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ABSTRACT: This paper is an overview of the development and application of Computer Vision for the Structural Health
Monitoring (SHM) of Bridges. A brief explanation of SHM is provided, followed by a breakdown of the stages of computer
vision techniques separated into laboratory and field trials. Qualitative evaluations and comparison of these methods have been
provided along with the proposal of guidelines for new vision-based SHM systems.
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1 INTRODUCTION

Existing Civil infrastructure is under an increasing level of
stress from loading/environmental effects. These effects can
be detrimental to the integrity of the bridges, and must be
monitored in order to avoid dangerous incidents and insure
public safety.

Visual inspections remain to be the most common method
of bridge inspection worldwide. This method is used as a
means of detecting obvious damage to structures such as
cracks/shifting of components and is carried out by following
a set of established guidelines according to bridge type. This
method has many limitations which affect its reliability and is
extremely sensitive to human error, particularly since a visual
inspection is rarely carried out by a senior engineer. A survey
of the reliability of visual inspections has detailed the high
level of variability in this assessment method [1].

In recent years Structural Health Monitoring (SHM)
systems have been developed to try to overcome these
limitations. =~ SHM can provide an unbiased means of
determining the true state of our aging infrastructure. Sensor
systems are used to monitor bridge deterioration and provide
real information on the capacity of individual structures,
hence extending bridge life and improving safety. Changes in
stiffness is usually measured using strain sensors, but recent
research has indicated that measuring displacement changes
from calibrating vehicles can be used as a method of detecting
bridge condition[2]. The deflection readings are gathered
with respect to vehicles of known weight passing over the
structure. If pre-weighed calibration trucks are not available
for testing, vehicle weights can be either gathered from a
database in order to gain approximate readings, or by using a
weigh-in-motion system to gain precise information on
vehicle weights.

Traditionally displacement is measured using transducers or
accelerometers which are attached to fixed points on the
structure. The transducers, such as linear variable differential
transformers (LVDT), give a direct reading of displacement
but generally require an independent frame for mounting,
which for most bridges make them impractical for use in the
field. On the other hand, accelerometers can be attached

directly to the structures (i.e. do not need a fixed reference)
but post processing of the data is required to convert
acceleration to displacement, as shown in Figure 1.

Integration Algorithm
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Figure 1. Integration Algorithm for Converting Accelerometer
Data to Displacement [3]

While these readings can, under certain circumstances,
provide a reasonably accurate estimate of deflection, there are
several related problems with the method, such as:

1) Durability as the sensors can be damaged easily.

2) Equipment is expensive to purchase and time
consuming to set up on site.

3) Measurement noise in the acceleration signal can
result in errors in the calculated displacement signal.

In recent years, new methods have been investigates to
address these issues, such as GPS readers, Laser Vibrometers
and Computer vision techniques. GPS readers have been
proved to be a reliable method of detecting deflection but



require satellite connectivity to function, which may not be
feasible at all sites, and they are susceptible to high electro-
magnetic noise[4] they are also not ideal for short span
bridges where movement ranges are modest. Laser
vibrometers are comparable in effectiveness with transducers
[5], but they are costly and difficult to set up/operate. On the
contrary, video cameras are cheap, reasonably easy to use and
can inspect a structure from a distance. They also mimic
human visual inspection. The main drawback in their use as
part of an SHM system is that the captured images require
complex and intelligent data processing and analysis through
computer vision algorithms.

This paper aims to provide a background on the evolution,
application and practicality of Computer Vision techniques in
SHM along with recommendations for future work in this
area.

2 COMPUTER VISION IN SHM EVOLUTION

Computer vision is becoming a more widespread method of
SHM. It operates by recording motion pictures of a target area
on a civil structure. Early applications of Computer Vision to
SHM involved the development of a hybrid system composed
of traditional sensors paired with cameras in order to produce
the output (Figure 2). Zuarin et al. [6] proposed a system
where the cameras would replace the systems used for
attaining vehicle weights, and be paired with sensors for
measuring displacement/acceleration. A camera monitors
traffic on a bridge in order to determine the amount of traffic
passing over it, while a transducer is affixed to the bottom of
the bridge to measure deflection.

More recently computer vision has been also applied as a
replacement of transducers and accelerometers on measuring
the bridge displacement. In these systems, the basic principle
involves taking an image of the bridge to establish reference
points, this is then compared to subsequent images to
determine displacement. This process is known as registration
[6]. There are several methods of processing the images
gathered, which will be discussed in the following section.
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Figure 2 Hybrid Camera-Sensor System proposed by Zuarin
etal[7]

2.1  Traffic detection

A method for detecting and tracking traffic is detailed in [8].
The model uses a background subtraction method, wherein a
reference image of the empty bridge is taken, and any images
featuring traffic is compared to this image, and any new
objects are assigned to the foreground. These objects are
treated as “blobs” tracked through the video. While this
method tracks vehicles well in optimum conditions, it is not
capable of handling invariant matural conditions such as low
light/ rain and fog which makes it impractical for long-term
monitoring on site. In addition, this approach is not suitable in
congested traffic, as multiple small vehicles could be misread
as one large object or large vehicles could block smaller ones
from the camera. Those are two common problems in the
current state of the art in computer vision.

A superior method is laid out in [9] where the authors
extract vehicle features and use these features to track the
vehicle, as shown in Figure 3. The system is not sensitive to
the effects of changing lighting due to weather because only
the most prominent features are tracked through frames and
then grouped by motion to give a reading of vehicle location.
This method is less susceptible to the occlusion problems that
occurred in the previous approach because the system groups
features that move together, so the only time that multiple
vehicles could be grouped together is if they were extremely
close to each other in the same lane and moving at identical
speeds, which would be unlikely due to safety constraints.

Figure 3 Features of Vehicles tracked [10]

A comprehensive survey of video processing for traffic
applications has been carried out by Kastrinaki et al[11].

2.2 Hybrid Camera-Sensor Approach

Once the traffic can be tracked and classified, the gross
vehicle weights can be determined from a reference database.
This information can then be used to determine the expected
deflection that will be read by the attached sensors in a Hybrid
approach.

2.2.1

A hybrid sensor camera system for classifying vehicles was
developed in [12]. In this paper, the authors laid out a system
for grouping vehicles into 7 different classes depending on the
readings from strain gauges that were time synchronised with
video images of the vehicles passing over a test bed setup. A

Laboratory Work



neural network was developed to classify the vehicles based
on the application of a Bayesian filter to the collected strain
gauge readings. The main purpose of the video images was to
establish the location of the vehicles on the deck. However it
was suggested that they could also be used to give gross
weights of vehicles by assigning weights based on classes that
were determined by an image based neural network.

A lab trial of another camera-sensor method was carried out
in [7]. The computer vision algorithms were primarily used to
determine the type of vehicle crossing their model bridge.
Additionally the position of the vehicle at certain times was
logged in order to build the Unit Influence Line (UIL) using
the data obtained from the transducers placed on the underside
of the model bridge at the times determined by the video. The
proposed system provided promising results, particularly in
detecting changes to deflection based on various damage
scenarios, but it could not be immediately transposed to the
field because it does not deal with an inherent issue in sensor-
camera systems: time synchronisation. The data logger and
USB camera in this study are linked to the same computer and
can be synchronised to the same clock, but this approach
would not be feasible in the field as a USB camera would not
have the required pixel resolution to detect deflection from a
distance. Moreover, the vision based system can only
differentiate between 3 types of pre-determined vehicles,
while a larger database is needed in order to create a viable
real solution.

2.2.2  Field Work

Fraser et al detailed a system for combining camera input with
sensor data in [13]. This system involved the combination of
accelerometers and strain gauges with cameras for detecting
and classifying vehicles. The data acquisition for the sensors/
cameras was managed by the use of a wireless cloud which
accessed a wired network in a nearby building. While this
method is suitable in a built up area, it may not be possible in
rural locations. The LabVIEW code used to synchronise the
sensors also controlled the traffic-facing camera and captured
images at a rate of 3 frames per second and a resolution of
640x480 pixels. It has not been specified if the code is
efficient enough to improve this rate of capture and resolution,
which will hamper its application to real time measurement of
displacement as the scanning rate is insufficient for real time
dynamic analysis. Critically a method for correcting camera
movement due to wind/vibration has not been specified, an
issue detailed in [14].

Another hybrid-camera sensor method trialled in the field
was [15]. This method delivers an improved reading of bridge
condition due to the correlation of the class-based vehicle
loads with recorded bridge responses. This allows the system
to give an approximate indication of where damage has
occurred on the bridge. These systems have served as a
precursor to camera-camera setups as they have proved the
viability of replacing sensors for determining vehicle loads on
bridges. In order to achieve a camera-only SHM approach, the
next step is the replacement of sensors with cameras for
reading displacement on bridges, which is analysed in section
2.3.

2.3 Video Registration for SHM
2.3.1

The initial applications for Computer Vision as registration
for SHM involved the use of target-based approaches. This
involved affixing premade targets or markers such as LEDs,
speckle or other randomised patterns to the bridge which are
used as stable easily identifiable features to be tracked through
a video, as shown in Figure 4.
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Laboratory Work

The readings obtained from camera-only systems are
compared to readings from traditional sensors in order to
determine their suitability for replacing these sensors in the
future. The study detailed in [17] involves applying a Digital
Image Correlation (DIC) technique to video of a shake table
test carried out in the lab. The DIC readings were compared to
verified measurements from accelerometers, which were
attached to the test specimen. The method used a correlation
approach [18], where an image was divided into sub-images,
and the position of sub-image A in the reference image is
compared to its position in further images in order to plot a
translation matrix and determine displacement of the target
point. The method has comparable results to accelerometer
readings, but again does not cater for camera
movement/vibration or differing light levels since it is run in a
lab controlled environment. No information has been provided
to clarify how the pixel units were converted to engineering
ones for comparison with accelerometer readings, therefore
the accuracy of their results cannot be verified.

A lab trial carried out in [19] describes an accurate (within
0.09mm of LVDT at monitoring distance of 2m) method for
calculating displacement based on movement of white points
on a black background inside a region of interest. This point
tracking method is similar to an optical flow methodology
proposed by [20], where key-point features are selected based
on relative light intensity to the neighbouring pixels [21][22].
The features are then tracked through the subsequent frames
and a plot of their movement can be created. The trial also
used a region of interest in the image based on expected
displacement and camera zoom capabilities, which reduces
the image size that needs to be processed and enhances the
processing time of the algorithm to within 1/30s and makes
real-time measurement possible. This system also incorporates
a method for synchronization of multiple cameras using a
master-slave setup where PCs are linked over a wireless
network in order to track multiple points of displacement
simultaneously. This method proved to be quite effective in
solving the issue of time synchronization in the lab, the issue
of setting up a wireless network in the field could still be a
factor however, as explained before. There is also no
consideration given to overcoming the difficulties of



movement of the camera or environmental light changes
during monitoring. The calibration of the camera to ensure
accurate pixel-engineering units is an important step, and a
valid method is laid out in [23], where the authors use the
extrinsic parameters of the camera to obtain the conversion
factor for that particular camera, which removes the need for a
calibration target to be attached to the structure and made
visible in the images recorded.

Correlation and optical flow approaches are merged in [24]
in an attempt to gain sub-pixel accuracy of object
displacement. The authors used computer-generated random
patterned images and applied rotation and transformation
effects to them. Their method did deliver the desired accuracy
(maximum mean bias error of 0.03 pixels for 0.5 pixel
displacement) and could potentially be modified for use on
real images as it is accurate and computationally efficient.

2.3.1.b  Field work

Recently, the replacement of sensors by camera systems has
been trialed in the field. In [16] a pattern is applied to a bridge
and displacement readings from a pre-weighted truck
performing passes is verified against LVDT readings and a
predictive model developed in the lab. The results are not used
as a method of detecting damage, merely to verify the
accuracy of their predictive model. The accuracy obtained is
reasonable (+0.15mm compared to the model), but the
monitoring difficulties of environmental change/ vibration of
camera in the field are briefly discussed without any proposed
solution.

Further work was carried out by Lee et al in [25] where the
feasibility of a vision system for use on a long-span bridge
was discussed. A key point raised from this paper is the
treatment of the angular orientation of the camera with respect
to the target; this issue is particularly relevant to bridges as the
ideal scenario of the camera being placed 90° from the target
is not always possible. This paper also discusses the
possibility of monitoring the bridge during the night hours
using artificial light to ensure constant light levels, a
promising solution to the problem of differing environmental
light. However it must be considered that traffic patterns
could vary largely at night and so the data collected may not
be representative of the daily conditions.

232

The application of targets to the bridge is a limiting factor in
camera based monitoring due to the location of some
monitoring points on long-span or otherwise remote locations.
To address this issue, the next generation in SHM for bridges
involves the use of non-target “contactless” approaches that
only use the natural patterns created by concrete pour, bolts or
environmental effects as points of reference to extract and
track features.

232a

Many of the studies detailed previously used either a
correlation approach, an optical flow or a combination of both
these approaches. The study carried out in [26] proposed a
new method of tracking displacement where images are
subject to down-sampling and intensity interpolation in order
to generate moiré fringes, which are then put through a phase-
shifting process to determine displacement distribution. It is

Feature Based
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stated in this paper that sub-millimetre deflection readings can
be obtained, but they do not publish a full set of results for
verification. Running times for the algorithm have also not
been detailed in the paper so it cannot be compared to that of
existing algorithms, but it is declared in that the comparison is
favourable.

The lab study carried out in [27] did not use intensity of
pixels for determining features to be tracked, but rather a
process known as orientation-code matching (OCM), which
performs well against effects such as lighting changes [28]
and incorporates a subpixel method to reduce measurement
errors (maximum error vs LVDT of feature tracking was
4.82% at a monitoring distance of 9.15m). This error
percentage increases in proportion to monitoring distance,
which is a common occurrence in field work with computer
vision in SHM. Another system which catered for lighting
changes was detailed in [29]. This method proposed the usage
of a normalized correlation metric in order to account for
changing lighting conditions, the results are shown in figure 5.
This system had issues with very small displacements, which
would make it unsuitable for use on short span bridges.

Figure 5 Results of Correlation metric applied to subsets of an
image with changes of light [30]

2.3.2b  Field Work

A successful study into measuring displacements of a bridge
was carried out by Feng et al in [31]. Their method involved
determining an approximate value for displacement using a
correlation/template matching approach to find the correlation
peak of the sub-image. This sub-image is then upsampled in
order to find sub-pixel displacement of the target area. This
method worked well compared to LVDT readings, but two
challenges which were not overcome were the effect of
camera vibration and a heat haze which occurred when the air
was non-uniformly heated by ambient temperatures. The heat
haze problem is an issue in locations with high average
temperatures, therefore it has not been mentioned in other
publications but would definitely need to be overcome if
computer vision is to be a viable solution worldwide.

A multi-point optical flow system was trialled by Kim et al
in [32] with satisfactory results(less than 2% error due to
displacement responses), but they had issues with image noise
from smoke affecting accuracy of their captured images and
low pixel resolution of the camera used in the test was also a
factor in obtaining less than perfect accuracy in their readings.



The use of a higher resolution camera could make their
solution more practical for widespread use in the field.

An advanced method for detecting displacements and
vibrations in a structure is outlined in [33], as shown in Figure
6. A new framework for detecting and tracking key points
(FREAK) is developed and integrated with a calibration
method for converting pixel-based units to engineering units.
This and similar methods differ from other optical flow or
correlation-based methods on the use of a small set of sparse
key-points rather than a dense correspondence of pixels.

Acquiring Video Clip
at Measurement Locations

{l

Key-points Extraction from
Video Clip Frames as Virtual Markers

!

l Matching Key-points |

False Matches Detection using
Outliers Discarding Algorithm

{

Final Matches to Get Dynamic
Pixel Displacement

J

Converting Pixel Displacement To Engineering Unit
using Camera Calibration

Figure 6 Algorithm Design [33]

This method provided accurate results under various
lighting conditions and is useful for detecting both
displacement and acceleration. While this method does have a
high level of accuracy compared to LVDT(£0.0lmm at a
measurement distance of 3m, +0.04mm at 13m)it does not
cater for camera movement as it is trialled in an indoor
environment (football stadium) so it cannot be definitively
stated that this method is suitable for immediate field usage.

Finally, a system which combines the traffic detection
methods detailed above with camera-based displacement
detection is [2]. This system measures axle spacing and
position of vehicles crossing the bridge and synchronises their
position with deflection readings taken by a second camera
placed at a perpendicular angle to the bridge soffit. The videos
are synchronised by the use of two LEDs which
simultaneously flash through usage of an interval timer. The
authors catered for the issue of camera vibration by creating a
custom tripod system to smooth out vibrations and provide a
sturdy base for the camera.

Telescope Camera

Mount

Theodolite

Figure 7 Camera setup from [2]

The accuracy of this system did not extend to sub-
millimetre levels, primarily due to the resolution of the images
provided by the camera. With a superior camera or usage of
post-processing algorithms, it is possible that sub-pixel
accuracy could be obtained.

CONCLUSIONS

The area of Computer vision in SHM is still a relatively new
one, but the methods detailed above represent significant
progress in recent times. It is believed by the authors that the
methods proposed in [26], [27], [30], [33] present viable
solutions for detecting bridge displacement or strains if
adopted properly. If some/all of these methods could be
combined with a calibration process similar to [34], a method
for compensating for camera movement detailed in [35] and
time-synchronization of cameras using a method akin to the
one detailed in [36] it is possible that an efficient and accurate
solution could be developed and put into practice in the near
future and the authors are currently working on a solution that
incorporates these elements.
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