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Abstract. A model for positron binding to polar molecules is considered by

combining the dipole potential outside the molecule with a strongly repulsive core

of a given radius. Using existing experimental data on binding energies leads to

unphysically small core radii for all of the molecules studied. This suggests that

electron-positron correlations neglected in the simple model play a large role in

determining the binding energy. We account for these by including the polarization

potential via perturbation theory and non-perturbatively. The perturbative model

makes reliable predictions of binding energies for a range of polar organic molecules and

hydrogen cyanide. The model also agrees with the linear dependence of the binding

energies on the polarizability inferred from the experimental data [Danielson et al

2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203]. The effective core radii, however,

remain unphysically small for most molecules. Treating molecular polarization non-

perturbatively leads to physically meaningful core radii for all of the molecules studied

and enables even more accurate predictions of binding energies to be made for nearly

all of the molecules considered.

Submitted to: J. Phys. B: At. Mol. Opt. Phys.

1. Introduction

Positrons are a useful tool in many areas of science, such as condensed matter physics,

surface science and medicine (see, e.g., [1, 2]). Despite this, there is still much about

their interactions with ordinary matter that remains to be explored theoretically. In

particular, the binding of positrons to matter has been a difficult subject to research

[3]. On the part of theory, this is due to the strong electron-positron correlations

which determine the binding energy and, in many cases, ensure the very existence

of bound states. On the experimental side, positron binding to atoms has not been

verified experimentally, largely due the difficulty in obtaining the relevant species in

the gas phase. On the other hand, for polyatomic molecules a wealth of information is

now available thanks to the special role that vibrational Feshbach resonances play in

positron-molecule annihilation [4].
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Before a positron annihilates with an electron in a molecule, it usually forms a

quasibound state with the molecule by transferring its excess energy into vibrations of

a single mode with near-resonant energy. This leads to pronounced resonances observed

in the positron-energy dependence of the annihilation rate [4, 5]. Using the relation

ǫν = ων − ǫb, (1)

where ǫν is the energy of the resonance due to vibrational mode ν with energy ων ,

experimentalists have now been able to measure values of the positron binding energy

ǫb for over sixty molecules [6, 7]. These measurements led to the construction of

a phenomenological parametric fit of ǫb in terms of the dipole polarizability α and

permanent dipole moment µ of the molecule:

ǫb = 12.4(α + 1.6µ− 5.6), (2)

where ǫb is in milli-electron volts, α is in cubic angstroms and µ is in debyes (D) [8].

An interesting feature of (2) is that the dependences of ǫb on µ and α are both linear.

Although a general increase of ǫb with µ and α is to be expected (since both contribute

to the positron-molecule attraction), there is no obvious reason why the dependences

should be linear. In fact, measurements for some molecules with large dipole moments,

such as acetone and acetonitrile, yielded binding energies more than double the values

predicted by equation (2) [6].

Despite the wealth of experimental data on positron-molecule binding energies,

theoretical developments are somewhat behind. There are few calculations of positron

binding to nonpolar or weakly polar molecules. The zero-range potential model [9, 10]

captured the qualitative features of the binding for alkanes and correctly predicted the

emergence of the second bound state [9]. There were also predictions of positron binding

to the hydrogen molecule in the excited A 3Σu state [11], and configuration interaction

calculations for carbon-containing triatomics (CO2, CS2, CSe2 and weakly polar COS,

COSe and CSSe) [12, 13]. The latter papers reported binding by the two heaviest

species in the vibrational ground state, by CS2 in the lowest vibrationally excited states,

and by other molecules at higher vibrational excitations or upon bond deformations.

In contrast, there is a large number of quantum chemistry calculations of positron

binding with strongly polar polyatomic molecules with dipole moments & 3D. For such

molecules binding is achieved even at the lowest, static-field (e.g., Hartree-Fock) level of

theory. The static-field binding energies, however, are usually quite small, and the effect

of correlations (e.g., polarization of the molecule by the positron) increases the binding

energy dramatically (see, e.g., [14, 15, 16, 17, 18]). Recent configuration interaction

calculations for nitriles, acetaldehyde, and acetone [19, 20, 21] in fact give binding

energies within 25–50% of the experiment, which is quite good, given the complexity of

the system.

The purpose of this article is to present a simple model for positron binding to

polar molecules. For many molecules of interest the dipole moment is dominated by

a single bond (e.g., CN or CO), located at one end of the molecule, with the negative

charge on the terminal atom. Given the positron repulsion from the atomic nuclei, we
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model the molecular potential as a point dipole surrounded by an impenetrable sphere.

Of course, the true size of the molecular dipole is finite, of the order of interatomic

distances. However, for weakly bound positron states, the wave function of the positron

is very diffuse. Its spatial extent is much greater than the physical size of the dipole,

which justifies the applicability of the point-dipole model to weakly bound positron

states. This is illustrated by figure 1, which shows the density for the positron bound

in the dipole field of the acetonitrile molecule (CH3CN). The figure also shows that the

positron is localized in the negative-energy well of the dipole potential and is largely

“unaware” of the true geometry of the molecule. This justifies the hard-sphere model

for the short-range positron repulsion. Quantum chemistry calculations of the positron

density in polar molecules support the picture of a diffuse positronic cloud localized off

the negatively charged end of the molecular dipole [14, 17, 19, 20].

x (
au

)
z (au)

ρ (au)

Figure 1. The density of the positron bound in the field of a point dipole with the

dipole moment µ = 3.93 D of the acetonitrile molecule and repulsive core of the radius

r0 = 1.175 au, with the binding energy of ǫb = 27 meV.

Note that a recent paper [22] combined a hard-sphere repulsive core with the

polarization potential to model positron binding to atoms and nonpolar molecules.

While the two models bear some similarity, the physics of positron binding to neutral

atoms and nonpolar species is very different from that of binding to strongly polar

molecules explored in this work. In the former case, for atoms the positron does form

a spherical cloud, but for molecules the shape of the positron wave function largely

repeats that of the molecule [10], and the spherical repulsive core approximation is hard

to justify. In contrast, for bound states with polar species, the positron resides in the

dipole-generated well to one side of the molecule (see figure 1), and the repulsive core

model looks more appropriate.

The main features of binding by the dipole potential are outlined in section 2.

Applying the model to polar molecules for which the positron binding energies are

known from experiment (section 3) shows that electron-positron correlations have a

large effect on binding. We include these in the form of the polarization potential, first



Effect of dipole polarizability on positron binding by strongly polar molecules 4

via perturbation theory (section 4) and then non-perturbatively (section 5). While this

model may appear to be rather crude, it captures the main physical aspects of the

problem. Owing to its simplicity, it provides a deeper understanding of some of the key

features that have been observed in experiment, including the empirical scaling (2). The

usefulness of such models as a means of obtaining an explanation, and complementary

to heavy numerical computations, was argued well by Ostrovsky, who introduced the

notion of complementarity between calculation and explanation [23, 24].

2. Theory

We model the molecule as an impenetrable sphere of radius r0, with a point dipole of

dipole moment µ fixed at its centre (the origin). The positron experiences point-dipole

potential in the region outside the sphere. Using spherical polar coordinates (r, θ, φ)

and choosing the polar (z-) axis along µ, we have

Vd(r) =

{

∞ for r ≤ r0,

µr−2 cos θ for r > r0,
(3)

where θ is the polar angle, and we work in atomic units (au).

Although (3) is a non-central potential, the Schrödinger equation,
[

−1

2
∇2 + Vd(r)

]

ψ(r) = Eψ(r), (4)

for the positron wave function ψ(r) and energy E can be solved in the region r > r0
using separation of variables. Inserting the ansatz ψ(r) = R(r)Φ(θ, φ) into (4) yields

separate radial and angular equations:

1

r2
d

dr

(

r2
dR

dr

)

+

(

2E − λ

r2

)

R = 0, (5a)

1

sin θ

∂

∂θ

(

sin θ
∂Φ

∂θ

)

+
1

sin2 θ

∂2Φ

∂φ2
+ (λ− 2µ cos θ)Φ = 0, (5b)

where λ is a separation constant. If µ = 0 then (5b) becomes (L̂2 − λ)Φ = 0, where

L̂2 is the squared angular momentum operator. This is just the eigenvalue equation for

the L̂2 operator; the possible values of λ are l(l + 1), where l (the azimuthal quantum

number) is a non-negative integer, and the eigenfunctions are the spherical harmonics

Ylm(θ, φ), where m (the magnetic quantum number) is the eigenvalue of L̂z, and m is

an integer, |m| ≤ l.

For µ 6= 0, l is no longer a good quantum number since L̂2 does not commute with

the Hamiltonian. However, L̂z does commute with the Hamiltonian, and thus m is still

a good quantum number. We must solve the angular equation (5b) to find the new

values of λ. With this information we will be able to solve the radial equation and use

it to investigate the dependence of the binding energy ǫb = |E| on µ and r0.
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2.1. Angular equation

Sincem is a good quantum number, there will be a distinct set of eigenfunctions Φm(θ, φ)

of the angular equation (5b) for each value of m. We expand the unknown functions in

the basis of spherical harmonics, i.e.,

Φm(θ, φ) =
∞
∑

l′=|m|

Cl′mYl′m(θ, φ) (m = 0, ±1, ±2, . . .), (6)

where the Cl′m are unknown numbers. Substituting this expression into (5b), multiplying

across by Y ∗
lm(θ, φ), where l is a non-negative integer such that l ≥ |m|, integrating over

φ and θ and using properties of spherical harmonics (see, e.g., [25]) yields
∞
∑

l′=|m|

Bll′mCl′m = λmClm, (7)

where

Bll′m = l(l + 1)δll′ + 2µ(−1)m
√

(2l + 1)(2l′ + 1)

(

1

0

l

0

l′

0

)(

1

0

l

−m
l′

m

)

, (8)

and the arrays in parentheses are 3j symbols. The eigenvalue λ has been renamed λm
since it will have different sets of values depending on m. Equations (7) are a set of

matrix eigenvalue equations for the semi-infinite, symmetric, tridiagonal matrix Bll′m,

whose rows and columns are enumerated by l and l′, respectively. Each of these matrices

has a countably infinite set of eigenvalues, so we rename λm as λms, where s = 1, 2, 3, . . .

enumerates the different eigenvalues for eachm, and the eigenvalues are arranged so that

λm1 < λm2 < λm3 < . . .. Symmetry properties of the 3j symbols can easily be used to

show that Bll′,−m = Bll′m, and so (7) need only be solved for m ≥ 0.

We seek bound states of the positron. From the form of the radial equation (5a)

it can be shown that for λms < −1
4
there will be an infinite number of bound states,

while for λms > −1
4
there will be none [26] (see section 2.2). Given a certain value of

µ and of m, by truncating the infinite matrix Bll′m to a finite size (where the final row

and column are denoted by l = l′ = lmax), we can find numerical approximations for the

first lmax − |m|+1 values of λms. Table 1 and figure 2 show how λm1, λm2 and λm3 vary

with µ for m = 0 and m = ±1. Values of lmax shown in the last column of table 1 are

chosen so that the eigenvalues are correct to at least six decimal places.

Considering the eigenvalues λms as functions of µ, for each combination of m and s

there is a critical dipole moment µcrit for which λms = −1
4
. Some of these critical dipole

moments are shown in table 2; they agree with the values obtained by Fermi and Teller

[27] and Crawford [28]. The condition µ > µcrit guarantees binding by either a point-like

or finite dipole. The smallest critical dipole is µcrit = 1.625D for m = 0, s = 1. Since

typical molecules have dipole moments not exceeding 11D, i.e., up to 4.3 au, the only

possible bound states are those corresponding to m = 0, s = 1 and m = ±1, s = 1. The

critical value of µ needed to sustain any other bound state is simply too high.

It must be mentioned that the above considerations apply to binding by the

static dipole, i.e., assuming that the molecules cannot rotate. When rotations are
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Table 1. Values of λms for m = 0, ±1, s = 1 , 2, 3 across a range of values of the

dipole moment µ. The values of lmax needed for stability to six decimal places are also

shown.

|m| µ (au) λm1 λm2 λm3 lmax

0 0 0.000 000 2.000 000 6.000 000 2

0 2 − 1.704 857 2.602 337 6.412 828 7

0 4 − 4.519 910 2.263 955 7.444 429 8

0 6 − 7.616 374 1.031 162 8.141 444 9

0 8 −10.856 049 −0.662 826 8.138 189 10

0 10 −14.186 766 −2.640 671 7.597 027 10

1 0 2.000 000 6.000 000 12.000 000 3

1 3 0.489 539 6.153 928 12.285 114 8

1 6 − 2.675 243 5.535 499 12.865 402 9

1 9 − 6.481 474 3.913 801 13.078 672 10

1 12 −10.628 924 1.630 021 12.620 576 11

1 15 −14.995 686 −1.093 056 11.558 712 12

0 2 4 6 8 10
Dipole moment µ (au)

2
0

6

-5

-10

-15

λ0s

-1/4

(a)

0 5 10 15
Dipole moment µ (au)

-10

0
2
6

12
λ±1s

-1/4

(b)

Figure 2. Dependence of the eigenvalues λm1 (purple circles), λm2 (red squares)

and λm3 (blue triangles) for (a) m = 0 and (b) m = ±1, on the dipole moment µ.

Intersections with the dashed lines (λ = −1/4) give critical dipole moments µcrit.

included, the values of µcrit required for the dipole binding to occur are 10-30% greater

[29]. This gap depends on the moment of inertia of the molecule and increases with
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Table 2. Critical dipole moments required for various bound states of the positron,

along with the values of lmax required for stability to 10−6 au.

|m| s µcrit (au) µcrit (D) lmax

0 1 0.639 315 1.625 4

0 2 7.546 956 19.182 10

1 1 3.791 968 9.634 8

1 2 14.112 115 35.869 12

2 1 9.529 027 24.220 10

the molecular angular momentum, being smallest for large, slowly rotating molecules.

Another consideration important for ab initio quantum-chemistry calculatons of binding

is that for the values of µ only slightly exceeding µcrit, the binding energy is very sensitive

to the actual value of the dipole moment (see figure 3 in section 2.3). The actual value

of the dipole moment depends on the approximation used (e.g., Hartree-Fock), and can

be a significant source of error [30]. However, both the effect of molecular rotations and

the sensitivity to the value of µ are offset by the large contribution of electron-positron

correlations to the positron binding (see sections 4 and 5).

2.2. Radial equation

Under the substitution

R(r) =
Z(kr)√
kr

, (9)

where k =
√
2E, the radial equation (5a) yields the following differential equation for

Z(kr):

(kr)2
d2Z

d(kr)2
+ kr

dZ

d(kr)
+

[

(kr)2 −
(

λms +
1

4

)]

= 0. (10)

This is just Bessel’s differential equation. Since for bound states we have E < 0, i.e.,

E = −|E|, it is best to express the general solution in terms of modified Bessel functions:

Zms(kr) = AmsKiβms
(κr) + BmsIiβms

(κr), (11)

where the subscripts m and s have been added to Z because there is a distinct function

for each combination of m and s, Ams and Bms are arbitrary constants, κ =
√

2|E|, and

βms =

∣

∣

∣

∣

λms +
1

4

∣

∣

∣

∣

1/2

, (12)

and λms < −1
4
is assumed. Equation (9) then gives

Rms(r) = Ams
Kiβms

(κr)√
κr

+ Bms
Iiβms

(κr)√
κr

. (13)

For the bound-state wave function to be normalizable we must require Rms(r) → 0

as r → ∞. It can be seen from the asymptotic forms of the modified Bessel functions
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(see, e.g., [31]) that Iν(x)/
√
x → ∞ as x → ∞, while Kν(x)/

√
x → 0 as x → ∞,

assuming that x is real. We therefore require Bms = 0 for every m and s, and so

Rms(r) = Ams
Kiβms

(κr)√
κr

, (14)

with Ams a constant of normalization.

Since κr and βms are real and positive, the function Kiβms
(κr) (also known as the

Macdonald function) is also real, which can be seen, e.g., from the integral representation

[32],

Kiβms
(κr) =

∫ ∞

0

exp(−κr cosh t) cos(βmst) dt, (15)

and thus Rms(r) is real (for a real Ams). The function Rms(r) has infinitely many

positive roots, with an accumulation point at r = 0.

The second boundary condition to be applied to Rms(r) is due to the impenetrable

sphere at r = r0, which means that we must have Rms(r0) = 0, i.e.,

Kiβms
(κr0)√
κr0

= 0. (16)

The positive roots of the function Kiβms
(z) are therefore the allowed values of κr0. Since

these roots form an infinite, discrete set, we shall name them ζmsn, where n = 1, 2, 3, . . .,

and ζms1 > ζms2 > ζms3 > . . .. These roots can be found numerically. For any particular

molecule, r0 is a constant, and so the permissible values of κ (which we now rename

κmsn, and likewise with E) are κmsn = ζmsn/r0, i.e.,

Emsn = −κ
2
msn

2
= −1

2

(

ζmsn

r0

)2

. (17)

2.3. Dependence of binding energy on r0 and µ

For a given value of the dipole moment, the largest negative value of λms is for m = 0,

s = 1, with the critical dipole moment µcrit = 0.6393 au = 1.625D [27, 28]. The

corresponding ground-state binding energy is

ǫb =
1

2

(

ζ011
r0

)2

, (18)

where ζ011 is the largest root ofKiβ01
(z), whose index β01 is determined by the eigenvalue

λ01 of the angular equation, see (12). The dependence of the binding energy (18) on r0
is simple. Figure 3 shows the dependence of ǫb on the magnitude of the dipole moment

µ for the fixed repulsive core radius r0 = 1 au (i.e., ǫb = 1
2
ζ2011).

For µ → µcrit, the binding energy rapidly tends to zero. This limit corresponds to

λ01 → −1
4
and β01 → 0. In the limit of small β, the roots zn of the Macdonald function

Kiβ(z) have the following asymptotic behaviour [33]:

ln zn ≃ −nπ
β

+ ln 2− γ (n = 1, 2, . . .), (19)
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Figure 3. Dependence of the ground-state binding energy ǫb on µ for r0 = 1. Solid

red line with circles shows the numerical results, and the blue dashed line is the fit

(23) with A = 65 998.7 meV, B = 12.2705 D1/2, and C = 0.400 612 D−1/2. Note that

the two curves are indistinguishable on the scale of the graph.

where γ ≈ 0.577 is Euler’s constant. The largest root that we are interested in (n = 1)

is then given by

ζ011 ≃ 2e−γ exp

(

− π

β01

)

. (20)

For dipole moments close to the critical value, we have from equation (12),

β01 ≃
[

−dλ01
dµ

∣

∣

∣

∣

µ=µcrit

(µ− µcrit)

]1/2

. (21)

Combining equations (18), (20) and (21), gives

ǫb = A exp
[

−B(µ− µcrit)
−1/2

]

, (22)

where A and B are constants (see also [34, 35], from which a similar result can

be derived). Motivated by this scaling, we constructed an approximate analytical

expression for the binding energy as a function of µ in the following form:

ǫb = A exp
[

−B(µ− µcrit)
−1/2 + C(µ− µcrit)

1/2
]

. (23)

Here the second term in the exponent represents a correction to the leading term

(22). It accounts for the next order corrections in both (20) and (21), and extends the

applicability of (23) way beyond the range of near-critical µ. Regarding the constants

A, B and C as fitting parameters, an excellent fit of the numerical data over the whole

range covered by figure 3 is obtained using A = 65 998.7meV, B = 12.2705D1/2 and

C = 0.400 612D−1/2, and the dipole moment µ in debye (D).
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Table 3. Values of r0 obtained for a selection of molecules by fitting known binding

energies from [7, 36, 38] to equation (18).

Molecule µ (D) ǫb (meV) r0 (au)

Aldehydes

Acetaldehyde (C2H4O) 2.75 88 1.03 × 10−1

Propanal (C3H6O) 2.52 118 4.28 × 10−2

Butanal (C4H8O) 2.72 142 7.44 × 10−2

Ketones

Acetone (C3H6O) 2.88 174 1.00 × 10−1

2-butanone (C4H8O) 2.78 194 7.45 × 10−2

Cyclopentanone (C5H8O) 3.30 230 1.90 × 10−1

Formates

Methyl formate (C2H4O2) 1.77 65 4.04 × 10−6

Ethyl formate (C3H6O2) 1.98 103 9.76 × 10−3

Propyl formate (C4H8O2) 1.89 126 1.77 × 10−4

Acetates

Methyl acetate (C3H6O2) 1.72 122 7.38 × 10−8

Ethyl acetate (C4H8O2) 1.78 160 4.32 × 10−6

Nitriles

Acetonitrile (C2H3N) 3.93 180 4.54 × 10−1

Propionitrile (C3H5N) 4.05 245 4.37 × 10−1

2-methylpropionitrile (C4H7N) 4.29 274 5.04 × 10−1

Methyl halides

Methyl fluoride (CH3F) 1.86 0.3 1.72 × 10−3

Methyl chloride (CH3Cl) 1.90 25 1.68 × 10−5

Methyl bromide (CH3Br) 1.82 40 1.67 × 10−6

3. Positron binding by the dipole potential

Using experimental data on positron binding energies from [7, 36] and dipole moments

from [37], we fitted the energies to equation (18) by adjusting the values of r0 for fourteen

polar organic molecules and three polar inorganic molecules‡. No direct experimental

binding energy is available for methyl fluoride (CH3F), and the value obtained by fitting

theoretical annihilation rate to experiment has been used instead [38]. If the static dipole

potential provided the dominant contribution to the binding, then it could be expected

that for molecules with a single dipolar bond the values of r0 would be approximately

half the length of the molecular dipole (∼1 au), with values significantly larger or smaller

than this considered as unphysical. For molecules with several dipolar bonds (e.g., the

formates and acetates) we expected a larger value of r0 than in the case of a single dipole

bond.

The results are shown in table 3. Clearly, all of the radii obtained are unphysically

small, particularly for the most weakly polar molecules. The largest value, r0 = 0.5 au,

‡ The methyl halide molecules are quite distinct from the other molecules studied. Each of them

contains a different halogen atom. It is this, rather than the size of the molecule, that affects their

dipole polarizability.
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is for the most strongly polar molecule studied: 2-methylpropionitrile, but even this is

less than a quarter of the C≡N bond length.

It can be seen from table 3 that despite molecules of the same type (aldehyde,

ketone, etc.) having similar dipole moments, there can be significant variations in the

binding energies. For example, consider the molecules acetaldehyde and butanal. Their

dipole moments are very close (2.75D and 2.72D, respectively), and the dipole in both

molecules is due to a C=O bond. Yet there is a large difference in the binding energies:

the binding energy for butanal (142meV) is more than 1.5 times that for acetaldehyde

(88meV). Peculiarly, acetaldehyde is actually slightly more polar than butanal, yet has

the lower binding energy. A similar situation also occurs with acetone and 2-butanone,

and with ethyl formate and propyl formate. These observations cannot be explained by

our model as it stands.

The fact that the values of r0 obtained for all of the molecules studied are

unphysically small implies that lepton correlations (in particular, due to polarization

of the molecule by the positron) play an important role in enhancing the binding

energy, even for strongly polar molecules. Going back to the example of acetaldehyde vs

butanal, acetaldehyde has a polarizability of 4.6 Å
3
, while the polarizability of butanal is

a significantly greater value of 8.2 Å
3
[37]. This explains the larger binding energy of the

latter molecule. In the following two sections we investigate the effect of the molecular

polarization on positron binding, and show that its inclusion is critical for obtaining a

correct physical picture of positron binding to polar molecules.

4. Perturbative correction due to molecular polarization

4.1. Core radii for perturbative inclusion of polarization

Since the dipole potential for µ > µcrit is sufficient to create a “zeroth-order” bound

state, we first estimate the effect of molecular polarization using perturbation theory.

The values of the radius r0 can then be chosen by fitting the total binding energy (i.e.,

due to the dipole force and polarization) to the experimental values, expecting that this

should lead to more realistic values of r0.

The extra contribution to the positron potential energy (in the region r > r0) due

to molecular polarization can be approximated by the polarization potential

Vpol(r) = − α

2r4
, (24)

where α is the molecular dipole polarizability. Using perturbation theory, the first-order

correction to the original dipole binding energy (18), which we now label ǫ
(0)
b , is

ǫ
(1)
b =

∫

α

2r4
|ψ011(r)|2 d3r, (25)

where ψmsn(r) = Rmsn(r)Φms(θ, φ). Assuming that the radial and angular parts of the

wave function are separately normalized to unity, this becomes

ǫ
(1)
b =

α

2

∫ ∞

r0

|R011(r)|2r−2 dr. (26)
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Table 4. Fitted values of r0 with the inclusion of polarization via perturbation theory.

Also shown are the corresponding values of ǫ
(0)
b and ǫ

(1)
b , the expectation values of the

potential energy due to the permanent dipole, and the predicted and experimental

values of ǫb.

ǫb (meV)
µ α r0 ǫ

(0)
b ǫ

(1)
b |〈Vd(r)〉|

Molecule (D) (Å
3
) (au) (meV) (meV) (meV) Pred. Exp.

Aldehydes

Acetaldehyde 2.75 4.6 0.60 3 80 38 83 88

Propanal 2.52 6.5 0.42 1 118 23 119 118

Butanal 2.72 8.2 0.58 2 140 35 142 142

Ketones

Acetone 2.88 6.4 0.63 4 168 58 172 174

2-butanone 2.78 8.1 0.58 3 187 46 190 194

Cyclopentanone 3.30 9.0 0.92 10 220 98 230 230

Formates

Methyl formate 1.77 5.1 0.004 ∼10−5 69 ∼10−2 69 65

Ethyl formate 1.98 6.9 0.066 ∼10−2 109 2 109 103

Propyl formate 1.89 8.8 0.0305 ∼10−3 126 ∼10−1 126 126

Acetates

Methyl acetate 1.72 6.9 0.0006 ∼10−6 116 ∼10−4 116 122

Ethyl acetate 1.78 8.6 0.0048 ∼10−4 156 ∼10−2 156 160

Nitriles

Acetonitrile 3.93 4.4 1.175 27 155 202 182 180

Propionitrile 4.05 6.3 1.24 31 218 218 249 245

2-methylpropionitrile 4.29 8.1 1.40 35 244 235 279 274

Methyl halides

Methyl fluoride 1.86 2.4 0.042 ∼10−4 0.33 ∼10−2 0.33 0.3

Methyl chloride 1.90 4.4 0.026 ∼10−3 23 ∼10−1 23 25

Methyl bromide 1.82 5.6 0.0085 ∼10−3 42 ∼10−1 42 40

For each of the molecules studied we made an initial estimate for the value of r0
and adjusted it until the new binding energy ǫb = ǫ

(0)
b + ǫ

(1)
b was within 10% of the

experimental value (with both ǫ
(0)
b and ǫ

(1)
b being functions of r0). The results are shown

in table 4. Polarizabilities are taken from the CRC Handbook [37], with the exceptions

of propyl formate and cyclopentanone, for which the polarizabilities have been estimated

by Danielson et al [7].

All of these new values of r0 are significantly larger than the original values. The

three nitriles are the most strongly polar molecules studied, and they now have very

realistic values of r0. The dipole in these nitriles is due to the C≡N bond. The length
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of this bond is 2.19 au [39], half of which is approximately 1.1 au. The values of r0 are

only slightly greater than this.

The ketones — acetone, 2-butanone and cyclopentanone — are the second most

polar group. The polarity of these molecules is due to a C=O bond, the length of which

is 2.26 au [39] (half of this is 1.13 au). Their values of r0 are not as close to this estimate

as those for the nitriles. For the most polar molecule in the group, cyclopentanone, r0
is within 19% of half the bond length. The values of r0 for acetone and 2-butanone

are, however, significantly smaller. The picture is similar for the aldehydes, which show

r0 ∼ 0.5 au. The three other groups (formates, acetates and methyl halides) have dipole

moments µ ≤ 2D, only slightly exceeding the critical dipole moment µcrit = 1.625D.

They all yield unphysically small values of r0.

The results suggest that our model, with the inclusion of polarizability via

perturbation theory, is viable for molecules with dipole moments greater than about

3.5D. It is of some concern that for all of the molecules studied, including those for

which we have now found realistic values of r0, the first-order energy corrections ǫ
(1)
b

are much larger than the zeroth-order energies ǫ
(0)
b . However, one should compare the

perturbative correction with the mean potential energy in the original dipole potential

〈Vd〉, not the eigenvalue (in which the negative potential energy and positive kinetic

energy contributions noticeably cancel each other). Table 4 shows this information for

all of the molecules studied. We see that for the most strongly polar molecules, e.g., the

nitriles, 〈Vd〉 and ǫ
(1)
b are of similar magnitude. This indicates that the corresponding

estimates of ǫ
(1)
b are reliable. On the other hand, for most of the other molecules, the

magnitude of 〈Vd〉 is quite small compared to that of ǫ
(1)
b . However, even in these

cases the perturbation-theory estimate of the relative contribution of correlations (i.e.,

polarization) appears to be sound, at least qualitatively.

It is interesting to compare the results from table 4 with real quantum chemistry

calculations of positron binding to polar species. The static dipole binding energy ǫ
(0)
b

is then analogous to the static, Hartree-Fock (HF) calculation of binding, while the

total ǫb can be compared with the configuration interaction (CI) result, which includes

correlations. In all cases the binding energy from the extensive CI calculations is at

least an order of magnitude greater than the HF value. For example, for hydrogen

cyanide (HCN, µ = 3D), the binding energies are 1.6meV (HF) and 35meV (CI) [16];

for formaldehyde (CH2O, µ = 3D), 1.1meV (HF) and 19meV (CI) [15]; for nitrile

molecules (CH3CN, HCCCN, C2H3CN, C2H5CN with µ = 4.1–4.4D), the HF binding

energies are 6–18meV, becoming 81–164meV in the CI calculation [19]§. The data for

aldehydes, ketones and nitriles in table 4 show similar large increases due to the effect

of polarization. The model thus provides a useful estimate of the effect of correlations

on the binding energy.

As mentioned in the introduction, analysis of the measured binding energies found

§ In all likelihood the above CI energies underestimate the true binding energy, because “it is difficult

to describe the electron-positron correlation with the established methods of computational chemistry”

[40].
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Figure 4. Correlation between the molecular dipole moment and core radius r0,

obtained from the perturbative polarization calculation (see Table 4) for nitriles

(circles), ketones (squares), aldehydes (diamonds), formates (up triangles), acetates

(down triangles), and methyl halides (crosses).

the dependence of ǫb on α for molecules within the same chemical family (i.e., aldehydes,

ketones, formates, acetates, nitriles) to be almost linear [7]. From (26) we can see that,

for fixed µ and r0, ǫ
(1)
b scales linearly with α. Within each chemical family, the type of

dipole is the same and so µ does not vary much. Thus, for the most part, the values of r0
are fairly close to each other within each chemical family. This implies that considering

the effect of polarization as the first-order energy correction might be quite realistic,

even when α is large.

4.2. Dependence of the binding energy on polarizability for fixed µ and r0

The new values of r0 (those obtained after including the polarizability) correlate strongly

with the dipole moment of the molecules (see figure 4). However, this correlation lacks

an obvious physical basis, and predicting the binding energy for an arbitrary molecule

given only the values of µ and α would be rather tenuous.

On the other hand, as was stated earlier, the dipole moment µ and core radius r0 do

not change vastly from molecule to molecule within each chemical family, for most of the

families studied. To investigate the dependence of ǫb on α, we assigned to each family

a fixed value of µ and r0. For five out of the six families, each with three molecules, we

used the values of µ and r0 for the molecule with the median value of µ. This molecule

will hereafter be referred to as the base molecule. For the two acetates, we arbitrarily

chose ethyl acetate as the base molecule.

For the base molecule we know ǫ
(0)
b and ǫ

(1)
b . By setting α to the appropriate values

for the other molecules in the family, we were able to find the corresponding ǫ
(1)
b : they

are just linear rescalings of (26), since µ and r0 had not changed. With ǫ
(0)
b fixed by the

values of µ and r0 for the base molecule, we then had estimates of ǫb for every molecule
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Table 5. The predicted values of ǫb found by using fixed values of µ and r0 for

each chemical family, compared with the experimental values. Hydrogen cyanide is

included with the aldehydes as it has a similar dipole moment; the value of ǫb for

hydrogen cyanide obtained using the diffusion Monte Carlo (DMC) method [17] is also

given. The base molecule for each family is indicated by ‘(base)’ after its name.

ǫb (meV)

Molecule µ (D) r0 (au) α (Å
3
) Pred. Exp./DMC

Aldehydes

Butanal (base) 2.72 0.58 8.2 142 142

Acetaldehyde ′′ ′′ 4.6 81 88

Propanal ′′ ′′ 6.5 113 118

[Hydrogen cyanide] ′′ ′′ 2.5 45 38

Ketones

Acetone (base) 2.88 0.63 6.4 172 174

2-butanone ′′ ′′ 8.1 216 194

Cyclopentanone ′′ ′′ 9.0 240 230

Formates

Propyl formate (base) 1.89 0.0305 8.8 126 126

Methyl formate ′′ ′′ 5.1 73 65

Ethyl formate ′′ ′′ 6.9 99 103

Acetates

Ethyl acetate (base) 1.78 0.0048 8.6 156 160

Methyl acetate ′′ ′′ 6.9 125 122

Nitriles

Propionitrile (base) 4.05 1.24 6.3 249 245

Acetonitrile ′′ ′′ 4.4 183 180

2-methylpropionitrile ′′ ′′ 8.1 311 274

Methyl halides

Methyl fluoride (base) 1.86 0.042 2.4 0.33 0.3

Methyl chloride ′′ ′′ 4.4 0.61 25

Methyl bromide ′′ ′′ 5.6 0.78 40

in the family.

Table 5 compares the predicted and experimental values of the binding energy for

the seventeen molecules studied. We also use this method to predict the binding energy

of HCN, placing it in the aldehyde family (see below). The results for each family are

also shown graphically in figure 5. The dashed lines on the graphs show linear fits of

the measured binding energies, while the solids lines display the linear dependence of

the calculated binding energy on α, as described by equation (26).

For the aldehydes, the results are very good. In particular, note the similar slopes of

the experimental and predicted dependences of the binding energy on α. The predicted

binding energies of acetaldehyde and propanal agree with the experimental values to

within 8% and 5% respectively.

For the ketones, the results are again pleasing. The predicted binding energies of

2-butanone and cyclopentanone agree with the experimental values to within 12% and
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Figure 5. Predicted and experimental/DMC values of ǫb as functions of the dipole

polarizability. The black circles and black, solid line are the predicted values of ǫb.

The blue squares are the experimental/DMC values of ǫb, with the blue, dashed line

a linear regressive fit.

5% respectively.

The formates also yield good results. The predicted binding energies of methyl

formate and ethyl formate agree with the experimental values to within 13% and 4%

respectively. It is actually quite surprising that the predicted binding energies are as

accurate as they are for this family, since r0 for methyl formate is an order of magnitude

smaller than the values for the rest of the family, and r0 for ethyl formate is more than

double the value for propyl formate.

The predicted binding energy for methyl acetate is excellent; it is within 3% of the

experimental value. Again, this is fairly surprising, given that r0 for methyl acetate is
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an order of magnitude smaller than the value for ethyl acetate. Note also that the α

scaling holds well for both the formates and acetates in spite of the unphysically small

values of r0.

Coming to the nitriles, we note the very encouraging results. The predicted binding

energies of acetonitrile and 2-methylpropionitrile agree with the experimental values to

within 2% and 14% respectively.

Finally, we note that for methyl halides the present model fails completely. The

predicted binding energies for CH3Cl and CH3Br are only 2% of the measured values.

At this point, we note that methyl halides are the smallest molecules examined. The

lightest of them, methyl fluoride, also has the smallest moment of inertia, which means

that molecular rotations neglected by the model have the largest effect on this molecule.

This, combined with the smallest dipole polarizability, could be one of the reasons for

the anomalously small binding energy (0.3 meV) of this molecule. Hence, when the

“atypical” CH3F is chosen as the base molecule, the results for the other two molecules

are poor. Another reason that sets methyl halides apart is that other molecules within

each family consist of the same types of atoms. They are quite similar chemically and

have similar ionization potentials (typically, not varying by more than 0.5 eV within each

family [37]). On the other hand, the three methyl halide molecules contain different

atoms (F, Cl or Br), and their ionization potentials vary considerably more: 12.47,

11.22 and 10.54 eV for CH3F, CH3Cl and CH3Br respectively [37]. This means that

the additional attraction due to virtual positronium formation, which is not accounted

for by the dipole polarizability (see, e.g., [41]), grows along this sequence. Since this

additional attraction is not present in our model, we obtain very poor predictions

of binding energies. At the same time, the dipole moment, even though not much

greater than µcrit, plays a crucial role for binding by these molecules. Had these been

nonpolar, atom-like species, then, based on the their ionization potentials and dipole

polarizabilities, they would not have had bound states at all (see [42] for the conditions

of binding by atoms).

Overall, the perturbative treatment of polarization has been surprisingly good for

the five families of organic molecules. The maximum error in any of the predicted

binding energies is 14%, even though two of the five families exhibit small absolute

values of r0 with significant relative differences in the values of r0. The model also lends

support to the empirical linear relationship (2) between the binding energy and the

dipole polarizability, even though the values of r0 for most molecules are unphysically

small. In addition, it allows one to predict the binding energy for any molecule with a

dipole moment that is comparable to those in one of the chemical families studied, by

placing it in that group and rescaling ǫ
(1)
b using the appropriate polarizability.

As an example, consider hydrogen cyanide (HCN), which is a linear, triatomic

molecule with a dipole moment of 2.98D and a polarizability of 2.5 Å
3
[37]. Due to its

toxicity, the binding energy for hydrogen cyanide has not been measured experimentally.

Nevertheless, there already exist theoretical calculations of this energy using a variety

of methods, such as CI and diffusion Monte Carlo (DMC) [16, 17]. We estimated



Effect of dipole polarizability on positron binding by strongly polar molecules 18

the binding energy by placing hydrogen cyanide among the aldehydes, since they have

similar dipole moments. The resulting prediction of the binding energy (45meV) is

within 18% of the DMC value of 38meV [17] (see table 5 and figure 5). Note that

the ketones actually have more similar dipole moments to hydrogen cyanide than the

aldehydes. Placing HCN in the ketone family led to a predicted binding energy of

70meV, which is a factor of two greater than the DMC result of [17]. This large value

is likely an overestimate, in spite of the fact that quantum chemistry calculations tend

to give lower bounds for the positron binding energies [19, 20]. Experimental data

for ketones shows significant deviations from linearity (see figure 5), which makes the

ketone-based prediction for HCN less relaible.

5. Non-perturbative treatment of molecular polarization

5.1. Models of polarization potential and core radii

Although the perturbative inclusion of polarization described in section 4 generates

reasonably accurate predictions of binding energies for organic molecules, the effective

core radii r0 are too small for most molecules to be physically meaningful. In addition,

the first-order polarization energy correction for most molecules is too large to justify

the use of perturbation theory. To overcome this limitation, in this section we include

the polarization potential in a full, non-perturbative manner. As we will see, this leads

to new physical insights and finally gives good physical values of r0 for all molecules.

When the polarization potential (24) is added to the Schrödinger equation (4), the

angular equation (5b) remains unchanged, and we have the radial equation

−1

2

d2Pmsn

dr2
+

[

λms

2r2
− α

2r4
g(r)

]

Pmsn(r) = EmsnPmsn(r), (27)

for the function Pmsn(r) ≡ rRmsn(r). Here we have also introduced the polarization

cut-off function g(r), which tends to unity at large r and moderates the unbounded,

unphysical growth of the −α/2r4 term at small distances (see, e.g., [3]; also see below).

At large r, the polarization potential is negligible in comparison with the 1/r2 dipole

potential. Thus, at some sufficiently large value of r = rmax the radial wave function is

given by equation (14), which gives the boundary conditions

Pmsn(rmax) = Ãmsn

√
rmaxKiβms

(κmsnrmax), (28a)

dPmsn(r)

dr

∣

∣

∣

∣

r=rmax

= Ãmsn
d

dr

[√
rKiβms

(κmsnr)
]

∣

∣

∣

∣

r=rmax

, (28b)

where Ãmsn is an arbitrary constant. A value of rmax = 30 au has been used throughout.

Solving equation (27) numerically in the interval 0 < r ≤ rmax with m = 0, s = n = 1,

E011 = −ǫb, and Ã011 = r
−1/2
max yields a real function P011(r) with infinitely many roots

accumulating at r = 0. The largest of these roots is the value of r0.

We initially considered g(r) = 1, as in section 4. This led to values of r0 in the

range 1.55–2.32 au across the six families of molecules, which are much greater than
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their perturbative counterparts, and probably too large to be considered physical. This

is due to the polarization potential (24) blowing up and causing a rapid variation of the

radial wave function at small r, while in reality the polarization is a long-range effect.

For the same reason, the binding energy was found to be extremely sensitive to the

value of r0, making it very difficult to use the model in a predictive way.

Consequently, we considered several cut-off functions, viz.,

g1(r) = 1− exp(−r6/r6c), (29a)

g2(r) =
r4

(r + rc)4
, (29b)

g3(r) =
r4

(r2 + r2c)
2
, (29c)

where rc is a cut-off radius for the polarization. The function g1(r) provides a very

rapid cut-off, and is commonly used to model polarization potentials in atoms [3]. The

functions g2(r) and g3(r) vary much more slowly. They can effectively account for the

fact that the “centre” of the polarization potential is usually off-set with respect to the

location of the molecular dipole. The dipole moment is usually associated with one of

the terminal bonds, which is near one of the “ends” of the molecule rather than in the

middle. Initially we worked with fixed values of rc across the entire set of molecules,

and though this reduced the values of r0 from those of the “hard” potential (g(r) = 1),

and also reduced the sensitivity of the binding energy to r0, it did not significantly

reduce the large spread in r0 within or between families. This led us to consider using

a polarizability-dependent cut-off radius.

The polarizability of organic molecules is generally proportional to the number of

atoms or number of bonds in the molecule. This idea is the physical basis behind various

additivity methods for the calculation of molecular polarizabilities [43]. In this spirit,

the polarization potential at large distances is the sum of terms −αi/2r
4
i due to the

contribution of individual atoms or bonds i, with the distance ri measured accordingly.

In the spherically-averaged form (24), the distance r must measured from the “centre

of polarization” rather than the centre of the molecular dipole. As a result, at small r

the singular form −α/2r4 must be replaced by a constant −α/2r4c , as described by the

cut-off functions g2(r) and g3(r). Here rc is the effective radius of the molecule. It is

physical to link it to the polarizability α by, e.g.,

rc = Cαν , (30)

with C being an adjustable parameter. The polarizability α has dimensions of volume

(i.e., length cubed), so the choice ν = 1
3
would be sensible for three-dimensional,

approximately spherical molecules, while ν = 1
2
would be better for approximately

planar molecules. Experimentation showed that ν = 1
2
works best for our set of

molecules, with C being chosen separately for each family to minimize the range of

values of r0 within the family.

Table 6 shows the final values of r0 obtained for the molecules, with rc = Cα1/2. As

expected, the cut-off functions g2(r) and g3(r) gave the most physically meaningful
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Table 6. Values of r0 when a soft polarization potential with the cut-off function

g3(r) is included non-perturbatively and rc given by equation (30) with ν = 1
2 . The

parameter C is given in units of a0 Å
−3/2

, where a0 is the Bohr radius.

Molecule µ (D) α (Å
3
) ǫb (meV) r0 (au)

Aldehydes (C = 1.08)

Acetaldehyde 2.75 4.6 88 1.17

Propanal 2.52 6.5 118 1.09

Butanal 2.72 8.2 142 1.16

Ketones (C = 0.98)

Acetone 2.88 6.4 174 1.24

2-butanone 2.78 8.1 194 1.24

Cyclopentanone 3.30 9.0 230 1.37

Formates (C = 1.06)

Methyl formate 1.77 5.1 65 0.94

Ethyl formate 1.98 6.9 103 0.98

Propyl formate 1.89 8.8 126 0.94

Acetates (C = 0.96)

Methyl acetate 1.72 6.9 122 1.05

Ethyl acetate 1.78 8.6 160 1.05

Nitriles (C = 1.12)

Acetonitrile 3.93 4.4 180 1.34

Propionitrile 4.05 6.3 245 1.34

2-methylpropionitrile 4.29 8.1 274 1.43

Methyl halides (C = 0.95)

Methyl fluoride 1.86 2.4 0.3 1.22

Methyl chloride 1.90 4.4 25 1.24

Methyl bromide 1.82 5.6 40 1.24

results, with neither being significantly better or worse than the other. Here we

present the results obtained using g3(r). Figure 6 compares the radial function P011(r)

for acetonitrile, with and without the non-perturbative inclusion of the polarization

potential. It is clear from the figure that the wave function does not change much for

r > 5 au. However, at smaller distances the addition of the polarization potential causes

a more rapid variation of the wave function, leading to a greater core radius r0.

As seen from table 6, all of the radii are now ∼1 au and hence look physically

meaningful. They also remain approximately constant within each chemical family.

The maximum range of r0 within any family is 0.13 au (for the ketones), and the range

across all the molecules is 0.49 au. The values of C are also quite consistent, ranging

from 0.95 to 1.12 a0 Å
−3/2

. As before, the largest radii are obtained for the most strongly

polar molecules (the nitriles) and the smallest radii are obtained for the most weakly

polar molecules (the formates and acetates).

Note that smaller values of C have been obtained for the molecules in which the

main dipole bond is located closer to the centre of the molecule (as in acetates and

ketones with C = 0.96 and 0.98, respectively). Larger values of C are obtained for the
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Figure 6. Radial wave functions for acetonitrile. The dashed black curve is without

the inclusion of polarization; the solid blue curve is with the polarization included

non-perturbatively, using the cut-off function g3(r).

molecules in which the dipole bond is at the end, as in formates, aldehydes and nitriles

(C = 1.06, 1.08 and 1.12, respectively). This behaviour is related to the effect of the

distance between the dipole bond and the centre of polarizability, which is greater for

similar-sized molecule in the latter families. This results in greater binding energies for

the acetate and ketone molecules relative to their formate and aldehyde counterparts

with similar µ and α, e.g., methyl acetate (122 meV) vs ethyl formate (103 meV), or

acetone (174 meV) vs propanal (118 meV).

5.2. Dependence of the binding energy on polarizability for fixed µ and r0

We can now again investigate the dependence of the binding energy on the molecular

polarizability, by fixing µ and r0 within each family and varying α. In these calculations

we choose the same base molecule within each family as in section 4.2. The binding

energy which enters in equation (27) is then adjusted for each molecule in the family

until the core radius r0 of the base molecule is obtained. Note that the polarization

potential is now included non-perturbatively, hence, there is no reason to expect that ǫb
depends linearly on α. The resulting binding energies are shown in table 7 and figure 7.

There is generally very close agreement between the model predictions and the

experimental data; for every molecule except methyl formate and methyl acetate,

the relative difference of the predicted binding energy from the experimental value

is smaller than it was using the perturbative method. Particularly noteworthy is 2-

methylpropionitrile, for which the predicted binding energy coincides exactly with the

experimental value. The error for methyl formate has increased from 13% to 18%, and

for methyl acetate it has increased from 3% to 4%.

From figure 7 it is apparent that when the polarization potential is included non-

perturbatively, the dependence of ǫb on α is indeed non-linear. For all families except
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Table 7. The predicted values of ǫb found by using fixed values of µ and r0 for each

chemical family with the polarization included non-perturbatively, compared with the

experimental values. Hydrogen cyanide is included with the aldehydes as it has a

similar dipole moment; the value of ǫb for hydrogen cyanide obtained using the diffusion

Monte Carlo method [17] is also given. The base molecule for each family is indicated

by ‘(base)’ after its name.

ǫb (meV)

Molecule µ (D) r0 (au) α (Å
3
) Pred. Exp./DMC

Aldehydes

Butanal (base) 2.72 1.16 8.2 142 142

Acetaldehyde ′′ ′′ 4.6 86 88

Propanal ′′ ′′ 6.5 122 118

[Hydrogen cyanide] ′′ ′′ 2.5 32 38

Ketones

Acetone (base) 2.88 1.24 6.4 174 174

2-butanone ′′ ′′ 8.1 210 194

Cyclopentanone ′′ ′′ 9.0 225 230

Formates

Propyl formate (base) 1.89 0.94 8.8 126 126

Methyl formate ′′ ′′ 5.1 77 65

Ethyl formate ′′ ′′ 6.9 106 103

Acetates

Ethyl acetate (base) 1.78 1.05 8.6 160 160

Methyl acetate ′′ ′′ 6.9 127 122

Nitriles

Propionitrile (base) 4.05 1.34 6.3 245 245

Acetonitrile ′′ ′′ 4.4 200 180

2-methylpropionitrile ′′ ′′ 8.1 274 274

Methyl halides

Methyl fluoride (base) 1.86 1.24 2.4 0.3 0.3

Methyl chloride ′′ ′′ 4.4 20 25

Methyl bromide ′′ ′′ 5.6 42 40

the methyl halides, ǫb increases convexly with α for α . 4 Å
3
; for α & 4 Å

3
the growth

becomes concave. The molecules studied all lie in the convcave region, and the growth

for them could be reasonably well approximated by a straight line. The prediction

curve for the methyl halides is different but particularly remarkable, as the description

of this molecular family was extremely poor in the perturbative treatment. Here the

molecules lie in the convex region (which spans a larger range of polarizabilities than

for the other families), and the dependence of ǫb on α is markedly nonlinear. However,

close agreement is observed with the measured binding energies for CH3Cl and CH3Br.

Table 7 and figure 7 also show our estimate of the binding energy for HCN. As

seen from the graph, the experimental value lies very close to the prediction curve for

the aldehydes data, which provides support that the dependence of ǫb on α is not truly

linear. The value obtained (32meV) is within 16% of the DMC calculation (38meV)
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Figure 7. Predicted and experimental/DMC values of ǫb as functions of the

dipole polarizability, obtained using the non-perturbative inclusion of the polarization

potentil. The black circles are the predicted values of ǫb, with the black, solid curve

showing the calculated dependence of ǫb on α for each family. The blue squares are

the experimental/DMC values of ǫb, with the blue, dashed line a linear regressive fit.

[17], which is slightly closer than our perturbative estimate. Interestingly, if we now

place HCN in the ketones family, its estimated binding energy becomes 40meV, in

very close accord with the DMC value. This is further evidence that a nonperturbative

treatment of molecular polarization gives overall much more consistent results.
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6. Concluding remarks

Here we provided a simple model for positron binding to polar molecules, which captures

the essential physics of this system.

Modelling the molecule as a sphere of radius r0 with a static point dipole of dipole

moment µ at the centre and using experimental data on binding energies required

unphysically small values of r0, even for the most strongly polar molecules. This

indicated that the binding energies are greatly enhanced by some factor other than

the molecule’s permanent dipole moment, i.e., electron-positron correlations.

Including the effect of correlations perturbatively through the polarization potential

did confirm this expectation. It showed that even for the strongly polar molecules, the

effect of correlations increased the binding energy by an order of magnitude compared to

the static-dipole calculation. The observed increase matched the difference between the

CI and HF binding energies obtained in state-of-the-art quantum chemistry calculations.

Including the polarization potential as a perturbation of the original Hamiltonian

also yielded larger, more physical values of r0 for all of the molecules studied, but for

most molecules they were still too small to be interpreted directly. This was partly

due to the fact that the true static potential for the positron near the molecule is less

repulsive than the hard wall of our model. Reduced values of r0 may also account

for some of the short-range correlation effects, such as virtual positronium formation.

Sensible values of r0 were, however, obtained for the nitriles, the most strongly polar of

all the molecules studied. In spite of the fact that most of the molecules had unphysical

values of r0, it was found that taking the value of µ and r0 for the molecule in each

chemical family with the median dipole moment and varying the polarizability to match

the other molecules in the family, gave reliable predictions of the binding energies for

those molecules (with the exception of the methyl halides). The perturbative treatment

was also in line with the observation made by experimentalists, that the dependence

of the binding energy on the polarizability of the molecule is apparently almost linear

[7]. Of course, a general increase in the binding energy with the polarizability could

be expected, but there was no explanation for the linear dependence. According to

our model, this feature indicates that the perturbation theory is at least qualitatively

correct, even though the first-order energy corrections are generally greater than the

original (dipole) eigenenergies. The results of this treatment for the methyl halides,

however, were very poor in comparison with the other families, and we attributed this

to the fact that the binding by the base molecule (CH3F) is likely affected by rotations,

and that the three methyl halide molecules had a significantly larger range of ionization

potentials that the other families. The latter could indicate a significant change in the

contribution of virtual positronium formation across the members of this family, which

is not accounted for in our model.

A test of the model was to use it to predict the binding energy for hydrogen cyanide,

which has not been measured experimentally. Our estimate agreed with a previous

calculation using the diffusion Monte Carlo method to within 20%, which provides
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evidence that our model has good predictive power and could be useful for estimating

the binding energies that have never been measured in experiment, provided that the

binding energy for a molecule with a similar value of µ is known.

The most glaring limitation of the model as it stood was that it could not predict

binding energies using only the dipole moment and polarizability of a molecule. To

perform a calculation one needed a value of r0, and unless binding energies for molecules

with similar values of µ were known, one could not easily choose a suitable value for

r0. In fact, we found that for most of the chemical families we considered the values

of r0 had no immediate physical relevance, and for the most weakly polar families (i.e.,

formates and acetates) there were significant variations in the values of r0 despite the

similar values of µ.

In a bid to attain physically meaningful values of r0 for all of the molecules,

we proceeded to include the effects of polarization in a non-perturbative way. We

experimented by solving the radial Schrödinger equation numerically using several

model polarization potentials, and found that the best results were obtained using a

polarization potential of the form −α/2(r2 + r2c)
2, with the cut-off radius rc = Cα1/2

(C being a constant). The parameter C was chosen separately for each chemical

family so as to minimize the spread of r0 within each family. Physically meaningful

values of r0 (in the range 0.94–1.43 au) were then obtained for all molecules. By

choosing the values of C carefully, the spread of values of r0 within in each family

was made relatively small, though there was inevitably still a larger range of 0.49 au

across the entire set of molecules. The most strongly (weakly) polar molecules still

possessed the largest (smallest) values of r0. Again fixing µ and r0 for each family

and varying only the polarizability led to excellent predictions of ǫb; the predictions

were generally more accurate than their perturbative counterparts, with particularly

large improvement for the methyl halides. We observed that the true dependence of

ǫb on α is actually nonlinear. The prediction for HCN was also slightly better than its

perturbative counterpart, and supported our observation of nonlinear growth of ǫb with

α.

In summary, our model can be used effectively to predict positron-molecule binding

energies based on the molecular dipole moment and dipole polarizability, particularly

when polarization is included in a non-perturbative way. It provides a clear picture of

the system, thereby complementing the current computational effort towards rigorous

theory of positron-molecule binding.
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