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We propose a mechanism for testing the theory of collapse models such as continuous spontaneous
localization (CSL) by examining the parametric heating rate of a trapped nanosphere. The random
localizations of the center-of-mass for a given particle predicted by the CSL model can be understood
as a stochastic force embodying a source of heating for the nanosphere. We show that by utilising a
Paul trap to levitate the particle and optical cooling, it is possible to reduce environmental decoher-
ence to such a level that CSL dominates the dynamics and contributes the main source of heating. We
show that this approach allows measurements to be made on the timescale of seconds, and that the
free parameter λcsl which characterises the model ought to be testable to values as low as 10−12 Hz.

Dynamical reduction models – better known as col-
lapse theories – seek to resolve the measurement prob-
lem by inserting a non-linear stochastic term in the
Schrödinger equation (SE). This would account for gen-
uine collapses of superposition states. In these theories,
‘localisation’ events occur at a frequency scaling with
the mass of the system at hand. These are fundamen-
tally different to environmental decoherence [1], and are
invoked as the origin of wavefunction collapse. Such
modifications to the SE aim to provide a theory capable
of describing phenomena at all scales, and are designed
to reproduce conventional quantum mechanics (CQM)
when dealing with small masses, and classical mechan-
ics at the macroscopic scale.

One of the most celebrated models of dynamical re-
duction is the Continuous Spontaneous Localization
(CSL) model [2]. It is characterised by two parameters:
a length rc, and a frequency λcsl. The former provides
a length scale above which reduction effects would be
relevant, the latter embodies the rate at which spatial
superpositions of a single nucleon separated by a dis-
tance greater than rc would collapse. While rc is gener-
ally taken to be ≈ 100 nm, the value of λcsl is the subject
of uncertainties [3–5] and is currently taken to span a
range from 10−16 Hz [2] to 10−5 Hz [6]. A value of
10−8±2 Hz has been proposed [7], based on the process
of image formation on photographic film. The heating
rate of ultracold atoms was used to set a value of 10−7

Hz [8], while the maximum allowable heating rate of
the intergalactic medium seems to be compatible with
10−10±2 Hz [9].

The effects of localization are mathematically very
similar to those of decoherence [10], meaning that any
experiment built to search for a signature of such a col-
lapse mechanism must minimize the effects of decoher-
ence as much as possible so as to better distinguish the
hallmark of the former from that of the latter. However,
for a given object, both its rate of localization and de-
coherence will increase proportionally to mass. To test
collapse we must study objects large enough to have an

appreciable localization rate, yet small enough that de-
coherence does not dominate the dynamics. The scale at
which this becomes possible is the so-called mesoscopic
one, the liminal scale between the well established quan-
tum and classical regimes. Recently, Nimmrichter et al.
have shown [11] that beyond a certain size collapse ef-
fects have a sub-linear scaling with size, a result which
we corroborate here, and which clearly identifies the
regime of interest.

Lately there have been a considerable number of pro-
posals to test collapse theories, and the challenge of re-
ducing decoherence manifests itself differently depend-
ing on the scheme [12–15]. Unfortunately many pro-
posals do not include detailed analyses of conventional
environmental noise, and as such, it is not clear what
range of values of λcsl they could probe. Matter-wave
interferometric methods are an attractive means for such
tests with a well established range of testable values of
λcsl [16]. Such settings, however, require the preparation
and detection of many identical particles, which makes
implementation challenging. Optomechanical propos-
als [19] are attractive in comparison, because they in
principle require only a line shape measurement of the
light scattered by an intra-cavity macroscopic oscillator,
and do not require ground state cooling. However, as
such line shape would be narrow (order of µHz) very
long times (in excess of months) would be required for
the measurement. A recent proposal has been made
based on dynamical decoupling [20], which is promis-
ing but may also be constrained by long testing times.

The concept of utilising the energy gain of a harmonic
oscillator to test CSL was first suggested by Adler [21]
and more recently re-examined in Refs. [22–24]. Whilst
this method is relatively straightforward and therefore
attractive for implementation, the ability to test for CSL
is very dependent on a detailed and realistic inclusion of
conventional decoherence mechanisms. In order for the
classical approach put forward, for instance, in Ref. [24]
to be effective, the collapse mechanism must be able to
induce the excitation of a rather substantial number of
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FIG. 1. Schematic of the experiment, in which the particle is
levitated by the electric field of the Paul trap, and cooled by
the optical cavity.

thermal phonons in a given oscillator. This is, in general,
not the case for a large range of values of the parameters
that characterize a given collapse model and such ap-
proaches can only assess the largest of their conjectured
values.

In this paper, we propose an experimentally viable
way to explore CSL on the mesoscale by utilising a
cavity-cooled, single-charged nanosphere trapped in a
Paul trap [26]. Measurements can be made with a sin-
gle trapped particle in less than 100 seconds and, un-
der optimal conditions, we find this scheme capable of
probing λcsl to values as low as 10−12 Hz, thus going
significantly beyond the literature reported so far. Most
importantly, our protocol allows for the discrimination
between collapse effects and mis-characterised conven-
tional noise ones– a challenge which has to our knowl-
edge remained unaddressed so far.

We explore the possibility for an optomechanical test
of a form of CSL described in Ref. [10, 11, 19], in which
the effects of spontaneous localization are modelled as
a delta-correlated stochastic noise source wt. This ap-
proach is valid when the scale of spatial-superposition
separations is less than rc. The noise term wt will oc-
cur in the dynamical equations of the system as an extra
Langevin force [19, 25]. Its effect on the dynamics of
a mechanical oscillator would depend on the size and
density of the object collapsing, and the two parame-
ters rc and λcsl characterizing the model. Conveniently,
we can represent the effects of the localization process
via a diffusion operator characterised by the coefficient
Dcsl and appearing in the master equation describing
the particle in the same way as conventional heating
sources. The diffusion coefficient takes the form [11]

Dcsl =
h̄

mωm

λcsl

r2
c

α, (1)

where α is a geometry-dependent factor, which for a
sphere is given by

α =

(
m

m0

)2 [
e−R

2/r2c − 1 +
R2

2r2
c

(e−R
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]
6r6

c
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Here m0 = 1 amu and R is the sphere’s radius.
The Protocol.– We now describe the scheme that we pro-
pose to test the CSL model. We levitate a charged
nanosphere in a hybrid trap consisting of a Paul trap
and an optical cavity, and use them to cool its motion
to a temperature corresponding to a low occupation
number. We then turn off the optical field (and hence
the cooling) and let the dynamics evolve for a certain
amount of time before measuring the energy of the os-
cillator again. A model including the effects of CSL pre-
dicts it will have heated more than one would expect
due to conventional noise sources alone. If the mea-
sured energy matches that predicted by conventional
noise sources, we will have provided evidence against
CSL to within a certain range of λcsl, whereas a higher
measured energy would indicate some other dynamics
at play, in favour of collapse theories.

We divide the procedure into two phases: a cooling
phase, and free evolution. For the purpose of testing
CSL, it is the second phase that is important. In this
period of free evolution the nanosphere is levitated us-
ing a single electric potential, which could be provided
by a number of generic trap architectures. The mecha-
nism of cavity cooling for nanoscale objects is well es-
tablished [13, 26–37], and relies on having the particle
sit in two potential wells: one of which traps, and one
(or both) of which cool. Though these potentials are tra-
ditionally provided by an optical cavity populated with
two distinct optical fields, Ref. [18, 26] shows that cool-
ing is possible using a Paul trap in conjunction with a
single-mode optical cavity. While both these systems
are required for the cooling phase, the Paul trap alone
suffices to levitate it.

This is appealing, because in the low pressure sce-
nario of a particle levitated solely by optical fields the
dominant source of heating is the scattering of cavity
photons [32]. By using a hybrid trap we can cool the
particle to a desired temperature and then turn off the
optical field completely, leaving the particle suspended
in the Paul trap alone. This ability to turn off the opti-
cal field without ‘losing’ the particle means that we can
do away with what would otherwise be the dominant
cause of heating – optical scattering – and thus greatly
reduce the conventional heating sources that would oth-
erwise mask the CSL effects.

We emphasize that although we require cooling, we
do not need to achieve the ground-state energy. Indeed,
the simple comparison between the initial phonon num-
ber n0 and the final one nf after the period of free evo-
lution will give us information on the heating rate [17].

The period of free evolution is governed by the
Hamiltonian Ĥ = Ĥ0 + Ĥ ′, where Ĥ0 = h̄ωmâ

†â, ωm is
the secular frequency of the Paul trap, â†, â are the cre-
ation and annihilation operators for the centre of mass
motion of the sphere respectively, and H ′ represents the
interaction between system and environment. We can
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then solve the master equation ρ̇ = −(i/h̄)[Ĥ, ρ] for the
oscillator [41]. The forms of coupling to noise sources in
H ′ determine their effects on the master equation [35].
We have explored each noise source in detail, examin-
ing collisions with the background gas, blackbody ra-
diation, acoustic noise affecting the trap, Johnson and
patch potential noise from the electrodes, micromotion
from the trap’s driving frequency, and anisotropy of the
sphere [17]. We group these noise sources as momentum
diffusion, occurring at rate Dp, position diffusion at rate
Dq, and momentum dissipation at rate Γ, thus getting
the dynamical equation [41]

ρ̇ = − i
h̄

[Ĥ0, ρ]−
2∑

j=1

Dj [X̂j , [X̂j , ρ]]− Γ[Qz, {P̂z, ρ}] (2)

where X̂ = (Q̂z, P̂z) is the vector of quadratures of
the nanosphere Q̂z = â + â† and P̂z = i(â† − â),
and D = (Dp, Dq). Our analysis of the various noise
sources, including the possible effects of anisotropy of
the nanosphere (and the consequent non-uniform dis-
tribution of the charge) finds all but gas collision and
blackbody radiation to be negligible [17], giving us Γ =
(γgas+γbb,e+γbb,a)/4 andDp = Dgas+Dbb+Dcsl, where
Dcsl is given in Eq. (1) and

Dgas =
γgkBTenv

2h̄ωm
, Dbb =

kB(γbb,eTint + γbb,aTenv)

2h̄ωm
.

(3)
Here, γgas, γbb,e, γbb,a are the damping constants related
to gas collisions, blackbody emission and blackbody ab-
sorption respectively. The environmental temperature is
Tenv, ωm is the mechanical frequency of the nanosphere,
and m is its mass.
Heating Rate of a Trapped Particle.– The mean occupation
number (phonon number) of the trapped particle as a
function of time 〈n〉t is determined via Eq. (2). Assum-
ing a thermal state [27, 35, 39], the expression for the
rate of change of the average phonon number simplifies
to 〈ṅ(t)〉 = −Γ〈n(t)〉+Dp, which has the solution

〈n(t)〉 = e−Γt

(
n0 −

Dp

Γ

)
+
Dp

Γ
, (4)

where n0 is the initial average number. In Fig. 2 we plot
the expected mean phonon number over the first sec-
ond of free evolution, starting from an initial number
of n0 = 50, showing the heating when the CSL mech-
anism is included (solid blue line), and when it is not
(dashed orange line). In our case, the diffusive terms in
Eq. (4) dominate over the dissipative, resulting in an ex-
pression that is approximately linear, as seen in Fig. 2.
The inclusion of the CSL mechanism results in a heating
rate of the nanosphere motion of about 2500 phonons/s,
which is in stark contrast with the λcsl = 0 case, where
only ∼ 350 phonons/s are achieved for the parameters
used in our simulations.

Differentiating CSL from Conventional Noise.– If a final oc-
cupation number is recorded that agrees with the model
of λcsl = 0, we interpret it as falsifying a certain range of
λcsl. However, if we measure a higher phonon number,
we can infer that some extra heating process is present,
possibly collapse effects. However, an objection could
be made that the increased heating would more likely
result from mis-characterising the environmental noise
sources present.

Therefore, an important requirement is how to cor-
rectly identify CSL, and distinguish it from other noise
sources. Indeed, this problem is generic to any test of
collapse theories. We can address this problem by mon-
itoring the conventional noise sources, such as black-
body radiation and gas collisions, by varying the associ-
ated parameters and determining the effect they have on
the heating rate. For example, if the heating is strongly
dominated by CSL, then varying the pressure will have
little effect over some range, while a gas-collision dom-
inated process results in an almost linear relation be-
tween pressure and heating rate.

Fig. 3 summarises such behaviours, and displays the
trend followed by the mean phonon number after one
second when varying different parameters for the cases
of λcsl = 10−8 Hz and for λcsl = 0. In Fig. 3 (a), we
examine the effect of varying the background pressure
when we include or exclude CSL. The difference in re-
sponse between the theories is instructive. Without CSL
the effect of an increasing pressure can be seen across the
whole range, whereas for CSL there is a region of im-
munity where CSL dominates the dynamics. Likewise
for the internal temperature depicted in Fig. 3 (b): the
point at which this significantly influences the heating
is different for the two theories. The response to a vary-
ing mechanical frequency also takes a different shape,
as seen in Fig. 3 (c). Most interesting is the effect of a
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FIG. 2. (Color online) Expected phonon number 〈n(t)〉 over
one second with and without collapse effects. We have used
n0 = 50, R = 100 nm, a pressure of10−12 mbar, ωm = 5 kHz,
ρ = 2300 kg/m3, Tenv = 4 K, and an internal temperature of
65 K. The solid (dashed) line is for a CSL mechanism charac-
terized by λcsl = 10−8, (0) Hz, i.e. the Adler value (no CSL
mechanism).
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varying radius shown in Fig. 3 (d). Our findings agree
with those of Ref. [11]: objects must be large enough to
have an appreciable collapse rate, but small enough that
decoherence does not dominate the dynamics in order
for us to observe collapse effects. Such request is met for
R ∈ [10, 100]nm, roughly. For all of these we have com-
pared the Adler value for λcsl = 10−8 Hz with the case of
no collapse effects. However the same differences per-
sist for any chosen non-zero value of λcsl, though being
more pronounced for higher collapse rates.

In order to find the best conditions for testing CSL
it is necessary to numerically optimise all the param-
eters simultaneously. In Fig. 4, we show the range of
λcsl which can be probed for an illustrative set of exper-
imental conditions. We see that, as one would expect,
the testable range depends ultimately upon the condi-
tions that can be achieved, most relevantly the mini-
mum value of both environmental pressure and inter-
nal temperature. The value of the initial phonon num-
ber and evolution time also play a significant role: af-
ter enough time, the phonon ratio will tend to the heat-
ing rate ratio as 〈n(∞)〉csl/〈n(∞)〉qm → 〈ṅ〉csl/〈ṅ〉qm,
where the denominator in each refers to the expected
value when we take λcsl = 0. The time required for
the phonon ratio to approximate the heating ratio in
this way depends upon the initial phonon number and
heating rates. A lower initial phonon number or longer
evolution times would promote each plot in Fig. 4, as a
given set of parameters would be capable of probing a
lower value of λcsl.
Experimental Feasibility. – Charged silica particles of 200
nm have been trapped and cooled to milliKelvin tem-
peratures in a Paul trap using cavity cooling to mil-
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FIG. 3. (Color online) Phonon number after 1s as predicted
by with (blue line) and without (dashed orange line) collapse
effects as we vary the pressure in panel (a), bulk temperature
in panel (b), mechanical frequency in panel (c), and the radius
of the sphere in panel (d). Except where a parameter is under
investigation, we have used the same values as in Fig. 2.
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FIG. 4. (Color online) Each line shows the lowest value of λcsl

which could be tested for a given internal temperature (30 K,
40 K, 50 K, 60 K from top to bottom) as a function of envi-
ronmental pressure. We take the lowest testable value to be
the minimum for which 〈n(100s)〉csl/〈n(100s)〉qm ≥ 1.2 holds
true, meaning that the we must expect the effect of CSL must
cause a heating 20% greater than conventional noise alone
over a period of 100 seconds, from a starting phonon number
of n0 = 50. The sphere radius and mechanical frequency have
been optimised for each individual data point’s temperature
and pressure.

liKelvin temperatures [18] thus demonstrating the key
experimental components required for our proposal.
Pressures down to the 10−11 mbar range and internal
particle temperatures in the 10 K range can be obtained
for this setup using standard cryopumps. An important
component of these experiments is the measurement of
the oscillator energy following parametric heating by
CSL and conventional noise. These can be carried out
by performing a homodyne measurement of position as
a function of time which allows the determination of
mean occupation number. Importantly, the light-cavity
detuning can be non-perturbative during the measure-
ment such that it neither cools nor heats the particle
during this time. This ability to control the cooling rate
also allows us to avoid giving strong kicks to the parti-
cle when we turn off the optical field after the particle is
cooled to the desired energy.
Concluding Remarks.– We have shown that the paramet-
ric heating rate of a trapped nanosphere provides a
viable mean of testing CSL. Central to the success of
this scheme is the minimization of all sources of en-
vironmental decoherence. The two-stage ‘cool and re-
lease’ protocol that we have illustrated allows us to ex-
ploit optical cooling while avoiding problematic scatter-
ing noise that would otherwise dominate the dynam-
ics. We remark that, owing to established techniques
and common experimental settings, the experiment can
be performed rapidly, and is repeatable upon a given
nanosphere. Remarkably, the central experimental set-
up has already been demonstrated [18, 26]. Our scheme
can be used to distinguish CSL from other noise sources
– an essential condition for inferring the existence of
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collapse effects from an experiment. Further, we have
shown that the parameter range of CSL that is testable
using our proposal is broad, and can readily be expected
to probe λcsl = 1010 (λcsl = 10−12 ) using a background
pressure of 10−11 mbar (10−13 mbar) and an internal
temperature of 60 K (20 K). Based on state of the art,
values as low as λcsl = 10−8 could be tested imminently,
and λcsl = 10−12 plausibly in the next few years.
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