
Feature Study on a Programmable Network Traffic Classifier

Guerra Perez, K., Yang, X., Scott-Hayward, S., & Sezer, S. (2017). Feature Study on a Programmable Network
Traffic Classifier. In 2016 29th IEEE International System-on-Chip Conference (SOCC) (pp. 108-113).
(International SOC Conference (SOCC). Proceedings). DOI: 10.1109/SOCC.2016.7905446

Published in:
2016 29th IEEE International System-on-Chip Conference (SOCC)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 IEEE. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of
the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74404871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/feature-study-on-a-programmable-network-traffic-classifier(bed3f1c7-3c2b-41e2-920f-91fcc5832e4f).html

Feature Study on a Programmable Network Traffic

Classifier

Keissy Guerra Pérez, Xin Yang, Sandra Scott-Hayward, Sakir Sezer

ECIT Institute, Queen’s University Belfast, Northern Ireland

Abstract—Monitoring and tracking of IP traffic flows are

essential for network services (i.e. packet forwarding). Packet

header lookup is the main part of flow identification by

determining the predefined matching action for each incoming

flow. In this paper, an improved header lookup and flow rule

update solution is investigated. A detailed study of several well-

known lookup algorithms reveals that searching individual

packet header field and combining the results achieve high

lookup speed and flexibility. The proposed hybrid lookup

architecture is comprised of various lookup algorithms, which

are selected based on the user applications and system

requirements.

Keywords—packet classification; multi-dimensional lookup;

TCAM

I. INTRODUCTION

Network traffic classification plays an important role in
network nodes to support packet- and flow- processing
functions, such as IP forwarding, packet filtering, security
policies, quality of services, etc. Classifying input packets into
flows and searching against pre-defined rules is a fundamental
classification technique. An action is associated to each flow
entry based on the same header fields and is determined by the
first matching rule or the Highest-Priority Matching Rule
(HPMR).

There are several challenges in the classification process.
Firstly, the entries in the routing tables change dynamically
according to the state of the network and the information
exchanged by routing protocols. It requires a solution with
incremental update capability. Secondly, as the network link
rate has rapidly increased, packet classification has become one
of the fundamental challenges of high-speed network
processing. Thirdly, working with IPv6 is becoming
increasingly vital. IPv6 header varies in the number and length
of the fields in comparison of its IPv4 counterpart.
Consequently, for a fast adaptation between protocols, the
adopted algorithms must be able to migrate to IPv6-based
applications. Finally, the growth of the number of entries in the
forwarding tables drives the need of scalability for large
classifiers. Hence, efficient storage is a key for large classifier
and the rule syntax should offer advantages to distribute rules
into convenient groups.

In general, different classification methods can be
characterised by a set of performance metrics. These include

parameters such as speed of classification, update time, storage
requirement, the ability to support dynamic rule definitions,
flexibility, complexity of rulesets, scalability, etc. Routers and
switches have to work with different packet header fields
making classification more complicated. A method with multi-
dimensional handling or multiple methods that work with a
single field is essential.

This paper aims to include the studies and research
development on the programmable multi-dimensional lookup
architecture proposed for high-performance packet header
lookup operations in network systems.

II. BACKGROUND STUDIES AND MOTIVATION

In packet classification, a certain number of fields from the
packet headers are used to find the matching action from a
predefined flow set. Main performance requirements regarding
packet classification are listed and explained below:

 Search speed: the router and switch operations must work
at the link rate of 40 GbE – 100 GbE and over [1]. The
search time of a lookup algorithm should be independent
of the number of rules.

 Storage requirement: a large number of rules must be
stored in data structures whose storage methodology can
be complex. The redundancy of rule tables is a challenge
in terms of classification time.

 Incremental update: The data structure has to be changed
when a new rule is inserted, updated or deleted. A data
structure which supports incremental update does not need
to be reconstructed for inserting or deleting entries.

 Scalability: It is expected that the system provides the
ability to handle a large numbers of rules. The system
should be scalable in terms of length and number of header
fields used for packet classification. Furthermore, the two
internet protocols (IPv4 and IPv6) with different field
lengths must be considered.

 Flexibility in algorithm specification: A classification
algorithm should support general rules, including prefixes,
operators (range, less than, greater than, equal to, etc.) and
wildcards.

The most common rules are composed of five fields from a
header: source and destination IP addresses, source and
destination ports and protocol. These fields are compared
against input packet headers in order to apply an action

specified by the matching rule, where different matching
patterns are applied on different fields. For example, the IP
address fields are represented by prefixes and masks; the Port
fields are characterised by intervals; the Protocol field is
represented by exact values. Accordingly, methods of matching
are divided into three categories, prefix matching, range
matching, and exact matching, respectively. In particular,
Longest-Prefix Matching (LPM) for IP address fields refers to
the method that selects an entry with the most matching bits in
a table of defined prefixes. The most commonly used
approaches for LPM are Tree-based algorithms, such as binary
tree and multi-bit trie [2]. Range matching is well suited to port
field lookup. Interval tree, segment tree, and radix tree [3] are
typical tree structures for range matching. Exact matching is
deployed on those fields, such as the Protocol field, which
requires exact values to be searched. According to the length of
the data value, a variety of fast search methods can be applied
from direct indexing and content-addressable memory (CAM)
for simple data lookup, to hash-based search on data with big
values.

To perform full packet classifications, multi-dimensional

lookup should be used in order to inspect many header fields.

Table I summarizes the state-of-the-art multi-dimensional

lookup algorithms and comparisons of their performance in

terms of lookup speed, storage complexity and support of fast

incremental update.

Despite the advantages of Ternary Content Addressable

Memory (TCAM) of performing parallel search at one time,

this technique has disadvantages of high power consumption

and expensive storage. Additionally, the comparison in

TCAM is only applicable to prefix fields and exact matching

fields. Those fields given by range or other syntax necessitate

a prefix conversion. TCAM suffers from memory blow-up if

each range is converted to a set of prefixes.

Another option is to decompose the problem into smaller
problems. RFC [4], Cross-Producting [5], ABV [6], AM-Trie
[7], PCIU [8] and DCFL [9] are some popular decomposition

methods, which are based on single-header-field search.
Individual fields are handled independently, which presents
advantages regarding lookup speed and/or update complexity
but requires more storage space. The individual search results
are combined in order to reach the highest-priority matching
rule. As shown in Table I, RFC offers lookup advantages and
DCFL improves the memory usage required by RFC.

Alternatively, a large number of approaches have been

presented by splitting a multi-dimensional search space into

equal-sized ranges and place them into a Trie structure.

Consequently, the rule sets are altered and duplicated into the

trie nodes. HiCuts [10], HSM [11], HiPAC [12], HyperCuts

[13] and ExpCuts [14] are falling into this category. In these

approaches, large memory space is not required because of

hierarchical distribution. However, the problem is that

incremental update is not supported, which results in a

complicated update process. HiCuts and HyperCuts are

highlighted in TABLE I as the featured methods in multi-

dimensional packet classification.

Hash-based solutions can also be used for multi-
dimensional lookup. However, as wildcard lookup is not
supported in hash tables, rulesets must be converted into exact
values. In this case, memory space becomes very large.
Furthermore, hashing methods suffer from collision problems,
which must be mitigated by sacrificing memory space or
lookup time. Therefore hashing is normally used as part of a
procedure together with other lookup algorithms. TSS [15], for
example, combines the trie structure for update and collects the
leaf nodes into a group of tables, which are used for lookup by
addressing the tables with a hash function.

Based on the above analysis, it is concluded that the

optimal lookup speed and update time are achieved by the

decomposition approach, while trie structures require a trade-

off between memory space and search time. The

decomposition approach achieves high lookup performance by

sharing individual fields in parallel. Managing individual

fields with efficient dedicated algorithms also provides

flexibility in packet classification, as will be discussed in

Section III. In Perez’s work [16], configurable lookup

architecture based on the decomposition approach was

presented with promising results.

The main motivation of this work comes from the results

in [16] and [17]. The study of different lookup approaches

presented in this paper concludes that there is no unique

algorithm which can handle five or more fields efficiently

with respect to the three main criteria: high lookup speed,

memory storage efficient and fast incremental update. This

highlights that existing lookup algorithms are optimally

applied for one single application. Hybrid lookup architecture

is therefore a key requirement for next-generation network

devices and for the programmable platform, with greater

flexibility for multiple applications.

III. PROGRAMMABLE LOOKUP ARCHITECTURE

In this section, a programmable lookup solution is

described. The proposed architecture provides a configurable

TABLE I: PERFORMANCE EVALUATION OF TYPICAL MULTI-DIMENSIONAL

LOOKUP ALGORITHMS

Lookup

Algorithm

Lookup

Speed

Storage

Complexity

Incremental

Update

HiCuts [10] O(d*W) O(Nd) No

HyperCuts [13] O(N) O(N2) No

RFC [4] O(d) O(Nd) No

AM-Trie [7] O(h+d) O(N2) Yes

Cross-producting
[5]

O(W*d) O(Nd) No

DCFL [9] O(d) O(d*N*W) Yes

ABV [6] O(d*W+N/M2) O(N2) No

TSS [15] O(M+N) O(Wd) Yes

Bitmap-

Intersection
O(W*d+N/s) O(d*N2) No

TCAM O (1) O(N) Yes

d: number of dimensions M: size of the bitmap vector

N: number of Rules W: largest number of field bits

h: trie height s: memory width

lookup algorithm set for optimal performance. There are

several challenges that need to be considered in the proposed

hybrid system. The partition of header fields and the

distribution of the algorithm structures are critical for lookup

performance.

It is significant to have classification algorithms

supporting incremental update since the rules, and accordingly

the labels [9], must be deleted, inserted or changed at run time.

Furthermore, when the individual results are obtained, the

combination between these results must be performed to reach

the desired HPMR. Therefore, the priority settings of the

labels gains importance.

The proposed solution focuses on performing individual

packet header field searches and combining the search results.

The proposed system does not offer a fixed algorithm for each

field, but presents with a certain number of algorithms for

selections. The complete packet classification system, as

shown in Fig. 1, is composed of two main elements: the

Decision Control Domain for packet handling decisions and

the Lookup Domain for packet classification with several sub-

functions, including Packet Header Partition, Search Engine,

Label Combination and Rule Filter.

Fig. 1: Block diagram of the programmable lookup system

A. Decision Control Domain

 In a pre-lookup phase, an individual algorithm for each

field should be selected according to the application so as to

provide an optimal lookup performance. For example, high

speed is the critical parameter for a Multi-end

videoconferencing application supporting real time

connection. The selection and the characterization of the

algorithm can be managed by the CPU instructions as part of

the decision control operation. This information must be

translated to set up the lookup domain on hardware.

B. Packet Header Partition/ Selector

The configurable lookup algorithm is activated when a

packet header arrives in the system. The parallel search on

each header field is a key to achieve higher search speed.

Thus, the packet header is split into different fields. It is

assumed that the packet header has a fixed (known) length and

the header fields are organized in a certain order. Each field is

sent to the corresponding selected algorithm (in accordance

with the matching type of the header field) in the Search

Engine module.

C. Search Engine

The Search Engine module of the presented architecture is

based on three main engines according to the required match

pattern, e.g. LPM, range matching and exact matching. Each

process is performed individually using different algorithms in

parallel. For an initial proof of concept, experimental setup is

based on the common 5-tuple lookup and the available

algorithms for test are collected and described below.

1. LPM Engine

The main advantage of the proposed system is that any

lookup algorithm can be used provided that it supports the

label method and it satisfies the user/application specific

requirements in terms of lookup performance and/or memory

consumption. For feature studies on a flexible LPM operation

for IP address lookup, Multi-bit trie (MBT) and Binary search

tree (BST) are selected as two candidates. MBT features high

lookup speed but presenting inefficient storage. In

comparison, BST offers a space efficient solution but it

requires a large number of cycles for lookup.

2. Range-matching Engine

The main challenge in a Port lookup is to search intervals

when a rule is being updated and perform a point search for

the packet lookup. Trie structures based on interval lookup are

used for range matching. Searching for all arbitrary ranges of

port fields that overlap a given point presents a greater

challenge than exact matching. Range matching can be made

sufficiently fast for real filter sets using a set of parallel

segment tree algorithms. These algorithms have inefficient

memory usage, e.g. storing empty nodes for segment trie or

duplication of rules in range search tree algorithm.

As a comparison, a small register bank is another option

for Port field lookup, where the entries contain information

about the boundary port values which define range and the

corresponding labels.

3. Exact-matching Engine

There is a small set of values in a protocol field. In

particular, three values are possible in any of the used filters,

for example TCP, UDP or ICMP. For packet classification, it

is straightforward to handle a small set of protocols using

direct-indexing or using hash table for future expansions of

the data set. Table II compares the single-field lookup

algorithms that can be implemented in hardware. The

comparison is based on the evaluation of LPM and range-

matching lookup algorithms in terms of the hardware design

requirements, such as label method supporting, lookup speed

and memory space.

D. Label Combination

As mentioned earlier, it is important to support

incremental update for the rules and the corresponding labels

to be modified. The labels play a key role in achieving the

final HPMR. The update process should not produce a

dynamic label value. For example, for inserting a new rule, the

new labels created should not change the existing labels.

1. Label List

As proposed in [16], a label list instead of a rule list is

maintained in the lookup domain. The selected algorithm set

together with the corresponding labels is characterized by the

Decision Controller in the update phase. The output from the

Search Engine is a list of labels as the result from each

individual lookup algorithm. These labels are combined to

obtain the final index for HPMR. In order to speed up the

lookup process towards HPMR, priority is also assigned to the

labels and the resultant label lists are stored in a priority order.

Likewise, the label combination is performed according to the

label priority.

2. Unique Label Identifier (ULI)

As each algorithm produces a list of labels ordered by

priority, the first label in the output list of each lookup

algorithm refers to the highest priority matching rule. The ULI

module receives the resulting label lists and the counter value,

which indicates the number of valid labels in each list, and

performs the combination to address the matching rule.

There are several solutions that can be applied for label

combination, such as hash function or complex calculation. A

simple manner to handle the label combination is that the

highest priority labels of each field are combined and

compared with a list of valid label combinations. If there is no

match, the next highest priority labels are combined until the

matching label combination is found. If there are no more

possible label permutations and the valid label combination is

not found, the input packet does not have a matching rule and

should be discarded or sent to the control platform. Fig. 2

shows a simple Unique Label Identifier module design. L_IPs,

L_IPd, L_Ps, L_Pd and L_PRT refer to the labels for source

and destination IP fields, source and destination port fields and

protocol field, respectively.

According to the research work in [4] and [6], the

maximum number of labels in each field is limited to five

labels. This is based on the observation that there is only a

small set of matching rules that match with an input packet. If

HPMR is not found, search on a new combination of labels is

required. In this case, the combination process in this block is

the bottleneck of the entire system because it consumes large

label combination time (LCT). In the worst case, all the labels

are combined and the LCT is calculated by the following

equation:

 LCT = O (), , (Eq.1)

where d is the number of fields and nx is the total number of

labels for the label vector of the field x.

Fig. 2: Unique Label Identifier module

The above timing delay on looping search can be

alleviated by shifting the problem from the lookup domain to

the control domain.

A label-rule mapping module was added in the control

domain in the host and managed during the update process. By

operating this module, the actions of the original rule set are

split into the labels and the rule set is optimized by reducing

rule overlaps within each field. In this approach, the number

of labels stored in the listed is dramatically reduced, resulting

decreased label combination time.

E. Rule Filter

The Rule Filter module performs the lookup of the HPMR

according to the label combination index resulting from the

ULI module. If the resultant index addresses to a valid rule

action, a rule acceptation signal is forwarded to the Unique

Label Identifier module. However, if the index points to a

non-valid rule (i.e. an empty address), the Rule Filter module

returns the result to the ULI module and waits for a new

index. If a matching rule is found, the proposed system output

the original packet header and associated action. Practically,

this output is sent to a function block to apply the matching

action to the packet header. If there is no matching rule, the

packet header is discarded.

In the case that the selected lookup algorithm is switched

to satisfy new optimal parameters, the rest of the lookup

TABLE II: COMPARISONS OF LOOKUP ALGORITHMS FOR HARDWARE

IMPLEMENTATION

Lookup algorithm
Label method

support

Lookup

speed

Memory

space usage

LPM algorithms

Multi-bit Trie Yes Fast Moderate

AM-Trie Yes Moderate Moderate

Binary Search Tree Yes Slow Low

Binary tree with leaf

pushing
No Slow Very low

Range-matching algorithms

Range tree No Fast High

Segment tree Yes Very slow Moderate

Register bank Yes Very fast Moderate

domain elements e.g. Label Combination and Rule Filter,

remain the same.

IV. PERFORMANCE EVALUATION

A. System Integration

The proposed system consists of two domains, control

domain and lookup domain. The control domain is running on

a standard Intel CPU. The lookup domain was implemented

on an Altera’s Stratix® V FPGA (5SGXMB6R3F43C4). If a

packet is processed or the rules are updated, the information

from both domains is transferred via the same network

interface. A Peripheral Component Interconnect (PCI), in

particular the new protocol of PCI Express (PCIe), is a bus

with high bandwidth for the control platform to connect the

hardware device to the host. The communication between host

PC and the FPGA board requires a connection between PCIe

and other drivers, such as Jungo. In the proposed system, the

tasks of the control domain, which focus on algorithm

configuration and update process, are simply simulated using

a file set with all the related information.

B. Rule update process

The update requirements differ among different

applications: a very low update rate may be sufficient in

firewalls where entries are added manually or infrequently,

whereas a router with per-flow queues may require very

frequent updates.

The update process is based on the information read from

the Decision Control platform. This is represented in the

simulation by files read and written to the hardware device to

determine the number of clock cycles required to update the

field label, rule and algorithm information. As mentioned in

previous sections, the software platform supplies the

information to be updated in a specified format. The packet

header and action field information are read in and each field

is stored independently in specific memory, as required. Non-

repeated labels are stored using the label method.

The update process for rule information is more complex

due to the hash function operation. All the necessary algorithm

labels must be specified with each rule data and an extra clock

cycle is required to calculate the final index. The labels are

combined and hashed to obtain the final address. This process

is performed in pipelining independent of the selected

algorithm. The system are tested using different rule filters,

such as Access Control List (ACL) 1K/5K/10K rule sets,

Firewall (FW) 1K/5K/10K rule sets and IP Chain (IPC)

1K/5K/10K rule sets. For each type of rule filters, the field

information related to the algorithm memories is pre-stored in

different files. A test bench was created to stimulate the

system and provide the header field information by reading

the corresponding binary file for each selected algorithm. The

update process cannot be performed for both MBT and BST

modes at the same time because they share memory resources.

The decision of which algorithm to choose is made by the

control domain.

Fig. 3 shows the update time in terms of the number of

CPU clock cycles for the MBT mode and BST mode. The

average latency for the original rule filter update on hardware

is two clock cycles per rule.

Fig. 3: Ruleset update time

It can be seen in Fig. 3 that the update latency using the

BST algorithm is similar to the original rule filters. This is

because the number of “lines of information” for binary tree

update is proportional to the number of rules. However, a

larger update time is expected using multi-bit trie because

there are a larger number of trie nodes to store in different

memory blocks.

C. Packet lookup process

The proposed designs are based on pipelined stages as

described in Fig.1. Prior to the lookup, the Decision

Controller has performed the rule updates and algorithm

selections.

The protocol label search is executed in a single clock

cycle. The range search engine produces the labels in two

clock cycles. In the IP address search engine, the MBT data

structure is executed with deep pipelining to support high

throughput. As expected, the BST mode requires a large

number of clock cycles per input packet. Fig. 4 shows the

lookup process measured in number of clock cycles for

different packet header sets (PHS) with different sizes. The

impact of pipelining in MBT is clear as the lookup is

completed 8 times faster with MBT than that with BST.

Fig. 4: Lookup time measured in number of clock cycles

As previously noted, the worst case of lookup occurs when

the maximum number of labels are found for each field of a

given packet header and all results have to be combined. This

worst-case scenario of label combination is independent of the

algorithm chosen and is very unlikely to occur due to the fact

that the rulesets have been optimized in the decision

controller.

D. Discussion

The range-matching and exact-matching engines produce

results in the stages prior to the LPM engine. The LPM engine

defines the critical path in terms of label search time since it

requires extra time to find the labels. The lookup process for

the HPMR is only performed when all the field searches

match. Practically in this work, it is safe to operate the system

at the clock of frequency of 200 MHz for timing closure, using

FPGA embedded RAM blocks. This results in a lookup

throughput of 95.23 million packets per second in MBT mode.

Taking ACL 10K ruleset as an example, the proposed system

is able to operate at 6.5 Gbps in BST mode with a small

memory space and 54 Gbps throughput in MBT mode, given a

minimum Ethernet frame size of 72 bytes.

V. CONCLUSION

The main objective of this research was to design a highly

configurable parallel lookup system for packet classification.

As is presented, the proposed and prototyped lookup

architecture targets future network systems with fast update

supports through software programmability. The proposed

design offers optimal lookup performance by configuring the

best performing set of algorithms for a given flow entry type

and rulesets. Efficient memory utilization is also achieved by

sharing memory resources among multiple lookup algorithms.

The presented results show a clear improvement in terms

of memory space required and throughput in comparison with

other lookup techniques. The proposed system is not restricted

with a small number of algorithms as chosen for the

experiment. More efficient search algorithms will be adopted

into the search engine enabling high flexibility in future

packet classifications.

REFERENCES

[1] IEEE 802.3 standards for Ethernet networks, IEEE 802.3 Ethernet
working group, http://www.ieee802.org/3/index.html, accessed on 1st
May 2016.

[2] M. A. Ruiz-Sanchez, E.W. Biersack, W. Dabbous, “Survey and
Taxonomy of IP Address Lookup Algorithms”, IEEE The Magazine of
Global Internetworking, pp. 8-23, 2001.

[3] M. Berg, M. Kreveld, M. Overmars, O. Schwarzkopf, Computational
Geometry: Algorithms and Applications. Springer, 1997.

[4] P. Gupta and N. Mckeown, "Packet classification on Multiple Fields",
SIGCOMM’99, pp. 147-160, 1999.

[5] V. Srinivasan, S. Suri, G. Varghese, M. Waldvogel. “Fast and Scalable
Layer four Switching,” ACM Sigcomm, pp. 203-14, 1998.

[6] F. Baboescu, G. Varghese, “Scalable Packet Classification”, IEEE/ACM
Transaction on Networking, pp: 2-14, 2005.

[7] B. Zheng, C. Lin and X. Peng, “AM-Trie: An OC-192 Parallel
Multidimensional Packet Classification Algorithm for Network
Processor”, IMSCCS’06. Vol.1 pp.:377-384, 2006.

[8] O. Ahmed, S. Areibi, K. Chattha, B. Kelly, “PCIU: Hardware
Implementation of an Efficient Packet Classification Algorithm with an
Incremental Update Capability”, International Journal of
Reconfigurable Computing, pp: 2011.

[9] D. E. Taylor and J.S. Turner, “Scalable Packet Classification using
Distributed Crossproducting of Field labels”, IEEE INFOCOM 2005,
Vol. 1, pp. 269-280, 2005.

[10] P. Gupta and N. Mckeown, “Packet Classification using Hierarchical
Intelligent Cuttings”, IEEE Symposium on High Performance
Interconnects, HotI, 1999.

[11] B. Xu, D. Jiang, J. Li, “HSM: a fast packet classification algorithm”,
IEEE Advance Information Networking Application (AINA), pp: 987-
992, 2005.

[12] T. Heinz, PhD thesis “HiPAC High Performance Packet Classification
for Netfilter”, September 2003.

[13] S. Singh, F. Baboescu, G. Varghese, J. Wang “Packet Classification
Using Multidimensional Cutting”, SIGCOMM, pp. 213-224, 2003.

[14] Y. Qi, B. Xu, F. He, X. Zhou, J. Yu, J. Li “Towards Optimized Packet
Classification Algorithms for Multi-Core Network Processors”, Parallel
Processing (ICPP), pp: 2, 2007.

[15] V. Srinivisan, S. Suri, G. Varghese, “Packet Classification using Tuple
Space Search”, ACM SIGCOMM’99, pp 135-146. 1999.

[16] K. Guerra Perez, X. Yang, S. Scott-Hayward, S. Sezer, “A Configurable
Packet Classification Architecture for Software-Defined Networking”.
IEEE SoCC’14, pp. 353-358, 2014.

[17] K. Guerra Perez, X. Yang, S. Scott-Hayward, S. Sezer, “Optimized
Packet Classification for Software-Defined Networking”. IEEE ICC’14.
pp. 859-864, 2014.

http://www.ieee802.org/3/index.html

