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Abstract 

Large (10 × 10 cm) sheets of SERS active polymer have been prepared by stabilising metal 

nanoparticle aggregates within dry hydroxyethylcellulose (HEC) films. In these films the 

aggregates are protected by the polymer matrix during storage but in use they are released when 

aqueous analyte droplets cause the films to swell to their gel form. The fact that these “Poly-

SERS” films can be prepared in bulk but then cut to size and stored in air before use means that 

they provide a cost effective and convenient method for routine SERS analysis. Here we have 

tested both Ag and Au Poly-SERS films for use in point-of-care monitoring of therapeutic 

drugs, using phenytoin as the test compound. Phenytoin in water could readily be detected using 

Ag Poly-SERS films but dissolving the compound in phosphate buffered saline (PBS) to mimic 

body fluid samples caused loss of the drug signal due to competition for metal surface sites 

from Cl- ions in the buffer solution. However, with Au Poly-SERS films there was no detectable 

interference from Cl- and these materials allowed phenytoin to be detected at 1.8 mg L-1, even 

in PBS. The target range of detection of phenytoin in therapeutic drug monitoring is 10-20 mg 

L-1. With the Au Poly-SERS films, the absolute signal generated by a given concentration of 

phenytoin was lower for the films than for the parent colloid but the SERS signals were still 

high enough to be used for therapeutic monitoring, so the cost in sensitivity for moving from 

simple colloids to films is not so large that it outweighs the advantages which the films bring 

for practical applications, in particular their ease of use and long shelf life.  

Keywords: Surface-enhanced Raman spectroscopy, metal nanoparticles, polymer, 

hydroxyethylcellulose, phenytoin, therapeutic drug monitoring. 

 

1. Introduction  

 For most therapeutic drugs using a standard dose regime gives sufficient control over 

the level of drug in each patient. However, in some cases the toxicity of the drug and/or a narrow 

therapeutic window means that it is necessary to measure the drug level at regular intervals. 
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Currently this is typically done through time consuming, laboratory-based analysis of blood 

samples with HPLC [1] [2] although a numerous other methods for therapeutic drug monitoring 

which exploit bead technologies, enzymes, antibodies and magnetic separation in various 

combinations have been developed over the years. [3]  

 The ability to carry out therapeutic drug monitoring at the patient’s bedside could 

potentially reduce delays associated with laboratory –based analysis and reduce costs. SERS is 

attractive for bedside drug monitoring since it is expected to have the required sensitivity [4-6] 

and can be combined with hand-held instruments for signal readout within a matter of a few 

minutes. However, for such applications simple metal colloids are unsuitable as the enhancing 

media due to their limited shelf life and the need to have liquid sample handling steps in the 

analysis. Previous work [7-9] has demonstrated that SERS could be used for the point-of-care 

monitoring of drugs based on tubing which could be used both to collect the sample and to 

detect the targets using integrated SERS enhancing components based on Ag nanodomes. This 

method was impressive, however the devices were complex and expensive to fabricate. Here 

we explore a much lower cost approach based on SERS-enhancing nanoparticle aggregates 

which are stabilised by encapsulation within dry swellable polymer matrices but are released 

on application of the analyte. Previous attempts to prepare Ag nanoparticles in polymer hosts 

have included the photoreduction of matrix-stabilised Ag halides [10] and chemical reduction of 

agarose gels containing Ag nitrate with borohydride. [11] Au nanoparticles have also been 

isolated within a thiolated-polystyrene matrix. [12] These methods each have their own 

disadvantages so that none have been widely adopted.  

 We have recently reported that large, thin (50 m) dry polymer sheets containing 

numerous SERS active Ag nanoparticle aggregates can be prepared by drying aqueous mixtures 

of hydroxyethylcelloulose (HEC) and pre-aggregated Ag colloid [13] which was an improvement 

of our earlier method which used polycarbophil as dried films or gels. [14][15] Although 

conventional aqueous colloids are known to give the highest SERS enhancements and are 

inexpensive to prepare, they are unstable systems, need to be stored at 4 °C and should not be 
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stored for long periods. In the dry “Poly-SERS” films the particle aggregates are stabilised in 

the polymer matrix. The films can be stored at RT, are portable and are easy to handle, for 

example, they can be cut to size with scissors meaning they are highly appropriate for regular 

or intermittent bed-side SERS analysis if used alongside a portable Raman spectrometer. [13]  

 The Poly-SERS films are made of highly swellable HEC polymer and so upon 

activation with aqueous analyte, the films can rapidly absorb the analyte whilst simultaneously 

releasing the Ag nanoparticle aggregates to interact and generate SERS. The ability of the 

polymer to swell quickly means that a SERS signal can be obtained almost immediately once 

analyte is deposited onto the surface of the film. Furthermore, if the analyte is allowed to 

preconcentrate onto the film there is an increase in signal intensity with time where maximum 

SERS signals are given when all of the solvent evaporates. For droplets of analyte dissolved in 

25% ethanol in water, optimum SERS signals can be obtained at approximately 60 minutes 

after depositing onto the film, i.e. when the solvent has fully evaporated. 

 Here we explore the use of such films for the detection of phenytoin, an anticonvulsant 

which is commonly used as an antiepileptic drug, in PBS as a model for interstitial fluid.  

Phenytoin must be routinely monitored in patients due to the adverse side effects which occur 

at concentrations above the target therapeutic range of 10-20 mg L-1; effects include depression 

of the central nervous system, which can give symptoms ranging from mild sedation to coma. 

[16]  

 

2. Materials and methods 

2.1 Reagents and materials 

 Gold (III) chloride hydrate, magnesium sulphate, trisodium citrate, phenytoin and 

phosphate buffered saline (PBS) tablets were purchased from Sigma Aldrich. Natrosol 

hydroxyethylcellulose (HEC) 250 pharm HX was purchased from Ashland Inc.  
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2.2 Preparation of Ag Poly-SERS films 

 The Ag Poly-SERS films were prepared as described previously. [13] In brief, citrate 

reduced Ag colloids were prepared and had λmax = 405 nm. The colloid was then pre-aggregated 

using MgSO4 mixed with HEC powder and dried to a film. The UV-vis spectrum of an Au 

Poly-SERS film showed a broad extinction from 300 to 1000 nm (see Supplementary Data, Fig. 

S1), which was due to a combination of light scattering by the semi-opaque film and absorption 

by the aggregated particles. 

2.3 Preparation of Au Poly-SERS films 

 Colloidal Au nanoparticles (ca. 50 nm diameter) were prepared by citrate reduction of 

gold chloride hydrate, [17] and had λmax = 545 nm. The Au Poly-SERS films where then prepared 

by pre-aggregating the as-prepared colloid (54.2 mL) with 10.8 mL MgSO4 at 0.1 mol dm-3 and 

mixing with HEC powder (1.2 % w/v polymer) at 400 rpm using a mechanical stirrer until a 

smooth, glossy gel was obtained, which typically took approx. 50 min. The resulting gel was 

then poured into a 10 × 10 × 0.5 cm casting mould and left to dry in air (relative humidity 

≤50%).   

2.4 SERS analysis with Poly-SERS films 

 The Ag and Au Poly-SERS films were both used in the same way; small (5 × 5 mm) 

squares of the films were placed onto a glass slides covered in aluminium foil before they were 

rehydrated by applying a 15 µL aqueous droplet of analyte onto the surface of the SERS films. 

The aqueous analyte was then allowed to dry before a spectrum was collected by directing the 

probe laser from a PerkinElmer RamanMicro 200 Raman microscope using a 4× objective lens 

at 55 % laser power onto it. The microscope uses a 785 nm cavity diode laser (80 mW) with a 

Czerny-Turner spectrometer with a spectral range of 95-3200 cm-1. It is composed of an 

Olympus microscope (BX51 reflected illumination frame) which is connected to a spectrometer 

through fibre optic cables, this gives a spot diameter of 230 µm. In all cases, SERS spectra were 

collected with accumulation times of 30 s. 
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 Phenytoin stock solution was initially prepared in ethanol and serial dilutions were then 

carried out using DDI water or PBS solution.  

2.5 SERS analysis with aqueous Au colloid  

 Aqueous samples were held in 96 well polyethylene microlitre plates analysed using a 

785 nm Avalon RamanStation. The system has a 785 nm laser source (ca. 160 mW at sample) 

with a spot diameter ca. 200 µm. and is fitted with an echelle spectrograph. For SERS analysis, 

100 µL colloid was mixed with 100 µL analyte solution and then aggregated with 50 µL of 0.1 

mol dm-3 MgSO4 before a spectrum was recorded.  

 

3. Results and discussion 

 Highly swellable Ag Poly-SERS films have been shown to work well with a range of 

organic and inorganic target molecules in previous work and their properties have been well 

characterised. [13] The SEM image in Fig. 1 shows that the Ag aggregates are distributed 

approximately evenly across the film.  

 



7 
 

 

Fig. 1: SEM image showing Ag aggregates within a Poly-SERS film at 5400× magnification. 

The insert shows a photograph of a section of Ag Poly-SERS film cut to approximately 1 cm2. 

 

Initial experiments on phenytoin detection were therefore carried out using these Ag 

materials. Fig. 2 (a) shows the SERS spectrum obtained when 15 µL of 1 × 10-4 mol dm-3 

phenytoin in water was deposited on an Ag Poly-SERS film. The spectrum shows characteristic 

bands for phenytoin which are also detected with simple aqueous Ag colloid (see Fig. 3). 

Although aqueous phenytoin could clearly be detected with the Ag Poly-SERS films it was 

important to test if this was also the case under conditions relevant to therapeutic drug 

monitoring. Since most body fluids including blood and interstitial fluid have high levels of 

salts, particularly NaCl, PBS was used as mimic for body fluids for in vitro studies. It was found 

that when the phenytoin was dissolved in PBS rather than water the drug bands were no longer 

visible and the spectrum closely resembled that of the simple Ag colloid blank (see 

Supplementary Data, Fig S2).  
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Fig. 2: SERS spectra of 15 µL, 1 × 10-4 mol dm-3 phenytoin recorded using Ag Poly-SERS 

films. Phenytoin was dissolved in (a) water and (b) PBS. The spectra are on the same vertical 

scale, apart from being offset for clarity. 

 

The loss of phenytoin bands in the presence of PBS was presumably due to competition 

by chloride from the buffer for Ag surface sites. It is known that Cl- has a high affinity for Ag 

nanoparticles [18-20] and the low frequency region of the spectrum with PBS shows a strong Ag-

Cl band at 241 cm-1 (See Supplementary data Fig. S3). The loss of drug signal in PBS was not 

due to the presence of the HEC within the Poly-SERS films since the same result was seen for 

phenytoin and PBS with simple aqueous Ag colloid, as shown in Fig. 3.  
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Fig. 3: SERS spectra of 1 × 10-4 mol dm-3 phenytoin in (a) water and (b) PBS adsorbed onto 

100 µL aqueous CRSC and aggregated with 0.1 mol dm-3 MgSO4. The spectra are on the same 

vertical scale, apart from being offset for clarity. 

 

 In an attempt to overcome this problem, aqueous colloidal Au was tested since it has a 

lower affinity for Cl- than colloidal Ag but still gives high levels of SERS enhancement. [17] [21] 

The spectra of phenytoin in water and in PBS obtained with 50 nm diameter Au colloid are 

shown in Fig. 4 where it is clear that there is no difference in the absolute signal height of the 

main phenytoin bands and therefore no Cl- interference. The enhancement factor was estimated 

as 3×104. An obvious approach was therefore to prepare Poly-SERS films with Au 

nanoparticles. 
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Fig. 4: SERS spectra of 1 × 10-4 mol dm-3 phenytoin in (a) water and (b) PBS adsorbed onto 

100 µL aqueous Au colloid and aggregated with 0.1 mol dm-3 MgSO4. Both spectra have blank 

backgrounds subtracted. The spectra are on the same vertical scale, apart from being offset for 

clarity. 

 

 It was found that the Au colloid could be isolated in HEC films in a similar way to the 

Ag colloid i.e. by pre-aggregating the colloid with MgSO4 then mixing the aggregated solution 

with the polymer to make a gel which was placed in a mould and allowed to dry to a flexible 

thin film. [13] The resulting Au Poly-SERS films had similar physical properties to the Ag Poly-

SERS films, [13] in that they were flexible opaque, coloured sheets. The only difference between 

the materials was that the Au Poly-SERS films were purple/blue while the Ag films were a dull 

opaque green/brown. This purple/blue colour is characteristic of aggregated Au nanoparticles, 

as opposed to the red-brown colour of the starting unaggregated Au nanoparticles. The UV-vis 

spectrum of an Au Poly-SERS film showed a broad extinction from 300 to 1000 nm (see 

Supplementary Data, Fig. S1), as with Ag Poly-SERS films this was due to a combination of 

light scattering by the semi-opaque film and absorption by the aggregated particles. Figures 5 

and 6 illustrate that the Au particles in the Au Poly-SERS films were in the form of dispersed 
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aggregates. The average diameter of the aggregates was ca. 550 nm but a range of diameters 

was observed, the aggregates were distributed randomly in all 3 dimensions across the films. A 

plot showing the distribution of aggregate sizes is shown in the Supplementary Data, Fig. S4.  

 

Fig. 5: SEM image showing Au aggregates within a Poly-SERS film at 14 000× magnification. 

The out of focus clusters are deeper within the film. The insert shows a photograph of a section 

of Au Poly-SERS film cut to approximately 1 cm2. 

 

 

Fig. 6: Schematic diagram illustrating (a) the isolation of Au nanoparticle aggregates at various 

depths within a Poly-SERS film. In use, (b) an aqueous droplet of analyte is deposited onto the 

surface of the film, causing it to swell. (c) A SERS spectrum is then recorded using the probe 

laser.   
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 Figure 7 shows data from the Au Poly-SERS films tested with phenytoin in the absence 

and presence of PBS. In contrast to the previous results with Ag Poly-SERS films, there was 

no difference in the phenytoin signal intensities when PBS was used in place of water. The only 

disadvantage of the Au films was that the zero background spectrum did have stronger features 

than those found with the Ag films (see Supplementary Data Fig. S5). The background given 

with Au Poly-SERS film was very similar to that seen with the parent Au colloid, with only 

a small number of additional SERS features which were possibly caused by an 

additive/impurity within the HEC powder.  Although the origin of this Au colloid 

background has not been identified within the SERS community, since it was not displaced by 

adding HEC or phenytoin, this meant that it was strongly bound to the Au surface, unlike the 

citrate peaks seen  with aqueous Ag colloid which were easily displaced by small concentrations 

of chloride ions, possibly from HEC (see Supplementary data Fig. S3). Previous attempts to 

displace the surface species on Au colloid with excess chloride, bromide, acid, base and 

peroxide have all proved unsuccessful. [22] Nevertheless, the background seen with Au Poly-

SERS films was reproducible and did not interfere with the most dominant phenytoin band at 

1004 cm-1 and in addition it could be subtracted out if required.  
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Fig. 7: SERS spectra obtained with Au Poly-SERS films of 15 µL droplets of 1 × 10-3 mol dm-

3 phenytoin in (a) water and (b) PBS. Both spectra have blank backgrounds subtracted. The 

spectra are on the same vertical scale, apart from being offset for clarity. 

 

  The Au Poly-SERS films allowed phenytoin dissolved in PBS to be detected at a 

concentration as low as 1.8 mg L-1 (7 × 10-6 mol dm-3), which is well below its target therapeutic 

range of 10-20 mg L-1. Fig. 7 shows a calibration plot of phenytoin, dissolved in PBS using Au 

Poly-SERS films. The data show a strong correlation between the concentration of phenytoin 

and the absolute SERS signals of the most dominant 1004 cm-1 phenytoin band. As with the Ag 

Poly-SERS films, [13] the Au Poly-SERS films were sufficiently homogenous for the current 

purpose, the standard deviation in the absolute SERS signal intensities measured for the same 

surface (3 spectra per measurement) with 1 × 10-4 mol dm-3 phenytoin was 5.5 %. Similarly, 

the films have a useful shelf life; the data shown in Fig. 8 were obtained with films which had 

been stored in air for ca. 9 months after preparation.   

Finally, it is interesting to compare the performance of the Poly-SERS films against 

their parent colloid. In the case of Ag Poly-SERS films it was found that the absolute signal 

heights given by the films and colloid were within a factor of 3 over a broad range of 

concentrations. In part, this similarity may have been the result of factors which increase or 

decrease the enhancement acting together in the films. For example, the polymer would be 

expected to hinder, at least to some extent, the access of the analyte to the enhancing surface of 

the particles. However, during the preparation of the Poly-SERS films they are loaded with a 

much higher density of particle aggregates than are present in the parent colloid which resulted 

in increased scattering. In other words, the dried Poly-SERS films were only approx. 50 µm 

thick, but they contained the same number of particles as the 5 mm depth of gel which was 

initially used to prepare them. In comparison, with the aqueous colloid many of these particles 

will lie outside the focal depth of the system and therefore not contribute to the signal. This 
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effect means that the SERS signals for strongly binding analytes which are able to overcome 

HEC interference give greater SERS signal intensities when using Poly-SERS films than with 

the aqueous colloid.  [13] Of course, phenytoin is not a typical test analyte for SERS experiments 

since it is not known to have strong affinities for Ag or Au colloids. Other analytes such as 

thiophenol interact with Ag or Au nanoparticles to a greater extent and so will be able to 

overcome interference from HEC and retain a large amount of sensitivity when tested with 

Poly-SERS films, in comparison to when its parent aqueous colloid is used, (see Supplementary 

Data, Fig. S6).  In contrast, with phenytoin and Au Poly-SERS films, the absolute signal 

generated by a given concentration of phenytoin was found to be much lower for the films than 

for the parent colloid. This could be due to either the aggregates giving lower enhancement in 

the films or, as mentioned previously, the polymer hindering access of the analyte to the 

particles. These effects can be separated by considering the data for the signal intensities given 

by Au colloid alongside that for the films, as shown in Fig. 8. In Fig. 8 the maximum signal 

intensities given by both systems are similar but the phenytoin concentration which gives these 

signals is much lower for the aqueous colloid than the films. Indeed the aqueous colloid signals 

start to plateau at concentrations which are at the low end of the films’ range. This implies that 

the particles in the films and colloid will both provide similar levels of enhancement but that 

higher analyte concentrations are required to reach a given signal level, presumably due to 

interference by the polymer matrix. In the semi-log plot, the data for the films and colloid are 

offset by approximately 2 log units of concentration, implying that a hundredfold increase in 

concentration is needed to force the same amount of analyte onto the film-bound particles as 

onto the simple colloid. Although this appears to be a large number, since it effectively 

corresponds to a reduction in sensitivity of 2 orders of magnitude, the SERS signals given with 

Au colloid by phenytoin are so high that even with this reduction in the sensitivity the signals 

given by the films remain high enough to be used for therapeutic drug monitoring, as shown by 

the line marked on the Figure. This means that the cost in sensitivity for moving from simple 

colloids to films is not so large that it outweighs the advantages which the films bring, in 

particular their ease of use and long shelf life.  
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Fig. 8: Plot comparing the absolute SERS signal intensities of phenytoin in PBS obtained with 

aggregated aqueous Au colloid (blue) and Au Poly-SERS films which had been stored in air 

for ca. 9 months (green). The lower limit of the target therapeutic range for phenytoin has been 

highlighted as a dashed line. 

 

4. Conclusions 

 Interference by Cl- ions prevents the use of Ag colloids or films prepared from Ag 

colloids for monitoring phenytoin. Au colloids are less susceptible to interference by Cl- and 

here it was found that HEC films could be used to stabilise Au aggregates to give Au Poly-

SERS substrates. These materials have the same advantages of long shelf life and ease of use 

as the previously reported Ag analogues but without the same problems with Cl- interference 

for weakly adsorbing analytes such as phenytoin. Encapsulation of the Au reduces the 

sensitivity of the Au Poly-SERS films compared to their parent colloid but the sensitivity is still 

sufficient for therapeutic monitoring of phenytoin.  
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