristic function of thework distribution allows us to
evaluate the averagework done on the system as a result of the quench (seefigures 10(b) and (d)). Quite
interestingly, we find that á ñW depends linearly on the quenching strength in both settings, while the irreversible
work á ñWirr produced in such non-quasistatic processes behaves linearly only at larger values of the quench
amplitude. This arises from the impossibility of the system to generate increasing amounts of ‘useful’work as the
strength of the couplings grows. Indeed, the free energy differenceD = D = ¢ -F E E E0 0 (see insets of
figures 10(b) and (d)), levels off at large values of the interaction strengths, showing that the system soon
saturates its capabilities to producework that can be usefully extracted. Large quenching amplitudes are thus
associatedwith an increasing degree of irreversibility. These considerations allow us to identify an optimal
configuration of quenching, associatedwithmoderate quenching amplitudes, that without requiring
sophisticated control techniques is able to attain themaximumallowed useful workwithout generating an
unbounded amount of thermodynamic irreversibility.

The lower bound of the average irreversible entropy produced as a result of the quenches is shown in
figures 11(a) and (b) and it is apparent that áSñB closely follows the same temporal trend as . This is not
surprising, given that for a time-independentHamiltonian and a systemprepared in the ground state of the
initialHamiltonian, the LE coincides with the state fidelity, and the latter directly enters the definition of the
Bures angle. Infigure 11(c)we show a qualitative link between the behaviour of the LE and the single atom
density of the system. The visible regular dependence suggests the possibility that the behaviour of
thermodynamically relevant quantities, such as the irreversible entropy production, can be inferred from
experimentally accessible figures ofmerit such as the density profile, whichwewill explore in the next section.

5.2.Density evolutions
The evolution of the density profile after quenchA for two different strengths is shown infigure 12 andwe note
that, as expected, the profiles obtained from the RDM forX andY are identical.We can see that the system is
localised around x=0 and oscillates at a frequencywhich depends on the strength of the quench. In fact, these
oscillationsmirror the appearance of the dips in the vNE and the peaks in the LE (see figures 9(a) and 10(a)). A
larger amplitude of the quench leads to narrower revival peaks, which again corresponds to tighter dips (peaks)
in the vNE (LE).

For the situation of strategy B,where =g 0X and gXY is quenched, it was shown above that the LE and the
vNE show complex dynamics for small quench values. As the two species are distinguishable in this case, we
show infigure 13 the density evolutions for an atomof species X andY separately. For small gXY, the density
profile for species X remains localised in the centre of the trap, while the impurity can spread to the edges of the
distribution for the X atoms, forming a double peaked structure at certain times [27]. The intrincate structure of

Figure 11. Lower bounds of the dynamical irreversible entropies producedwith the different quenching strategies. (a)QuenchAwith
= =g g 2X XY (black), 6 (blue), 20 (red); (b) quenchBwith =g 2XY (black), 6 (blue), 20 (red) and =g 0;X In panel (c) the density at

the centre of the trap = ¢ =x x 0 of one of the atoms of species X can be seen as a function of the dimensionless time and the LE for
quenching strategy A,with g=2.
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the LE in this case can be related to the irregular temporal evolution of the Y atom compared to themore
periodic oscillations of theX atoms.However for larger gXY, the periodicity of the evolution becomesmore
regular for both species as the energy structure becomesmore degenerate, resulting in complementary trends
visible in the corresponding vNE and LE (see figures 9(c) and (d) and 10(c)).

A connection between the dynamics of the density profile and the evolution of thermodynamically relevant
quantities would allow insight into thefinite-time thermodynamics of non-equilibriumprocesses without
requiringmeasurements of hard-to-access variables [4]. In particular,figure 11(c) highlights the possibility of
post-processing data acquired on the density profile at the centre of the trapwithin one period of the evolution to
infer the corresponding value taken by the LE.

6. Conclusions

Wehave studied the finite-time thermodynamics of a small-sized gas of interacting bosonic atoms subjected to a
sudden quench of theHamiltonian parameters. By first reviewing the out-of-equilibriumdynamics of a
quenched single atomwe have confirmed that larger quenches lead to larger amounts of entropy produced
which implies an increase in the amount of work and irreversible work injected into the system.However, the
systemonly appears to evolve into an orthogonal state when the quench is infinitely large. For the two-atom case
we have investigated the interesting role that particle interactions play. In particular, starting from the
analytically tractable TG regime, we noted that for such infinitely repulsive bosons, the strong interaction
enhances the entropy production and the system can now exhibit full orthogonality.We also established the
extensive nature of work in this system. For finite interactions between the atoms, we have shown a clear
qualitative link between the amount of (irreversible)work performed on the system and the increase in the
degree of inter-atomic entanglement.Moving into themultipartite case, and despite the significant increase in

Figure 12.Evolution of the density profile ( )r xX for a quench of strategy A for (a) g=2 and (b) g=20.

Figure 13.Density evolution of the twoX atoms ((a) and (b)) and the impurity Y ((c) and (d)) for quenching strategy Bwith =g 0X
and gXY quenched to g=2 and g=20 (top and bottom rowof plots, respectively). Same colour-scale as infigure 12.
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the complexity of the problem (as evidenced by the range of inherently different dynamics and sprectra
observable simply by altering the initial interaction strengths), we have highlighted that the qualitative features
of the two particle case appear to persist, i.e. the initial interactions strongly dictate the dynamical features.
Finally, we have shown that the behaviour of the atomic density profile of a single atom can be a useful tool in
exploring the non-equilibriumproperties of a system, even in the case of complexmultipartite systems.
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AppendixA. Analysis of other quenching strategies

While in themain bodywe focused on two quenching strategies for the 3-atom system, in this appendixwe
briefly address the remaining protocols for quenching the coupling constants ( )g g,X XY which are shown in
figure A1:

( ) ( )
( ) ( )
( ) ( )


¥  ¥

¥  ¥

g

g

g

C: 0, 0 , 0 ,

D: 0, , ,

E: , 0 , .

In strategyC the interaction between the two species remains zero. Thus the impurity atomY acts as a spectator
only, and qualitatively this scenario is identical to the analysis presented in section 4. Furthermore, strategy E
corresponds to a TGmolecule suddenly interactingwith an impurity atomwhich has been extensively studied in
[8]. Therefore, wefinally comment on strategyD,which shares several features in commonwith strategy B,with
the important distinction that the atoms are initially interacting at <t 0, and thereforemany natural orbitals
have non-zero occupation even before the quench [27, 31, 32].

The dynamical behaviour of the vNE for strategyD is shown infigures A2(a) and (b). As the interaction
between the two species is already large at the beginning, the initial values of the correlations are nowfinite and
the quench increases them to a similar level as in the cases considered in themain text. Similarly, periodic dips
appear again around the refocussing time of the harmonic trap. Figure A3(a) shows the LE that, similar to
strategy B, exhibits periodicities around w pt4 and w pt2 due to the energy differences ofD = +E q 1 2.We
see frompanelfigure A3(b) the behaviour of the average (irreversible)work and free energy are qualitatively the
same as for strategy B.

Figure A4 shows the evolution of the density profile for a quench of gX taken from0 to a value that is either
much smaller than gXY, or comparable to it. The phenomenology is strikingly different for both cases. For
g gX XY the density profile for the X atoms is peaked at centre of the trap, while the impurity Y has a double-

peak structurewhich is localised at the sides of the density of X. This distribution shows only aweak temporal
change and the separation ismaintained, which corresponds to theflat vNE of the individual species (see figures
A2(a) and (b)). The case inwhich thefinal value of gX is comparable to the inter-species coupling rate shows
more pronounced temporal oscillations, which are also seen in the behaviour of the vNE. The atomic species are
strongly correlated regardless of the strength of the quench.However, large quenching amplitudes result in dips
of the vNE at the refocusing time of the density profile that aremuch less pronounced than those occurring at
smallfinal values of gA.
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Figure A1. (a) Sketch of the three other quenching strategies considered for the three-atom system. The quenches D and E could in
principle lead to the same final values for gX and gXY. (b)Corresponding energy eigenspectra for these systemswith different scattering
symmetry requirements. The sprectra relating to quench Efixes the intra-species coupling strength, gX , and changes the inter-species
coupling strength, gXY, while for the spectra C andD the opposite is the case. In situationC only scatteringwith a symmetry
requirement is present and it should therefore be comparedwith situation Bwhere all symmetry requirements are absent. Finally,
in situationD the symmetric scattering isfixed and the scatteringwithout the symmetry condition is varied, which should be
compared to the situation Ewhere the opposite is the case.

Figure A2. (a) and (b)Entropies SX and SY following the quenching strategyD,where =g 20XY and gX is quenched from0 to 2 or 20
(black and red curves respectively).

Figure A3. (a)Temporal behaviour of LE forQuenchDwith =g 2X (black), 6 (blue), 20 (red) and =g 20;XY panel (b) shows the
corresponding averagework (solid black lines) and irreversible work (dashed blue lines)with the inset showing the free energy change
DF against the quenching amplitude.We remark that the irreversible entropy behaves qualitatively similar to LE.
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Appendix B. Comparisonwith indistinguishable atoms

It is also interesting to compare the evolution of the density, the vNE, and occupation of the natural orbitals
shown infigures 9 and 12with that of a systemof three indistinguishable atoms. The energy spectrum for such a
system is shown infigure 8 (*), and clear differences from that of two atoms plus a third distinguishable one are
visible. In the latter case triple degenerate states occur in the limit  ¥g g,X XY (seefigure 8 quenchA) and a
discrete group theory analysis presented in [27, 33] showed that these three degenerate states belong to different
irreducible representations of the group. The discrete group towhich these solutions belong is the discrete
rotational group of order 2, 2, restricted by the bosonic symmetry under interchange of the two
indistinguishable atoms. Indeed, for allfinite values of the coupling constants, all wave functions can be
classified according to the possible irreducible representations of this group. In [27] it was shown that the ground
state for the three indistinguishable atomswas the same as the 2+1 case for all values of = =g g gX XY. This is
not too surprising, as these solutions obey all symmetries under interchange of two atoms required by the three-
indistinguishable atomswhich coincide with the ones required by the corresponding irreducible representation
of the group in the 2+1 system.

By comparing the dynamical evolution of the density, the vNE, and the occupations of the natural orbitals
for a systemof three-indistinguishable atomswith the 2+1 setting, we find that they all coincide. The reason
for this is that the initial state is a non-interactingGaussian state with certain symmetries, which corresponds to
the absence of a change in the sign of thewave functionwhen any pair of atoms interchanges their coordinates.
Therefore it belongs to a definite irreducible representation of the 2, restricted by the bosonic symmetry under
the interchange of the twoX atoms [27]. If the systemhas this symmetry initially, the dynamical evolution has to
conserve it, so only part of the energy spectra in the 2+1 case plays a role in the evolution. This part of the
energy spectra is exactly the same as in the case of three indistinguishable atoms.
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