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Abstract—Monitoring and tracking of IP traffic flows are 

essential for network services (i.e. packet forwarding). Packet 

header lookup is the main part of flow identification by 

determining the predefined matching action for each incoming 

flow. In this paper, an improved header lookup and flow rule 

update solution is investigated. A detailed study of several well-

known lookup algorithms reveals that searching individual 

packet header field and combining the results achieve high 

lookup speed and flexibility. The proposed hybrid lookup 

architecture is comprised of various lookup algorithms, which 

are selected based on the user applications and system 

requirements. 

Keywords—packet classification; multi-dimensional lookup; 
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I. INTRODUCTION 

Network traffic classification plays an important role in 
network nodes to support packet- and flow- processing 
functions, such as IP forwarding, packet filtering, security 
policies, quality of services, etc. Classifying input packets into 
flows and searching against pre-defined rules is a fundamental 
classification technique. An action is associated to each flow 
entry based on the same header fields and is determined by the 
first matching rule or the Highest-Priority Matching Rule 
(HPMR).  

There are several challenges in the classification process. 
Firstly, the entries in the routing tables change dynamically 
according to the state of the network and the information 
exchanged by routing protocols. It requires a solution with 
incremental update capability. Secondly, as the network link 
rate has rapidly increased, packet classification has become one 
of the fundamental challenges of high-speed network 
processing. Thirdly, working with IPv6 is becoming 
increasingly vital. IPv6 header varies in the number and length 
of the fields in comparison of its IPv4 counterpart. 
Consequently, for a fast adaptation between protocols, the 
adopted algorithms must be able to migrate to IPv6-based 
applications. Finally, the growth of the number of entries in the 
forwarding tables drives the need of scalability for large 
classifiers. Hence, efficient storage is a key for large classifier 
and the rule syntax should offer advantages to distribute rules 
into convenient groups.  

In general, different classification methods can be 
characterised by a set of performance metrics. These include 

parameters such as speed of classification, update time, storage 
requirement, the ability to support dynamic rule definitions,  
flexibility, complexity of rulesets, scalability, etc. Routers and 
switches have to work with different packet header fields 
making classification more complicated. A method with multi-
dimensional handling or multiple methods that work with a 
single field is essential. 

This paper aims to include the studies and research 
development on the programmable multi-dimensional lookup 
architecture proposed for high-performance packet header 
lookup operations in network systems.  

II. BACKGROUND STUDIES AND MOTIVATION 

In packet classification, a certain number of fields from the 
packet headers are used to find the matching action from a 
predefined flow set. Main performance requirements regarding 
packet classification are listed and explained below: 

 Search speed: the router and switch operations must work 
at the link rate of 40 GbE – 100 GbE and over [1]. The 
search time of a lookup algorithm should be independent 
of the number of rules. 

 Storage requirement: a large number of rules must be 
stored in data structures whose storage methodology can 
be complex. The redundancy of rule tables is a challenge 
in terms of classification time. 

 Incremental update: The data structure has to be changed 
when a new rule is inserted, updated or deleted. A data 
structure which supports incremental update does not need 
to be reconstructed for inserting or deleting entries. 

 Scalability: It is expected that the system provides the 
ability to handle a large numbers of rules. The system 
should be scalable in terms of length and number of header 
fields used for packet classification. Furthermore, the two 
internet protocols (IPv4 and IPv6) with different field 
lengths must be considered.  

 Flexibility in algorithm specification: A classification 
algorithm should support general rules, including prefixes, 
operators (range, less than, greater than, equal to, etc.) and 
wildcards.  

The most common rules are composed of five fields from a 
header: source and destination IP addresses, source and 
destination ports and protocol. These fields are compared 
against input packet headers in order to apply an action 



specified by the matching rule, where different matching 
patterns are applied on different fields. For example, the IP 
address fields are represented by prefixes and masks; the Port 
fields are characterised by intervals; the Protocol field is 
represented by exact values. Accordingly, methods of matching 
are divided into three categories, prefix matching, range 
matching, and exact matching, respectively. In particular, 
Longest-Prefix Matching (LPM) for IP address fields refers to 
the method that selects an entry with the most matching bits in 
a table of defined prefixes. The most commonly used 
approaches for LPM are Tree-based algorithms, such as binary 
tree and multi-bit trie [2]. Range matching is well suited to port 
field lookup. Interval tree, segment tree, and radix tree [3] are 
typical tree structures for range matching. Exact matching is 
deployed on those fields, such as the Protocol field, which 
requires exact values to be searched. According to the length of 
the data value, a variety of fast search methods can be applied 
from direct indexing and content-addressable memory (CAM) 
for simple data lookup, to hash-based search on data with big 
values.  

To perform full packet classifications, multi-dimensional 

lookup should be used in order to inspect many header fields. 

Table I summarizes the state-of-the-art multi-dimensional 

lookup algorithms and comparisons of their performance in 

terms of lookup speed, storage complexity and support of fast 

incremental update.  

 

 
Despite the advantages of Ternary Content Addressable 

Memory (TCAM) of performing parallel search at one time, 

this technique has disadvantages of high power consumption 

and expensive storage. Additionally, the comparison in 

TCAM is only applicable to prefix fields and exact matching 

fields. Those fields given by range or other syntax necessitate 

a prefix conversion. TCAM suffers from memory blow-up if 

each range is converted to a set of prefixes.  

Another option is to decompose the problem into smaller 
problems. RFC [4], Cross-Producting [5], ABV [6], AM-Trie 
[7], PCIU [8] and DCFL [9] are some popular decomposition 

methods, which are based on single-header-field search. 
Individual fields are handled independently, which presents 
advantages regarding lookup speed and/or update complexity 
but requires more storage space. The individual search results 
are combined in order to reach the highest-priority matching 
rule. As shown in Table I, RFC offers lookup advantages and 
DCFL improves the memory usage required by RFC. 

Alternatively, a large number of approaches have been 

presented by splitting a multi-dimensional search space into 

equal-sized ranges and place them into a Trie structure.  

Consequently, the rule sets are altered and duplicated into the 

trie nodes. HiCuts [10], HSM [11], HiPAC [12], HyperCuts 

[13] and ExpCuts [14] are falling into this category. In these 

approaches, large memory space is not required because of 

hierarchical distribution. However, the problem is that 

incremental update is not supported, which results in a 

complicated update process. HiCuts and HyperCuts are 

highlighted in TABLE I as the featured methods in multi-

dimensional packet classification. 

Hash-based solutions can also be used for multi-
dimensional lookup. However, as wildcard lookup is not 
supported in hash tables, rulesets must be converted into exact 
values. In this case, memory space becomes very large. 
Furthermore, hashing methods suffer from collision problems, 
which must be mitigated by sacrificing memory space or 
lookup time. Therefore hashing is normally used as part of a 
procedure together with other lookup algorithms. TSS [15], for 
example, combines the trie structure for update and collects the 
leaf nodes into a group of tables, which are used for lookup by 
addressing the tables with a hash function. 

Based on the above analysis, it is concluded that the 

optimal lookup speed and update time are achieved by the 

decomposition approach, while trie structures require a trade-

off between memory space and search time. The 

decomposition approach achieves high lookup performance by 

sharing individual fields in parallel. Managing individual 

fields with efficient dedicated algorithms also provides 

flexibility in packet classification, as will be discussed in 

Section III. In Perez’s work [16], configurable lookup 

architecture based on the decomposition approach was 

presented with promising results. 

The main motivation of this work comes from the results 

in [16] and [17]. The study of different lookup approaches 

presented in this paper concludes that there is no unique 

algorithm which can handle five or more fields efficiently 

with respect to the three main criteria: high lookup speed, 

memory storage efficient and fast incremental update. This 

highlights that existing lookup algorithms are optimally 

applied for one single application. Hybrid lookup architecture 

is therefore a key requirement for next-generation network 

devices and for the programmable platform, with greater 

flexibility for multiple applications.  

III. PROGRAMMABLE LOOKUP ARCHITECTURE 

In this section, a programmable lookup solution is 

described. The proposed architecture provides a configurable 

TABLE I: PERFORMANCE EVALUATION OF TYPICAL MULTI-DIMENSIONAL 

LOOKUP ALGORITHMS 

Lookup  

Algorithm 

Lookup  

Speed 

Storage 

Complexity  

Incremental 

Update 

HiCuts [10] O(d*W) O(Nd) No  

HyperCuts [13] O(N) O(N2) No 

RFC [4] O(d) O(Nd) No 

AM-Trie [7] O(h+d) O(N2) Yes 

Cross-producting 
[5] 

O(W*d) O(Nd) No 

DCFL [9] O(d) O(d*N*W) Yes 

ABV [6] O(d*W+N/M2) O(N2) No 

TSS [15] O(M+N) O(Wd) Yes  

Bitmap-

Intersection 
O(W*d+N/s) O(d*N2) No  

TCAM O (1) O(N) Yes 

 

d: number of dimensions M: size of the bitmap vector 

N: number of Rules   W: largest number of field bits 

h: trie height   s: memory width 



lookup algorithm set for optimal performance. There are 

several challenges that need to be considered in the proposed 

hybrid system. The partition of header fields and the 

distribution of the algorithm structures are critical for lookup 

performance.  

It is significant to have classification algorithms 

supporting incremental update since the rules, and accordingly 

the labels [9], must be deleted, inserted or changed at run time. 

Furthermore, when the individual results are obtained, the 

combination between these results must be performed to reach 

the desired HPMR. Therefore, the priority settings of the 

labels gains importance. 

The proposed solution focuses on performing individual 

packet header field searches and combining the search results. 

The proposed system does not offer a fixed algorithm for each 

field, but presents with a certain number of algorithms for 

selections. The complete packet classification system, as 

shown in Fig. 1, is composed of two main elements: the 

Decision Control Domain for packet handling decisions and 

the Lookup Domain for packet classification with several sub-

functions, including Packet Header Partition, Search Engine, 

Label Combination and Rule Filter. 

 

Fig. 1: Block diagram of the programmable lookup system  

A. Decision Control Domain 

 In a pre-lookup phase, an individual algorithm for each 

field should be selected according to the application so as to 

provide an optimal lookup performance. For example, high 

speed is the critical parameter for a Multi-end 

videoconferencing application supporting real time 

connection. The selection and the characterization of the 

algorithm can be managed by the CPU instructions as part of 

the decision control operation. This information must be 

translated to set up the lookup domain on hardware. 

B. Packet Header Partition/ Selector 

The configurable lookup algorithm is activated when a 

packet header arrives in the system. The parallel search on 

each header field is a key to achieve higher search speed. 

Thus, the packet header is split into different fields. It is 

assumed that the packet header has a fixed (known) length and 

the header fields are organized in a certain order. Each field is 

sent to the corresponding selected algorithm (in accordance 

with the matching type of the header field) in the Search 

Engine module.  

C. Search Engine 

The Search Engine module of the presented architecture is 

based on three main engines according to the required match 

pattern, e.g. LPM, range matching and exact matching. Each 

process is performed individually using different algorithms in 

parallel. For an initial proof of concept, experimental setup is 

based on the common 5-tuple lookup and the available 

algorithms for test are collected and described below. 

1. LPM Engine 

The main advantage of the proposed system is that any 

lookup algorithm can be used provided that it supports the 

label method and it satisfies the user/application specific 

requirements in terms of lookup performance and/or memory 

consumption. For feature studies on a flexible LPM operation 

for IP address lookup, Multi-bit trie (MBT) and Binary search 

tree (BST) are selected as two candidates. MBT features high 

lookup speed but presenting inefficient storage. In 

comparison, BST offers a space efficient solution but it 

requires a large number of cycles for lookup.  

2. Range-matching Engine 

The main challenge in a Port lookup is to search intervals 

when a rule is being updated and perform a point search for 

the packet lookup. Trie structures based on interval lookup are 

used for range matching. Searching for all arbitrary ranges of 

port fields that overlap a given point presents a greater 

challenge than exact matching. Range matching can be made 

sufficiently fast for real filter sets using a set of parallel 

segment tree algorithms. These algorithms have inefficient 

memory usage, e.g. storing empty nodes for segment trie or 

duplication of rules in range search tree algorithm.  

As a comparison, a small register bank is another option 

for Port field lookup, where the entries contain information 

about the boundary port values which define range and the 

corresponding labels. 

3. Exact-matching Engine 

There is a small set of values in a protocol field. In 

particular, three values are possible in any of the used filters, 

for example TCP, UDP or ICMP. For packet classification, it 

is straightforward to handle a small set of protocols using 

direct-indexing or using hash table for future expansions of 

the data set. Table II compares the single-field lookup 

algorithms that can be implemented in hardware. The 

comparison is based on the evaluation of LPM and range-

matching lookup algorithms in terms of the hardware design 

requirements, such as label method supporting, lookup speed 

and memory space. 

D. Label Combination 

As mentioned earlier, it is important to support 

incremental update for the rules and the corresponding labels 



to be modified. The labels play a key role in achieving the 

final HPMR. The update process should not produce a 

dynamic label value. For example, for inserting a new rule, the 

new labels created should not change the existing labels. 

 

 

1. Label List 

As proposed in [16], a label list instead of a rule list is 

maintained in the lookup domain. The selected algorithm set 

together with the corresponding labels is characterized by the 

Decision Controller in the update phase. The output from the 

Search Engine is a list of labels as the result from each 

individual lookup algorithm. These labels are combined to 

obtain the final index for HPMR. In order to speed up the 

lookup process towards HPMR, priority is also assigned to the 

labels and the resultant label lists are stored in a priority order. 

Likewise, the label combination is performed according to the 

label priority.  

2. Unique Label Identifier (ULI) 

As each algorithm produces a list of labels ordered by 

priority, the first label in the output list of each lookup 

algorithm refers to the highest priority matching rule. The ULI 

module receives the resulting label lists and the counter value, 

which indicates the number of valid labels in each list, and 

performs the combination to address the matching rule. 

There are several solutions that can be applied for label 

combination, such as hash function or complex calculation. A 

simple manner to handle the label combination is that the 

highest priority labels of each field are combined and 

compared with a list of valid label combinations. If there is no 

match, the next highest priority labels are combined until the 

matching label combination is found. If there are no more 

possible label permutations and the valid label combination is 

not found, the input packet does not have a matching rule and 

should be discarded or sent to the control platform. Fig. 2 

shows a simple Unique Label Identifier module design. L_IPs, 

L_IPd, L_Ps, L_Pd and L_PRT refer to the labels for source 

and destination IP fields, source and destination port fields and 

protocol field, respectively. 

According to the research work in [4] and [6], the 

maximum number of labels in each field is limited to five 

labels. This is based on the observation that there is only a 

small set of matching rules that match with an input packet. If 

HPMR is not found, search on a new combination of labels is 

required. In this case, the combination process in this block is 

the bottleneck of the entire system because it consumes large 

label combination time (LCT). In the worst case, all the labels 

are combined and the LCT is calculated by the following 

equation: 

  

 LCT = O ( ),    , (Eq.1) 

 

where d is the number of fields and nx is the total number of 

labels for the label vector of the field x.  

 

 

Fig. 2:  Unique Label Identifier module 

 

The above timing delay on looping search can be 

alleviated by shifting the problem from the lookup domain to 

the control domain.  

A label-rule mapping module was added in the control 

domain in the host and managed during the update process. By 

operating this module, the actions of the original rule set are 

split into the labels and the rule set is optimized by reducing 

rule overlaps within each field.  In this approach, the number 

of labels stored in the listed is dramatically reduced, resulting 

decreased label combination time.  

E. Rule Filter 

The Rule Filter module performs the lookup of the HPMR 

according to the label combination index resulting from the 

ULI module. If the resultant index addresses to a valid rule 

action, a rule acceptation signal is forwarded to the Unique 

Label Identifier module. However, if the index points to a 

non-valid rule (i.e. an empty address), the Rule Filter module 

returns the result to the ULI module and waits for a new 

index. If a matching rule is found, the proposed system output 

the original packet header and associated action. Practically, 

this output is sent to a function block to apply the matching 

action to the packet header. If there is no matching rule, the 

packet header is discarded. 

In the case that the selected lookup algorithm is switched 

to satisfy new optimal parameters, the rest of the lookup 

TABLE II: COMPARISONS OF LOOKUP ALGORITHMS FOR HARDWARE 

IMPLEMENTATION 

Lookup algorithm 
Label method 

support 

Lookup 

speed 

Memory 

space usage 

LPM algorithms 

Multi-bit Trie Yes Fast Moderate 

AM-Trie Yes Moderate Moderate 

Binary Search Tree Yes Slow Low 

Binary tree with leaf 

pushing 
No Slow Very low 

Range-matching algorithms 

Range tree No Fast High 

Segment tree Yes Very slow Moderate 

Register bank Yes Very fast Moderate 

 



domain elements e.g. Label Combination and Rule Filter, 

remain the same. 

IV. PERFORMANCE EVALUATION 

A. System Integration 

The proposed system consists of two domains, control 

domain and lookup domain. The control domain is running on 

a standard Intel CPU. The lookup domain was implemented 

on an Altera’s Stratix® V FPGA (5SGXMB6R3F43C4). If a 

packet is processed or the rules are updated, the information 

from both domains is transferred via the same network 

interface. A Peripheral Component Interconnect (PCI), in 

particular the new protocol of PCI Express (PCIe), is a bus 

with high bandwidth for the control platform to connect the 

hardware device to the host. The communication between host 

PC and the FPGA board requires a connection between PCIe 

and other drivers, such as Jungo. In the proposed system, the 

tasks of the control domain, which focus on algorithm 

configuration and update process, are simply simulated using 

a file set with all the related information. 

B. Rule update process 

The update requirements differ among different 

applications: a very low update rate may be sufficient in 

firewalls where entries are added manually or infrequently, 

whereas a router with per-flow queues may require very 

frequent updates.  

The update process is based on the information read from 

the Decision Control platform. This is represented in the 

simulation by files read and written to the hardware device to 

determine the number of clock cycles required to update the 

field label, rule and algorithm information. As mentioned in 

previous sections, the software platform supplies the 

information to be updated in a specified format. The packet 

header and action field information are read in and each field 

is stored independently in specific memory, as required. Non-

repeated labels are stored using the label method. 

The update process for rule information is more complex 

due to the hash function operation. All the necessary algorithm 

labels must be specified with each rule data and an extra clock 

cycle is required to calculate the final index. The labels are 

combined and hashed to obtain the final address. This process 

is performed in pipelining independent of the selected 

algorithm. The system are tested using different rule filters, 

such as Access Control List (ACL) 1K/5K/10K rule sets, 

Firewall (FW) 1K/5K/10K rule sets and IP Chain (IPC) 

1K/5K/10K rule sets. For each type of rule filters, the field 

information related to the algorithm memories is pre-stored in 

different files. A test bench was created to stimulate the 

system and provide the header field information by reading 

the corresponding binary file for each selected algorithm. The 

update process cannot be performed for both MBT and BST 

modes at the same time because they share memory resources. 

The decision of which algorithm to choose is made by the 

control domain.  

Fig. 3 shows the update time in terms of the number of 

CPU clock cycles for the MBT mode and BST mode. The 

average latency for the original rule filter update on hardware 

is two clock cycles per rule.  

 

 

Fig. 3:  Ruleset update time 

 

It can be seen in Fig. 3 that the update latency using the 

BST algorithm is similar to the original rule filters. This is 

because the number of “lines of information” for binary tree 

update is proportional to the number of rules. However, a 

larger update time is expected using multi-bit trie because 

there are a larger number of trie nodes to store in different 

memory blocks. 

C. Packet lookup process 

The proposed designs are based on pipelined stages as 

described in Fig.1. Prior to the lookup, the Decision 

Controller has performed the rule updates and algorithm 

selections.  

The protocol label search is executed in a single clock 

cycle. The range search engine produces the labels in two 

clock cycles. In the IP address search engine, the MBT data 

structure is executed with deep pipelining to support high 

throughput. As expected, the BST mode requires a large 

number of clock cycles per input packet. Fig. 4 shows the 

lookup process measured in number of clock cycles for 

different packet header sets (PHS) with different sizes. The 

impact of pipelining in MBT is clear as the lookup is 

completed 8 times faster with MBT than that with BST. 

 

 

Fig. 4:  Lookup time measured in number of clock cycles 

 



As previously noted, the worst case of lookup occurs when 

the maximum number of labels are found for each field of a 

given packet header and all results have to be combined. This 

worst-case scenario of label combination is independent of the 

algorithm chosen and is very unlikely to occur due to the fact 

that the rulesets have been optimized in the decision 

controller.  

D. Discussion 

The range-matching and exact-matching engines produce 

results in the stages prior to the LPM engine. The LPM engine 

defines the critical path in terms of label search time since it 

requires extra time to find the labels. The lookup process for 

the HPMR is only performed when all the field searches 

match. Practically in this work, it is safe to operate the system 

at the clock of frequency of 200 MHz for timing closure, using 

FPGA embedded RAM blocks. This results in a lookup 

throughput of 95.23 million packets per second in MBT mode. 

Taking ACL 10K ruleset as an example, the proposed system 

is able to operate at 6.5 Gbps in BST mode with a small 

memory space and 54 Gbps throughput in MBT mode, given a 

minimum Ethernet frame size of 72 bytes.  

V. CONCLUSION 

The main objective of this research was to design a highly 

configurable parallel lookup system for packet classification. 

As is presented, the proposed and prototyped lookup 

architecture targets future network systems with fast update 

supports through software programmability. The proposed 

design offers optimal lookup performance by configuring the 

best performing set of algorithms for a given flow entry type 

and rulesets. Efficient memory utilization is also achieved by 

sharing memory resources among multiple lookup algorithms.  

The presented results show a clear improvement in terms 

of memory space required and throughput in comparison with 

other lookup techniques. The proposed system is not restricted 

with a small number of algorithms as chosen for the 

experiment. More efficient search algorithms will be adopted 

into the search engine enabling high flexibility in future 

packet classifications.  
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