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Abstract 

Amphibian skin secretions contain biologically-active compounds, such as anti-

microbial peptides and trypsin inhibitors, which are used by biomedical researchers as a 

source of potential novel drug leads or pharmacological agents. Here, we report the 

application of a recently developed technique within our laboratory to “shotgun” clone the 

cDNAs encoding two novel but structurally-related peptides from the lyophilized skin 

secretions of one species of European frog, Rana esculentaand one species of Chinese frog, 

Odorranaschmackeri. Bioanalysis of the peptides established the structure of a 17-mer with 

an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide 

bridge between Cys 12 and 17, which is a canonical Kunitz-type protease inhibitor motif (-

CKAAFC-). Due to the presence of this structural attribute, these peptides were named 

kunitzin-RE (AAKIILNPKFRCKAAFC) and kunitzin-OS (AVNIPFKVHLRCKAAFC). 

Synthetic replicates of these two novel peptides were found to display a potent inhibitory 

activity against Escherichia coli but were ineffective at inhibiting the growth of 

Staphylococcus aureus and Candida albicans at concentrations up to 160μM and both 

showed little haemolytic activity at concentrations up to 120μM. Subsequently, kunitzin-RE 

and kunitzin-OSwere found to be a potent inhibitor of trypsin with a Ki of 5.56 µM and 

7.56µM that represent prototypes of a novel class of highly-attenuated amphibian skin 

protease inhibitor. Substitution of Lys-13, the predicted residue occupying the P1 position 

within the inhibitory loop, with Phe (F) resulted in decrease in trypsin inhibitor effectiveness 

and antimicrobial activity against Esherichia coli, but exhibits a potential inhibition activity 

against chymotrysin. 
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Introduction 

Frogs have survived successfully over millions of years without detectable changes in 

their morphology. Their first-line of defence against predators and pathogens appears to be 

reliant on the synthesis and secretion of a complex array of bioactive molecules from highly-

specialised dermal granular or poison glands that also appear to represent a primitive innate 

immune system[1-2]. As modern analytical and mass spectrometric technologies develop, more 

novel peptides are being identified in and isolated from these complex amphibian defensive 

skin secretions. Meanwhile many peptides, which have hitherto been considered to be unique 

in one species, have been found to be widely-distributed in many structurally-related forms 

across different species. Scientists are also interested in studying different bioactivities 

among the newly discovered compounds secreted from frogs. The majority of these 

compounds are related to the amphibian defence system, such as antimicrobial peptides, 

neurotoxins, antioxidants and protease inhibitors[1-4]. 

Protease inhibitors (PIs), widely found in animals, microorganisms and plants, are 

known to play key roles in the aetiology and treatment of human pathologies such as cancer, 

inflammation and haemorrhage, based on their inhibiting the catalytic activity of proteolytic 

enzymes[5]. In addition, PIs appear to be a class of drugs representing a vital source of lead 

compounds for the treating or preventing of infection by viruses or pathogens, including HIV 

and Hepatitis C, in accordance with their capability of inhibiting the extracellular proteases 

which are believed to be widely produced by many pathogens (Christeller 2005). Thus PIs 

are useful tools to study and ultimately to better understand the functional principles of 

protein actives leading to the design of highly-specific drugs to control pathologic processes 

(Dockray et al 1975, Sampaio et al 1996, Goraya et al 1998). 

Protease inhibitors are widely-distributed in amphibian skin secretions. Kunitz inhibitors 

have been found in the skin secretions of bombinid toads and ranid frogs, Kazal inhibitors in 



 

phyllomedusine frogs and Bowman-Birk inhibitors in ranid frogs. Kunitz protease inhibitors 

usually contain four Cys residues that form two disulphide bridges and a single reactive 

centre as canonical structural features of the group [4,](Conlon et al 2009, Sampaio et al 

1996, Goraya et al 1998). Furthermore, Kunitz-type inhibitors containing the rare signal 

peptide disulphide bridges have been isolated from frog skin secretions and this new type of 

trypsin inhibitor is apparently widely present in these secretions such that it can provide a 

wide spectrum of action templates for designing specific inhibitors for discrete protease 

targets (Lambert et al 2004). 

In this study, we report the identification, structural characterisation, and cloning of 

skin-derived cDNAs that encode novel peptides with antimicrobial and potent trypsin 

inhibitory activities.  Bioinformatic analysis indicated that both peptides contain a canonical 

Kunitz-type reactive centre and hence represent the smallest natural members of this 

established inhibitor family discovered to date.  As a consequence of their structural and 

functional attributes, the peptides were named kunitzin-RE and kunitzin-OS. As the donor 

species (the European Edible frog, Rana esculenta, and the Chinese frog, 

Odorranaschmackeri), effectively represent the extremes of the range of Eurasian ranid 

frogs, it would not be unreasonable to suggest that kunitzins are of widespread occurrence in 

other species and this broad distribution may be reflective of an important if not fundamental 

role in the defence of the frogs. Meanwhile, the protease inhibitory potency of synthetic P1-

substituted analogues (Phe13-kunitzins) and the catalytic loops were also synthesised and 

evaluated by comparing that of wild-typekunitzins for structure-activity relationship in this 

study. 

 

 

 



 

Materials and methods 

Preparation of skin secretion 

Rana esculenta (n=4, 4–6cm snout to vent length) were obtained from a local 

herpetological supplierandOdorranaschmackeri(n=3, respectively) were captured during 

expeditions in the People’s Republic of China. All frogs were adults and secretion harvesting 

was performed in the field after which frogs were released. Skin secretions were obtained 

from the dorsal skin using gentle transdermal electrical stimulation as previously described. 

The stimulated secretions were washed from the skin using deionised water and divided into 

either 0.2% v/v aqueous trifluoroacetic acid (for subsequent peptide characterisation), or into 

cell lysis/mRNA stabilisation buffer (Dynal) for subsequent cDNA library construction. 

“Shotgun” cloning of skin secretion-derived cDNA 

Five mg samples from each lyophilised skin secretion were separately dissolved in 1ml 

of cell lysis/mRNA protection buffer supplied by DynalBiotec, UK. Polyadenylated mRNA 

was isolated by the use of magnetic oligo-dT beads as described by the manufacturer 

(DynalBiotec, UK). The isolated mRNA was subjected to 3′-rapid amplification of cDNA 

ends (RACE) procedures to obtain full-length antimicrobial peptide precursor nucleic acid 

sequence data using a SMART-RACE kit (Clontech, UK) essentially as previously described. 

Briefly, the 3′-RACE reactions employed a nested universal primer (NUP), supplied with the 

kit, and a degenerate sense primer (5′-GTTCACCATGAAGAAATCCCTGTTACT-3′) that 

was designed to a highly conserved domain of the 5′-untranslated region of previously 

characterised antimicrobial/trypsin inhibitor peptide cDNAs from Rana species. The 3′-

RACE reactions were purified and cloned using a pGEM-T vector system (Promega 

Corporation) and sequenced using an ABI 3730 automated sequencer. 

 

 



 

Identification and structural analysis of novel precursor cDNA encoded peptides 

Five mg samples from each lyophilised skin secretion were dissolved separately in 

0.5ml of 0.05/99.95 (v/v) trifluoroacetic acid (TFA)/water and clarified of microparticulates 

by centrifugation. The supernatants were then separately subjected to reverse phase HPLC 

fractionation using a Cecil Adept Binary HPLC system (Adept Technology, Inc. USA) fitted 

with an analytical column (Phenomenex C-5; 0.46cm×25cm). This was eluted with a linear 

gradient formed from 0.05/99.5 (v/v) TFA/water to 0.05/19.95/80.0 (v/v/v) 

TFA/water/acetonitrile in 240min at a flow rate of 1ml/min. Fractions (1ml) were collected 

and the effluent absorbance was continuously monitored at λ=214nm. Samples (100μl) were 

removed from each fraction in triplicate, lyophilised and stored at −20°C prior to bioactivity 

assays. The fractions that exhibited specified activity were subjected to MALDI-TOF MS 

analysis using a Perseptive Biosystems Voyager DE instrument (Framingham, MA, USA) in 

positive ion mode and α-cyano-4-hydroxycinnamic acid as matrix. Internal mass calibration 

of the instrument with peptide standards established the accuracy of mass determinations as 

±0.01%. Subsequently, each of the novel peptideswere chemically synthesised using solid-

phase Fmoc methodology on a PS3 automated peptide synthesiser (Protein Technologies Inc., 

AZ, USA). Products were purified and structures confirmed by LC/MS/MS. 

Synthesis of kunitzins, the analogues (Phe13-kunitzins) and catalytic loops 

Following unequivocal establishment of the primary structure of natural kunitzin-RE 

and kunitzin-OS, replicates were synthesised by solid-phase Fmoc chemistry using a PS3 

automated peptide synthesiser (Protein Technologies, Tucson, AZ, USA). When the synthesis 

cycles were completed, the peptides were cleaved from the resins using 95/2.5/2.5 (v/v/v) 

TFA/TIPS/water for 6h, precipitated in ether over the next 24 h, washed exhaustively in six 

changes of ether and then allowed to completely dry over a further 24h. The peptides were 

then dissolved in a minimal quantity of 0.05/99.5, v/v, TFA/water, snap frozen in liquid 



 

nitrogen and lyophilised. Degree of purity and authentication of structures of the synthetic 

peptides were determined using MALDI-TOF MS as previously described. The analogues 

(Phe13-kunitzins) and the catalytic loops of both wild-type and analogue peptides were also 

synthesised using the same method. 

Antimicrobial assays 

Antimicrobial activities of synthetic kunitzins and their analogues were assessed by 

determination of minimal inhibitory concentrations (MICs) using a standard Gram-positive 

bacterium S. aureus—NCTC 10788), a standard Gram-negative bacterium (Escherichia 

coli—NCTC 10418) and a standard pathogenic yeast (Candida albicans NCPF 1467). 

kunitzin-RE and kunitzin-OS were tested within the concentration range of 160–2.5μM and 

were initially dissolved as a stock solution of 200μM in sodium phosphate-buffered saline, 

pH 7.2, and subsequently diluted in Mueller–Hinton broth (MHB). Peptide concentrations in 

the range stated, were inoculated with microorganism cultures (105 colony forming units 

(CFU)/ml), and placed into 96-well microtiter cell culture plates. Plates were incubated for 18 

h at 37°C in a humidified atmosphere. Following this, the growth of bacteria/yeast was 

determined by means of measuring optical density (OD) at λ=550nm by an ELISA plate 

reader (BioliseBioTek EL808). Minimal inhibitory concentrations (MICs) were defined as 

the lowest concentration at which no growth was detectable. 

Hemolysis assay 

A 2% suspension of red blood cells was prepared from defibrinated horse blood (TCS 

Biosciences Ltd, UK). Kunitzin-RE and kunitzin-OS solutions of different concentrations 

were prepared as described in a previous section. Two hundred microlitres of the red blood 

cell suspension were incubated with a range of kunitzin-RE and kunitzin-OS concentrations 

similar to those employed for antimicrobial assays at 37°C for 2h. Lysis of red cells was 

assessed by measurement of optical density at λ=550nm using an ELISA plate reader 



 

(BioliseBioTek EL808). Negative controls employed consisted of a 2% red cell suspension 

and sodium phosphate-buffered saline in equal volume and positive controls consisted of a 

2% red cell suspension and an equal volume of sodium phosphate-buffered saline containing 

2% of the non-ionic detergent, Triton X-100 (Sigma–Aldrich). The percent haemolysis was 

calculated using the following equation: %haemolysis= (A-A0) / (AX-A0) × 100 where ‘A’ 

is absorbance at ive controls employed consisted of a 2% red cell ce at λ=550nm with 

phosphate-buffered saline and ‘AX’ is absorbance at λ=550nm with 2% Triton X-100. 

Trypsin inhibition assay. 

Trypsin (10μl of a 0.1μM stock solution in 1mMHCl) was added to the wells of a micro-

titre plate containing substrate (Phe-Pro-Arg-NHMec, obtained from Sigma/Aldrich, Poole, 

Dorset, UK) (50μM) and either reconstituted chromatographic fraction (33%), in the first 

instance or, subsequently, synthetic peptide replicates (10–1000μM) in 10mM phosphate 

buffer, pH 7.4, containing 2.7mMKCl and 137mMNaCl (final volume 210μl). Each 

determination was carried out in triplicate. The rate of hydrolysis of substrate was monitored 

continuously at 37°C, by measuring the rate of increase of fluorescence due to production of 

7-amino-4-methylcoumarin (NH2Mec) at 460nm (excitation 360nm) in a FluoStar OPTIMA 

plate reader (BMG LABTECH, Germany) 

Chymotrypsin inhibition assay. 

Inhibitory activity assays on synthetic peptide replicates and their various P1-site-

substituted variants against chymotrypsin, were performed exactly as detailed for the trypsin 

inhibition assay, except that the target protease was chymotrypsin and the fluorogenic 

substrate utilised was Succinyl-Ala-Ala-Pro-Phe-NHMec (obtained from Bachem, UK). 

Trypsin cleavage of inhibitor peptides 

1mg of trypsin (Sigma) and 1mg each of synthetic novel inhibitor peptides were 

separately incubated in 1 ml of sodium phosphate buffer, pH 7.2, at room temperature (25oC) 



 

for 2h. Samples (20μl) were removed at 10 min intervals into 100μl of 0.05% (v/v) 

trifluoroacetic acid/water to terminate reactions. One microlitre of each was placed in 

separate wells of a MALDI-TOF sample plate, mixed with 1μl of matrix solution (α-cyano-4-

hydroxycinnamic acid in 50/50 (v/v) water/acetonitrile), air dried and subjected to analysis on 

a Perseptive Biosystems DE MALDI-TOF instrument. 

Result 

“Shotgun” cloning of novel peptide-encoding cDNAs 

The full-length kunitzin-RE and kunitzin-OS biosynthetic precursor-

encodingcDNAswere separately and repeatedly cloned from the R. esculentaand O. 

schmackeri skin secretion cDNA libraries and each encoded a single copy of respective 

putative mature peptides (Figure1). The NCBI BLAST search found that the novel peptides 

from R. esculenta and O. schmackeri showed at least 88% sequence identity, respectively, 

with Ranaturerin-2Ra and 2R from R. ridibunda (Figure 2A). In terms of the novel peptide 

precursor protein architectures, the N-terminal 22 amino acid residues encode a putative 

signal peptide and the following 29 amino acids constitute the acidic amino acid residue-rich 

spacer peptide domain that contains two classical-Lys-Arg- (-K-R-) propeptide convertase 

cleavage sites, the latter of which immediately flanks the N-terminus of the putative mature 

peptides. Both mature peptide sequences consisted of a 17-mer with an N-terminal Ala (A) 

residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 

17. The nucleotide sequences of the precursor-encoding cDNA of kunitzin-RE and kunitzin-

OS havebeen deposited in Genbank Nucleotide Sequence Database under the accession code 

CCG00970 and AMW87025. 

Isolation and structural characterisation of kunitzin-RE and kunitzin-OS from reverse 

phase HPLC fractions of skin secretion 



 

Following prediction of the molecular masses ofkunitzin-RE and kunitzin-OS from the 

cloned precursors and compensation for post-translational modification (single disulphide 

bridge formation in the C-terminal loop = −2amu), each mature peptide was identified in skin 

secretion HPLC fractions from respective species (Figure3andTable 1). Synthetic replicates 

of both novel peptides were successfully synthesised and obtained with a high degree of 

purity in the first attempt by the methodology employed and the molecular masses of the 

purified products were confirmed to be identical to those of the natural peptides by use of 

MALDI-TOF mass spectrometry analysis. The primary structures of kunitzin-RE and 

kunitzin-OS were determined by MS/MS fragmentation sequencing (Figure4) unambiguously. 

Antimicrobial/haemolytic activities of synthetic kunitzin-RE, kunitzin-OS and their 

analogues 

Both the natural novel peptides and their synthetic replicates possessed relatively potent 

growth inhibitory activity against the Gram-negative bacterium, E. coli (Table2), with MICs 

of 30 µM and 20µM, respectively, but were ineffective against the Gram-positive bacterium, 

S. aureus and the pathogenic yeast, C. albicans at concentrations up to 160μM. Both peptides 

possessed little haemolytic activity at concentrations up to and including 120μM. 

Trypsin inhibition and peptide cleavage 

Wide-type peptides and their synthetic replicates, kunitzin-RE and kunitzin-OS were 

found to possess relatively potent inhibitory activity against trypsin with Ki values of 5.56 

μM and 7.56μM, respectively. A synthetic replicate of the cyclic C-terminal six-residue loop 

(-CKAAFC-) possessed no apparent trypsin-inhibitory activity.  

Synthetic peptides with the natural Lys-13 residue occupying the P1 position within the 

inhibitory loop were the most potent trypsin inhibitors with no chymotrypsin activity even 

when employed at a concentration of 1mM. However, when Lys-13 was replaced by Phe (F), 

trypsin inhibitory activity was completely abolished and a modest inhibitory activity towards 



 

chymotrypsin was observed. The resultant ‘Morrison plots’ (Table 3) derived from these 

latter progress curves, yielded Ki values of 17.5µM and 67.98µM for chymotrypsin inhibition 

by both site-substituted analogues, respectively. 

The synthetic replicates of both novel natural peptides were cleaved by trypsin. The data 

obtained from these experiments are summarised in Table 4 and demonstrate that the 

cleavage fragments are generated through cleavage of classical trypsin sensitive sites. On the 

basis of these data, we presume that both inhibitor peptides act in a substrate-like manner and 

that they may compete with the synthetic trypsin-substrate for the active site of the enzyme. 

Discussion 

Various types of compounds synthesised and/or stored in frog skin, including amines, 

alkaloids and peptides, form a fundamental part of their anti-predator defence systems. In 

response to stress, compression of the peptide-containing serous cells is initiated and these 

host-defence peptides, stored in the granular glands, are secreted by a holocrine-like 

mechanism onto the dorsal surface [2](Bode et al 1992, McPhee et al 2005, Otvos 2005). 

Serine protease inhibitors are one of the most studied groups of natural biomolecules as they 

play key roles in controlling blood coagulation and inflammation as well as a large number of 

other essential life processes.  In Nature, protein-based protease inhibitors protect the host 

against a range of extrinsic proteases produced by invading microorganisms (Tamechika et al 

1996) and these inhibitors can be generally classified according to the presence of a defined 

structural motif as Kunitz, Kazal or Bowman- Birk (Zasloff 1987).  The Bowman-Birk-like 

trypsin inhibitor from the skinsecretion of Huia versabilis (HV-BBI), exhibits a potent 

inhibition against trypsin[4]. The Kunitz-type trypsin inhibitor isolated from the skin secretion 

of Dyscophusguineti, a species which apparently does not produce classical antimicrobial 

peptides, is proposed to play a role as an anti-infective agent (Zasloff 2002). 



 

In the present study, two novel peptides, each containing 17 amino acid residues, have 

been identified from two different species of frog representing two continents, Europe and 

Asia, and both contain six-residue C-terminal disulphide-bridged loops (-CKAAFC-), formed 

by two cysteine residues. This conserved six-residue loop is suggestive of an antimicrobial 

function for these novel peptides as the ranatuerin-2 family of frog skin antimicrobial 

peptides display a C-terminal cyclic hexapeptide domain rather than the more common 

heptapeptde of others (Otvos 2005, Zasloff 2002). However, while the ranatuerin-2 family of 

peptides first identified in the bullfrog,  Lithobates catesbeianus (Pukala et al 2006), have a 

marked variation in their amino acid sequences and some members, for example, the potent 

broad-spectrum antimicrobial peptide ranatuerin-2CSa isolated from the Cascades frog, Rana 

cascadae (Pukala et al 2006), have been proposed as templates for antibacterial drug 

development, the two novel peptides discovered here display no structural similarity with 

ranatuerins and only limited antimicrobial activity against the Gram-negative bacterium, E. 

coli, are hence not members of this family. Thus the analogues previously identified in the 

skin secretion of Rana ridibunda, have been named erroneously.   

Further biological investigations on the two novel peptides found both to be rather 

potent inhibitors of trypsin with Ki values of approximately 5.56 and 7.56 µM, for the Rana 

esculenta (RE) and Odorrana schmackeri (OS) peptides, respectively. Bioinformatic analysis 

of the primary structures of the two novel peptides established that they exhibited structural 

similarity to the “so-called” Rana ridibunda ranatuerins – a nomenclature that is erronoeous 

as discussed previously, and to a series of trivially named antimiocrobial peptides from 

several species of Chinese frogs, most notably from the ranid genus, Amolops, all of which 

are unpublished observations.  These data however, imply that the peptides described in this 

study, are of widespread occurrence in the skins of a considerable number of species from a 

variety of ranid frog taxa of both European and especially of Asian origin.  Such widespread 



 

expression and conservation of peptide structure across taxa is often indicative of a 

fundamental biological role. 

Bioinformatic analysis of the primary structure of the novel peptides indicated that the 

C-terminal disulphide-bridged loop exhibited a high degree of identity with the inhibitory 

loops of several Kunitz-type protease inhibitors from a variety of sources (Figure 2B), all of 

which possess either a Lys (K) or an Arg (R) residue in the P1 site.  This residue confers 

specificity for trypsin and proteases that cleave with a trypsin-like claeavage site specificity 

following a basic amino acid residue. For this reason and for the potent trypsin inhibitory 

activity displayed by both peptides, we named these peptide kunitzins as prototypes of a 

novel class of protease inhibitor from amphibian skin secretions. 

The P1 site is occupied by a Lys (K) residue in the conserved kunitzin motif, -CKAAFC, 

and synthetic analogues of  both peptides incorporating a Phe (F) residue in this position (-

CFAAFC-), displayed little inhibitory activity against trypsin even completely losing this 

ability, although they then exhibited a modest inhibitory activity against chymotrypsin. Thus, 

from the limited structure/activity data presented here, a Lys residue has apparently been 

selected by Nature to occupy this site within the six-residue loop and direct the inhibitory 

activity of the kunitzin towards a protease or proteases with trypsin-like cleavage specificity. 

Once the basic Lys residue in this P1 position is replaced by an aromatic amino acid residue 

(F), such analogues lose trypsin inhibitory activity and at the same time, their antimicrobial 

activity in addition. These data have also supplied evidence that the cyclic six-residue loop (-

CKAAFC), has no inhibitory activity against trypsin in its own right and must require other 

features of the primary structure of the peptides to achieve this.  

An observation of interest was that both kunitzins were catabolised by trypsin and 

identification of the catabolites of each peptide using MS showed that tryptic cleavages 

involved were classical. We presume that these fragments may play some roles in the other 



 

biological processes or that they may serve to imply that kunitzins act as pseudo-substrates 

and that this represents their mode of inhibitory action.  Of interest was the fact that the C-

terminal loop structure was not identified until late in respective incubations which would 

imply that this highly-ordered structure was maintained in the reactive center of the trypsin 

until cleaved after the Lys residue.  The incremental increase in molecular mass of 18 amu 

observed for this fragment in late incubation would be consistent with hydrolysis of the Lys-

X bond but with retention of the catabolite as a loop structure. 

The complex cocktail of compounds stored in the glandular glands of frogs consist of at 

least one broad-spectrum antibiotic peptide together with a number of other narrow-spectrum 

activity peptides which act against one or several kinds of bacteria. These narrow-spectrum 

antibacterial peptides can not only supply enhanced protection against a range of bacteria, but 

also have other roles in the defence system. An example of this are the caerins 2.1, isolated 

from Litoria splendida. These are narrow-spectrum antibiotic peptides against some Gram-

negative organisms but also inhibit the production of nitric oxide by neuronal nitric oxide 

synthase (Otvos 2005).  

There are a number of principles used to explain the membrane permeation or lytic 

mechanisms that lead to the death of microorganisms. The most important one is the 

fundamental structural principle known as amphipathic design. The peptides, containing 

clusters of hydrophobic and cationic amino acids, are able to adopt a shape to bind the 

membrane bilayer leading to cell lysis. These processes are thought to disturb the membrane 

or induce ‘wormhole’ formation so that the peptides can be transported into the inner leaflet 

and then produce defined pores, causing death of the target cell. Such kinds of peptides are 

usually linear and possess an α-helical secondary structure but most Rana frog peptides have 

instead modified C-terminal sequences with a single disulphide loop using a rigid anti-



 

parallel β-sheet as the framework (Otvos 2005, Qi et al 2005a, Qi et al 2005b, Song et al 

2008).  

As a type of Kunitz trypsin inhibitor, kunitzins also exhibit a narrow-spectrum 

antibacterial activity against the Gram-negative bacterium, Escherichia coli. These unusual 

peptides may be transported into the inner bacterial membrane to disrupt multiple cellular 

processes or additionally target a trypsin-like protease inside the Gram-negative bacteria 

resulting in their death. However the antibacterial mechanisms are still unclear and require 

further investigation. 
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Data deposition footnotes 

The nucleotide sequences of the kunitzin-RE and kunitzin-OS precursors have been deposited 

in the Genbank Nucleotide Sequence Database under the accession code CCG00970 and 

AMW87025. 
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Legends to Figures  

Figure 1.Nucleotide and translated open-reading frame amino acid sequences of cloned 

cDNAS encoding the biosynthetic precursors of (A) kunitzin-RE and (B) kunitzin-OS. 

Putative signal peptides are double-underlined, mature peptides are single-underlined and the 

respective stop codons are indicated by asterisks. 

Figure 2.(A)The primary structures of the novel kunitzin peptides from R. esculentaandO. 

schmackeri skin secretion compared with Ranatuerin-2Ra and 2R from R. ridibunda, 

respectively. Fully conserved residues are indicated with asterisks. Please note that 

bioinformatic analysis has indicated that the R. ridibundaranatuerin peptides are NOT 

structurally-related to canonical ranatuerins. (B)Comparison of the reactive centre of 

kunitzins with those from other selected Kunitz-type protease inhibitors. BPTI=Bovine 

pancreatic trypsin inhibitor; APPI=Amyloid protein precursor inhibitor; AAPH=Amyloid 

precursor protein homologue; TFPI=Tissue factor pathway inhibitor; HA1=Hepatocyte 

growth factor activator inhibitor; PLI=Porcine leukocyte inhibitor; UPTI=Uterine 

plasmin/trypsin inhibitor; SPI=Silk proteinase inhibitor; AsKC=Anemoniasulcatakalicludine . 

Figure 3.Region of reverse phase HPLC chromatograms of the skin scretions of  Rana 

esculenta (A) and Odorrana schmackeri (B) with arrows indicating elution/ retention times 

kunitzin-RE and kunitzin-OS, respectively. The Y-axis indicates absorbance units at 

λ=214nm. 

Figure 4. Predicted b- and y-ion MS/MS fragment ion series (singly- and doubly- charged) of 

kunitzin-RE (A) and kunizin-OS (B). Observed ions are indicated in bold typeface. 

 

 

 



 

Legends to Tables 

Table 1Molecular masses and primary structures of Kunitzin-RE and Kunitzin-OS identified 

in semi-preparative reverse phase HPLC fractions of R. esculenta and O. schmackeriskin 

secretion, respectively. The calculated (calc) and observed (obs) masses are monoisotopic. 

Mr (obs) values are deduced from the protonated molecules. 

Table 2Inhibitor constants for ‘wide-type’kunitzin-RE and -OS and their respective P1 site-

substituted variants against trypsin and chymotrypsin. 

Table 3Minimum inhibitory concentrations (µM) of synthetic replicates of kunitzin-OS and 

kunitzin-RE and their P1 site-substituted variants, against reference strains of 

microorganisms used in this study.  

Table 4 Catabolites generated by incubation of Kunitzin-RE and Kunizin–OS with 

trypsin.Computed molecular masses of kunitzin tryptic catabolites compared to those 

detected by MALDI-TOF MS. 
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Figure 4 

(A) 

#1  b(1+) b(2+) Seq. y(1+) y(2+) #2  
1 72.04440 36.52584 A   17  
2 143.08152 72.04440 A 1823.01836 912.01282 16  
3 271.17649 136.09188 K 1751.98124 876.49426 15  
4 384.26056 192.63392 I 1623.88627 812.44677 14  
5 497.34463 249.17595 I 1510.80220 755.90474 13  
6 610.42870 305.71799 L 1397.71813 699.36270 12  
7 724.47163 362.73945 N 1284.63406 642.82067 11  
8 821.52440 411.26584 P 1170.59113 585.79920 10  
9 949.61937 475.31332 K 1073.53836 537.27282 9  

10 1096.68779 548.84753 F 945.44339 473.22533 8  
11 1252.78891 626.89809 R 798.37497 399.69112 7  
12 1355.79810 678.40269 C 642.27385 321.64056 6  
13 1483.89307 742.45017 K 539.26466 270.13597 5  
14 1554.93019 777.96873 A 411.16969 206.08848 4  
15 1625.96731 813.48729 A 340.13257 170.56992 3  
16 1773.03573 887.02150 F 269.09545 135.05136 2  
17   C 122.02703 61.51715 1  

        

(B) 

 

 

 

 

 

 

 

 

 

 

 

 

#1 b(1+) b(2+) Seq. y(1+) y(2+) #2 

1 72.04440 36.52584 A     17 

2 171.11282 86.06005 V 1845.99795 923.50261 16 

3 285.15575 143.08151 N 1746.92953 873.96840 15 

4 398.23982 199.62355 I 1632.88660 816.94694 14 

5 495.29259 248.14993 P 1519.80253 760.40490 13 

6 642.36101 321.68414 F 1422.74976 711.87852 12 

7 770.45598 385.73163 K 1275.68134 638.34431 11 

8 869.52440 435.26584 V 1147.58637 574.29682 10 

9 1006.58331 503.79529 H 1048.51795 524.76261 9 

10 1119.66738 560.33733 L 911.45904 456.23316 8 

11 1275.76850 638.38789 R 798.37497 399.69112 7 

12 1378.77769 689.89248 C 642.27385 321.64056 6 

13 1506.87266 753.93997 K 539.26466 270.13597 5 

14 1577.90978 789.45853 A 411.16969 206.08848 4 

15 1648.94690 824.97709 A 340.13257 170.56992 3 

16 1796.01532 898.51130 F 269.09545 135.05136 2 

17     C 122.02703 61.51715 1 



 

Table 1 

Peptide Fraction Mr(obs) Mr(calc) Primary structure 

Kunitzin-RE 104 1893.50 1894.39 AAKIILNPKFRCKAAFC 

Kunitzin-OS 100 1916.65 1917.38 AVNIPFKVHLRCKAAFC 

 

 

Table 2 

Peptide Ki (µM) (trypsin) Ki (µM) (chymotrypsin) 

AAKIILNPKFRCKAAFC 5.56 N.I.* 

AAKIILNPKFRCFAAFC 48.37 17.5 

AVNIPFKVHLRCKAAFC 7.56 329 

AVNIPFKVHLRCFAAFC N.I.* 67.98 

VHLRCKAAFC 86.54 N.I.* 

CKAAFC N.I.* N.I.* 

*No inhibition was observed using peptide concentrations up to and including 1mM. 

P1 positition is highlighted. 

 

 

Table 3 

Peptide E.coli(µM) S.aureus(µM) Candida(µM) 

AAKIILNPKFRCKAAFC 30 NA* NA* 

AAKIILNPKFRCFAAFC 160 NA* NA* 

AVNIPFKVHLRCKAAFC 20 NA* NA* 

AVNIPFKVHLRCFAAFC NA* NA* NA* 

 VHLRCKAAFC NA* NA* NA* 

     CKAAFC NA* NA* NA* 

NA* = not active using peptide concentrations up to and including 200µM. 

 

 

 

 

 

 



 

Table 4 

Peptide Sequence Mr(calc) Mr(obs) 

Kunitzin-RE 1-17 

Kunitzin-RE 4-17 

Kunitzin-RE 1-11 

Kunitzin-RE 1-9 

Kunitzin-RE 4-11  

AAKIILNPKFRCKAAFC 

IILNPKFRCKAAFC  

AAKIILNPKFR 

  IILNPKFR   

AAKIILNPK   

1894.39 

1624.06 

1270.58 

1000.25 

967.21 

1894.85 

1625.23 

1271.22 

1000.67 

968.05 

↓site means the cleavage position 

AAK↓IILNPK↓FR↓CKAAFC 

 

Peptide Sequence Mr(calc) Mr(obs) 

Kunitzin-OS  1-17 

Kunitzin-OS 1-11 

Kunitzin-OS 1-7 

AVNIPFKVHLRCKAAFC 

AVNIPFKVHLR 

AVNIPFK 

1917.38 

1293.57 

787.95 

1916.87 

1293.15 

786.72 

↓site means the cleavage position 

AVNIPFK↓VHLR↓CK↓AAFC 

 

 

 


