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Abstract

Most ice in nature forms thanks to impurities which boost the exceedingly low nucle-

ation rate of pure supercooled water. However, the microscopic details of ice nucleation

on these substances remain largely unknown. Here, we have unraveled the molecular

mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key

role in climate science. We find that the formation of ice at strong supercooling in the

presence of this clay is twenty orders of magnitude faster than homogeneous freezing.

The critical nucleus is substantially smaller than that found for homogeneous nucleation

and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong

2D character. Nonetheless, we show that CNT describes correctly the formation of ice

at this complex interface. Kaolinite also promotes the exclusive nucleation of hexago-

nal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal

polytypes is observed.
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The formation of ice is at the heart of intracellular freezing,1 stratospheric ozone chem-

istry,2 cloud dynamics,3 rock weathering4 and hydrate formation.5 As ice nucleation within

pure supercooled liquid water is amazingly rare in nature, most of the ice on Earth forms

heterogeneously, in the presence of foreign particles which boost the ice nucleation rate.6

These substances, which can be as diverse as soot,7 bacterial fragments8 or mineral dust,9

lower the free energy barrier for nucleation and make ice formation possible even at a few

degrees of supercooling. However, the microscopic details of heterogeneous ice nucleation

are still poorly understood. State-of-the-art experimental techniques can establish whether a

certain material is efficient in promoting heterogeneous ice nucleation, but it is very challeng-

ing to achieve the temporal and spatial resolution required to characterize the process at the

molecular level. On the other hand, spontaneous fluctuations that produce nuclei of critical

size are rare events. They thus happen on timescales (seconds) that are far beyond the reach

of classical molecular dynamics simulations. This is why, to our knowledge, quantitative

simulations of heterogeneous ice nucleation have been successful only when using the coarse

grained mW model for water.7,10,11 Such simulations have gone a long way towards improving

our fundamental understanding of heterogeneous ice nucleation, but coarse grained models

are not appropriate for many of the more complex and interesting ice nucleating substrates.

A representative example is the formation of ice on clay minerals - a phenomenon critical

to cloud formation and dynamics.9,12 For instance, the heterogeneous ice nucleation proba-

bility in the presence of kaolinite, a clay mineral well studied by both experiments6,13–16 and

simulations,17–20 seems to be related to its surface area,13 but how exactly this material facil-

itates the formation of the ice nuclei is largely unestablished. Classical molecular dynamics

simulations have recently succeeded in simulating ice nucleation on kaolinite.19,20 However,

finite size effects19 and rigid models of the surface20 prevented the extraction of quantitative

results. In fact, it is exceedingly challenging to compute via atomistic simulations ice nucle-

ation rates, which have been inferred (for homogeneous freezing only) along a wide range of

temperatures21 and recently computed directly at strong supercooling (�T=42 K) for the
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fully atomistic TIP4P/Ice model of water.22

In this work, we have computed the rate and unraveled the mechanism at the all-atom

level of the heterogeneous nucleation of ice. We have considered the hydroxylated (001) sur-

face of kaolinite as a prototypical material capable of promoting ice formation. We quantify

the efficiency of kaolinite in boosting ice nucleation and find that this mineral alters the ice

polytype that would form homogeneously at the same conditions. We also observe that ice

nuclei grow in a non-spherical fashion, in contrast with the predictions of Classical Nucleation

Theory (CNT) which nonetheless we demonstrate is reliable in describing quantitatively the

heterogeneous nucleation process.

Kaolinite (Al2Si2O5(OH)4) is a layered aluminosilicate, in which each layer contains a

tetrahedral silica sheet and an octahedral alumina sheet – in turn terminated with hydroxyl

groups. Facile cleavage along the (100) basal plane parallel to the layers results in surfaces

exposing either the silicate terminated face or the hydroxyl-terminated one. The latter is

believed to be the most effective in promoting ice nucleation, as the hydroxyl groups form

a hexagonal arrangement that possibly templates ice formation.19,23 Here we considered

a single slab of kaolinite cleaved along the (100) plane so that it exposes the hydroxyl-

terminated surface, while water molecules have been represented by the fully atomistic

TIP4P/Ice model.24 Further details about the structure of the water-kaolinite interface and

the computational setup can be found in Refs. 19,25 and in the Supporting Information (SI).

The heterogeneous ice nucleation rate was obtained using the Forward Flux Sampling

(FFS) technique,26 which has been successfully applied for homogeneous water freezing27,28

and for diverse nucleation scenarios.29–32 Within this approach, the path from liquid water to

crystalline ice is described by an order parameter �. A set of discrete interfaces characterized

by an increasing value of �, is identified along this order parameter. Here, we have chosen �

as the number of water molecules in the largest ice-like cluster within the whole system plus

its first coordination shell (see SI). The natural fluctuations of the system at each interface,

sampled by a collection of unbiased molecular dynamics simulations, are then exploited and
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Figure 1: a) Calculated growth probability P (�|�0) and fraction of ice nuclei sitting on top
of the kaolinite (001) hydroxylated surface as a function of �. b) Committor probability
PC(�) as a function of �. The value of PC(�)=0.5, corresponds to the critical nucleus size
NC=225. A typical ice nucleus of critical size is shown in the insets.

the nucleation rate J is calculated using:

J = ��0

N�Y

i=1

P (�i|�i�1) (1)

where ��0 is the rate at which the system reaches the first interface �0. The total probability

P (�|�0) for a trajectory starting from �0 to reach the ice basin is decomposed into the product

of the crossing probabilities P (�i|�i�1). The details of the algorithm are described in the SI.

In order to compare our results with the homogeneous data from Ref. 22, we have per-

formed FFS simulations at the same temperature T=230 K, corresponding for the TIP4P/Ice

model to �T=42 K. The calculated growth probability P (�|�0) as a function of � is reported

in Fig. 1a. In contrast with the transition probability for homogeneous nucleation reported

in Ref. 22, we do not observe any inflection region, i.e. a regime for which the P (�|�0)
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decreases sharply (P (�i|�i�1) < P (�j|�j�1) for i < j). This inflection is because in the early

stages of homogeneous nucleation the largest nuclei are mostly made of hexagonal ice (Ih),

which leads to rather aspherical nuclei that are very unlikely to survive and reach the later

parts of the nucleation pathway. Within the inflection region the nuclei contain a substantial

fraction of cubic ice (Ic). It seems that in forming this polytype the nuclei are able to adopt

a more spherical shape and that this is essential for ultimately growing toward the critical

nucleus size. In contrast, within this heterogeneous case, the presence of the surface allows

this process of forming spherical Ic-rich crystallites to be bypassed. Here, nucleation pro-

ceeds exclusively heterogeneously at the kaolinite-water interface. During the early stages

of the process the fraction of ice nuclei on the surface (as defined in the SI) is only around

25%, as shown in Fig. 1a, since at this strong �T natural fluctuations toward the ice phase

are abundant and homogeneously distributed throughout the liquid. However, as nucleation

proceeds the nuclei within the bulk of the liquid slab become less favorable, until only nuclei

at the water-kaolinite interface survive. From this evidence alone one can conclude that

at this temperature kaolinite substantially promotes the formation of ice via heterogeneous

nucleation.

Our FFS simulation results in a heterogeneous ice nucleation rate of JHetero=1026±2

s�1m�3, which can be compared with the homogeneous nucleation rate of JHomo=105.9299±0.6538

s�1m�3 reported in Ref. 22. The hydroxylated (001) surface of kaolinite thus enhances the

homogeneous ice nucleation rate by about twenty orders of magnitude at �T=42 K. This

spectacular boost is similar to that reported for simulations of heterogeneous ice nucleation

on graphitic surfaces11 and on Lennard-Jones crystals10 at similar �T using the coarse

grained mW model.

An estimate of the critical nucleus size NC can be obtained directly from the crossing

probabilities assuming that � is a good reaction coordinate for the nucleation process.22

In this scenario NC is the value for which the committor probability PC(�) for the nuclei

to proceed towards the ice phase instead of shrinking into the liquid is equal to 0.5. As
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Figure 2: Average number of Double-Diamond Cages hDDCiBulk and Hexagonal Cages
hHCiBulk within the largest ice nuclei (identified according to the order parameter �) in
the bulk of the liquid slab only as a function of � (nuclei in the bulk disappear beyond
the value of � marked by the vertical green line). Averages for the largest ice nuclei sitting
on top of the kaolinite (001) hydroxylated surface (hDDCiSurf and hHCiSurf ) are also
reported. The insets depict DDC and HC within an ice nucleus in the bulk at the early
stages of nucleation (left) and a post-critical ice nucleus at the water-clay surface (right).
Oxygen atoms belonging to the largest ice nucleus (hydrogens not shown) are depicted in
blue (DDC), red (HC) and yellow (both DDC and HC). Atoms belonging to the largest ice
nucleus but not involved in any DDC or HC are shown in gray.

shown in Fig. 1b, PC(�)=0.5 corresponds in our case to a critical nucleus of 225 ± 25 water

molecules. The estimate of the homogeneous critical nucleus size, obtained by means of the

same approximate approach employed here, is NC=500 ± 30 water molecules (as obtained

by using the definition of � employed in this work, see SI), more than two times larger than

our estimate for the heterogeneous case.

At this supercooling, homogeneous water nucleates into stacking disordered ice (a mix-

ture of Ih and Ic).33–35 However, the presence of the clay leads to a very different outcome.

To analyze the competition between Ih and Ic we have adopted the topological criterion in-

troduced in Ref. 22 (see SI), pinpointing the building blocks of Ic (Double-Diamond Cages,

DDC) and Ih (Hexagonal Cages, HC) within the largest ice nuclei. The results are summa-
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Figure 3: Asphericity parameter ↵ and spatial extent of the ice nuclei along the direction
normal to the clay slab �z as a function of � for ice nuclei in the bulk (↵Bulk and �zBulk).
Nuclei in the bulk disappear beyond the value of � marked by the vertical green line. Averages
within the ice nuclei sitting on top of the kaolinite (001) hydroxylated surface (↵Surf and
�zSurf ) are also reported. The insets correspond to typical ice nuclei containing about 105,
200 and 325 (from left to right) water molecules.

rized in Fig. 2: for ice nuclei in the bulk, a slightly larger fraction of HC with respect to

DDC develops until they disappear because of the dominance of the much more favorable

nuclei at the surface. In contrast, nuclei at the surface contain a large fraction of HC from

the earliest stages of the nucleation, and they exclusively expose the prism face of Ih to

the hexagonal arrangement of hydroxyl groups of the clay. This is consistent with what

has been suggested previously by classical MD simulations,19,20 and demonstrates that at

this supercooling heterogeneous nucleation takes place solely via the hexagonal ice polytype,

in contrast with homogeneous nucleation. Experimental evidence35 suggests that stacking

disordered ice on kaolinite is likely to appear after the nucleation process due to the kinetics

of crystal growth and the presence of surfaces other than the hydroxylated (001).

In the homogeneous case, critical nuclei tend to be rather spherical even at this strong

supercooling.22 However, we see a very different behavior here. This is illustrated in Fig. 3,

where we show as a function of � the asphericity parameter ↵ (which is equal to zero for
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spherical objects and one for an infinitely elongated rod), for nuclei in the bulk and at

the surface. Note that heterogeneous CNT predicts (on flat surfaces) critical nuclei in the

form of spherical caps, the exact shape of which is dictated by the contact angle ✓Ice,Surf

between the nuclei and the surface.11 For instance, ↵=0.094 for a pristine hemispherical cap,

corresponding to ✓Ice,Surf=90�. Also reported in Fig. 3 is the spatial extent �z of the nuclei

along the direction normal to the slab (the exact definitions of ↵ and �z are provided in the

SI). Nuclei within the bulk tend to be rather spherical. A small increase in the asphericity

is observed right before these nuclei disappear and are replaced with nuclei at the surface.

This regime, in which the nuclei in the bulk grow substantially and become less spherical,

possibly corresponds to the onset of the inflection region observed within the homogeneous

case. However, here nucleation is dominated by the surface. While nuclei at the surface

are initially quite similar to spherical caps, they tend to grow by expanding at the water-

kaolinite interface because of the favorable templating effect of the hydroxyl groups, which

favors the formation of the prism face of Ih.19 This can clearly be seen by looking at the

substantial increase in ↵ for the nuclei at the surface, which is accompanied by a slight drop

in �z corresponding to an expansion of the nuclei in two dimensions. Once the nuclei have

overcome the critical nucleus size, they tend to return to a more isotropic and compact form,

while accumulating new ice layers along the normal to the surface. We note that due to the

strong two-dimensional nature of the critical ice nuclei, special care has to be taken to avoid

finite size effects. We have therefore used a simulation box with lateral dimensions of the

order of 60 Å, which is large enough to prevent interactions between the ice nuclei and their

periodic images (as discussed in the SI).

The fact that the system reaches the critical nucleus size by expanding chiefly in two

dimensions is in sharp contrast with the heterogeneous nucleation picture predicated by

CNT. Hence the question arises: Is CNT able to describe heterogeneous ice nucleation on a

complex substrate at this strong supercooling? Strikingly, the answer is yes. In order to show

this, we compare the shape factor for heterogeneous nucleation FS = �GC
Hetero/�GC

Homo,
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customarily used in CNT36 to quantify the net effect of the surface on the free energy

barrier for nucleation �GC , with the volumetric factor FV = NC
Hetero/N

C
Homo. Details of

this comparison are included in the SI. Note that while different, equally valid ways of

defining an ice-like cluster can lead to different values of NC , there is no ambiguity in the

estimate of FS and FV as long as the same order parameter is used to define both NC
Homo

and NC
Hetero. Thus, we obtain FS = 0.4±0.1, in very good agreement with FV = 0.45±0.08.

Heterogeneous CNT has already proven to be reliable in describing the crystallization of ice

on graphitic surfaces,11 a scenario very different from ice formation on kaolinite. In fact,

while the size of the critical clusters reported in Ref. 11 is similar to what has been obtained

here (few hundreds of water molecules), critical ice nuclei of mW water on graphitic surfaces

are shaped as spherical caps, in line with CNT assumptions. This is due to the fairly weak

interaction between water and carbonaceous surfaces,7 which results in a weak wetting of

the ice phase on the substrate. In contrast, our results show that ice nuclei on kaolinite tend

to wet substantially the substrate, leading to shapes very different from spherical caps. In

this regime, where the nuclei are small and the ice-kaolinite contact angle ✓Ice,Surf is also

small, line tension at the water-ice-kaolinite interface could introduce a mismatch between

FS and FV (see e.g. Refs. 37,38). However, this is not the case, as CNT holds quantitatively

for the formation of ice on kaolinite even at the strong supercooling probed in this work.

The value of JHomo reported in Ref. 22 is about eleven orders of magnitude smaller than

the experimental value extrapolated from Ref. 39. In addition, at the strong supercooling of

�T=42 K no direct measures of JHetero exist for kaolinite (nor indeed for the homogeneous

case), as pure water freezes homogeneously at T < �T ⇠ 38K. Consequently, extrapolations

are necessary, leading to experimental uncertainties as large as six orders of magnitude.40

Nonetheless, our FS quantifies the relative ice nucleation ability of kaolinite with respect

to the homogeneous case, which can thus be compared with experimental values. Estimates

of FS from measurements of ice formation on kaolinite particles can vary from 0.23 to 0.69

according to the interpretation of the experimental data,41 and the seminal work of Murray13
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suggests a value of 0.11 for the exclusive formation of Ih observed in this work. The variability

of these experimental results stems mainly from the diversity of the kaolinite samples (in

terms of e.g. shape, purity and surfaces exposed, the latter still largely unknown) and the

difficulty to interpret the experimental data using heterogeneous CNT, for which tiny changes

in quantities such as the free energy difference between water and ice lead to substantial

discrepancies.22 To date, experiments have to deal with populations of uneven particles and

different nucleation sites. Here we provide a value of FS for a perfectly flat, defect-free

(001) hydroxylated surface of kaolinite, in the hope to aid the experimental investigation of

well-defined, clean kaolinite substrates in the near future. We also note that our simulations

of crystal nucleation are the very edge of what molecular dynamics can presently achieve.

However, there is still room for improvement: for instance, heterogeneous ice formation

can be affected by the presence of electric fields,42,43 and similarly, water dissociation is

common on many reactive surfaces;44 these effects cannot be accounted for at present with

the traditional force fields employed here.

In summary, we have calculated the heterogeneous ice nucleation rate for a fully atomistic

water model on a prototypical clay mineral of great importance to environmental science.

We have demonstrated that the hydroxylated (001) surface of kaolinite boosts ice forma-

tion by twenty orders of magnitude with respect to homogeneous nucleation at the same

supercooling. We have found that this particular kaolinite surface promotes the nucleation

of the hexagonal ice polytype, which forms thanks to the interaction of the prism face with

the templating arrangements of hydroxyl groups at the clay interface. We have also found

that ice nuclei tend to expand on the clay surface in two dimensions until they reach the

critical nucleus size. This is in contrast with the predictions of CNT, which however holds

quantitatively for ice formation on kaolinite even at this strong supercooling. Finally, we

provide a value of the heterogeneous shape factor for the defect-free surface considered here,

in the first attempt to bring simulations of heterogeneous ice nucleation a step closer to

experiments. It remains to be investigated to what extent different surface morphologies can
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in general affect nucleation rates or alter the ice polytypes which form.
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We provide supporting information on the calculation of the heterogeneous ice nucleation

rate on the kaolinite (001) hydroxylated surface. The computational geometry is specified

together with the details of the molecular dynamics simulations used in this work. Moreover,

we discuss the choice of the order parameter we have employed within the forward flux

sampling calculations, and we provide additional information about the implementation of
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the algorithm and the results obtained at each stage of the latter. A brief discussion about

heterogeneous classical nucleation theory is also presented together with the technical details

of the topological criteria used to characterized the ice nuclei and a discussion about finite

size effects.

Computational Geometry

The computational setup we have used is depicted in Fig. S1a. A single layer of kaolinite,

cleaved along the (001) plane (perpendicular to the normal to the slab) was prepared by

starting from the experimental cell parameters and lattice positions.1 Specifically, a kaolinite

bulk system made of two identical slabs was cleaved along the (001) plane. The triclinc

symmetry of the system (space group C1) was modified by setting the ↵ and � angles

(experimentally equal to 91.926 and 89.797 degrees respectively1) to 90 degrees in order to

make the cell orthorombic. We explicitly verified that this modification does not introduce

any structural change within the clay. The final slab has in-plane dimensions of 61.84 and

71.54 Å, corresponding to a 12 by 8 supercell. We positioned 6144 water molecules randomly

atop this kaolinite slab at the density of the TIP4P/Ice model2 at 300 K, and expanded the

dimension of the simulation cell along the normal to the slab to 150 Å. This setup allows

for a physically meaningful equilibration of the water at the density of interest at a given

temperature, but suffers from two distinct drawbacks: i) the kaolinite slab possesses a net

dipole moment which is not compensated throughout the simulation cell and ii) the presence

of the water-vacuum interface can alter the structure and the dynamics of the liquid film.

However, we have verified that compensating the dipole moment by means of a mirror slab

does not affect our simulations, as we have been able to replicate the results of Ref. 3

independently of the computational geometry. Furthermore, the water film is thick enough

to allow a bulk-like region to exist in terms of both structure and dynamics. The effect

of the water-vacuum interface is therefore negligible. In Fig. S1b we highlight the layered

2



nature of the slab, while in Fig. S1c we zoom in on a portion of the (001) hydroxylated

surface and show the hexagonal arrangement of the hydroxyl groups. This arrangement is

important as the water can interact with the hydroxyls, so this arrangement is responsible

for the templating effect of the clay which serves to promote ice nucleation. The amphoteric

nature of the hydroxyl groups at the surface is depicted in Fig. S1d.

Molecular Dynamics Simulations

The CLAY_FF4 force field was used to model the kaolinite slab. We have not included

the - optional - angular term (see Ref. 4), as we have verified that it does not affect the

structure of the surface. In order to mimic the experimental conditions, we have constrained

the system at the experimental lateral dimensions (see above), and have also restrained the

positions of the silicon atoms at the bottom of the slab by means of an harmonic potential

characterized by a spring constant of 1000 kJ/mol. All the other atoms within the kaolinite

slab are unconstrained. We have verified that the thermal expansion of the clay at 230 K (⇠

0.4% with respect to each lateral dimension) does not alter the structure nor the dynamics

of the water-kaolinite interface. This setup is thus as close as we can get to the realistic

(001) hydroxylated surface within the CLAY_FF model. The interaction between the water

molecules have been modeled using the TIP4P/Ice model,2 so that our results are consistent

with the homogeneous simulations of Ref. 5. The interaction parameters between the clay

and the water were obtained using the standard Lorentz-Berthelot mixing rules.6,7 Extreme

care must be taken in order to correctly reproduce the structure and the dynamics of the

water-clay interface. The Forward Flux Sampling (FFS) simulations reported in this work

rely on a massive collection of unbiased Molecular Dynamics (MD) runs, all of which have

been performed using the GROMACS package, version 4.6.7. The code was compiled in

single-precision, in order to alleviate the huge computational workload needed to converge

the FFS algorithm and because we have taken advantage of GPU acceleration, which is not
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available in the double-precision version. The equations of motions were integrated using a

leap-frog integrator with a timestep of 2 fs. The van der Waals (non bonded) interactions

were considered up to 10 Å, where a switching function was used to bring them to zero

at 12 Å. Electrostatic interactions have been dealt with by means of an Ewald summation

up to 14 Å. The NVT ensemble was sampled at 230 K using a stochastic velocity rescaling

thermostat8 with a very weak coupling constant of 4 ps in order to avoid temperature

gradients throughout the system. The geometry of the water molecules (TIP4P/Ice being a

rigid model) was constrained using the SETTLE algorithm9 while the P_LINCS algorithm10

was used to constrain the O-H bonds within the clay. We have verified that these settings

reproduce the dynamical properties of water reported in Ref.5 The system was equilibrated

at 300 K for 10 ns, before being quenched to 230 K over 50 ns. This is the starting point for

the calculation of the flux rate discussed in the next section.

Forward Flux Sampling Simulation

Order Parameter

The first step in setting up the FFS simulation involved choosing a suitable order parameter

�. We start by labeling as ice-like any water molecule whose oxygen atom displays a value

of lq6>0.45, where lq

6 is constructed as follows: we first select only those oxygens which are

hydrogen-bonded to four other oxygens. For each of the i�th atoms of this subset S4HB, we

calculate the local order parameter:

lq

6
i =

PNS4HB
j=1 �(rij)

P6
m=�6 q

6⇤
i,m · q

6
j,m

PNS4HB
j=1 �(rij)

(1)

where �(rij) is a switching function tuned so that �(rij)=1 when atom j lies within the first

coordination shell of atom i and which is zero otherwise. q

6
i,m is the Steinhardt vector11
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a)

b) c)

d)

Fig. S1: a) The simulation cell used in this work. A film of liquid water about 40 Å thick is
in contact with a single slab of kaolinite, cleaved along the (001) plane. This slab geometry
is thus characterized by two interfaces: the water-kaolinite interface and the water-vacuum
interface. The dimension of the simulation box along the normal to the slab is extended up to
150 Å. Water molecules are depicted as sticks, while atoms within the kaolinite slab as balls.
Red, white, light blue and yellow atoms correspond to oxygen, hydrogen, aluminum and
silicon atoms respectively. b) (side view) The layered structure of the kaolinite slab: yellow
tetrahedra and light blue octahedra represent the tetrahedral silica sheet and the octahedral
alumina sheet, terminated with hydroxyl groups, respectively. c) (top view) A small portion
of the kaolinite slab depicting the hexagonal arrangement of the hydroxyl groups exposed. d)
Sketch of the amphoteric character of the hydroxylated (001) face of kaolinite: the hydroxyl
groups on top can either donate or accept an hydrogen bond from e.g. water molecules at
the water-clay interface.

q

6
i,m =

PNS4HB
j=1 �(rij)Y6m(rij)
PNS4HB

j=1 �(rij)
, (2)

Y6m(rij) being one of the 6th order spherical harmonics. We have used 3.2 Å as the cutoff

for �(rij) to be consistent with Ref. 5. Note that by selecting oxygen atoms within the
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S4HB subset exclusively we ensure that the hydrogen bond network within the ice nuclei is

reasonable. Having identified a set of ice-like water molecules, we pinpoint all the connected

clusters of oxygen atoms which: i) belong to the S4HB subset; ii) have a value of lq6>0.45

and; iii) are separated by a distance  3.2 Å. We then select the largest of these clusters (i.e.

the one containing the largest number of oxygen atoms or equivalently water molecules).

The final step is to find all the surface molecules that are connected to this cluster, as

this procedure allows us to account for the diffuse interface between the solid and the liquid.

Surface molecules are defined as the water molecules that lie within 3.2 Å from the molecules

in the cluster. The final order parameter � used in this work is thus the number of water

molecules within the largest ice-like cluster plus the number of surface molecules. This

approach allow us to include ice-like atoms sitting directly on top of the kaolinite surface,

which are never labeled as ice-like (and which would thus never be included into the ice

nuclei) because they are undercoordinated and because they display a different symmetry

to the molecules within bulk water (which in turn leads to different values of lq

6). Note

that the order parameter used in Ref. 5 differs with respect to our formulation in that i)

a slightly stricter criterion has been used to label molecules as ice-like, namely lq

6>0.5 to

be compared with our choice of lq6>0.45; and ii) surface molecules are not included in the

largest ice-like nucleus. This means that in order to compare quantitatively our results with

those of Ref. 5 in terms of e.g. the size of the critical nucleus, the very same order parameter

has to be used. The calculation of the order parameter is performed on the fly during our

MD simulations thanks to the flexibility of the PLUMED plugin12 (version 2.2). This code

deals chiefly with metadynamics simulations, but can be adapted to a FFS simulation. Note

that PLUMED benefits from a fully parallel implementation that flawlessly couples with the

GPU-accelerated version of GROMACS, and thus provides a very fast tool for performing

FFS simulations. Indeed, while several implementations of FFS are beginning to appear, the

main issue preventing wider adoption remains the implementation of the order parameter,

which can be as complex as the one used in this work. PLUMED allows a wide range of
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order parameters to be exploited without the need to re-code them elsewhere.

Converging the Flux Rate and the Individual Crossing Probabilities

In order to calculate the flux rate �0 we have performed a 1.5 ms long unbiased MD simula-

tion, and subsequently built the probability density distribution for P (�) shown in Fig. S2a.

We have thus delimited the liquid basin in terms of the order parameter as 0 < � < �Liq = 32,

while setting the initial interface for the FFS �0=75, corresponding to a value of the cumu-

lative distribution function of P (�) (also reported in Fig. S2a) of 0.99. The flux rate is then

computed as the number of direct crossings of �0 (i.e. coming from � < �Liq) divided by

the total simulation time, and as such should flatten as a function of time. Meanwhile, the

number of direct crossings should increase linearly with time. The value obtained for �0 and

the number of crossings as a function of time are reported in Fig. S2b. This figure demon-

strates that, as previously noted in Ref. 13, long simulation times are needed in order to

converge this quantity for inhomogeneous systems. The calculated value of �0 is 0.00056359

ps�1, which normalized by the average volume of the water film (189350.2980352 Å3) leads

to the final value of 3.0·10�9±1 ps�1 Å�3. Note that we have chosen to normalize the flux

rate by the average volume of the water film instead of by the surface area for the slab.

While the latter choice could in principle be thought as more meaningful in the context of

heterogeneous nucleation, our objective is to compare our numbers with the homogeneous

case, which is why we choose the volume normalization rather than the surface area one.

However, it should be noticed that the two different normalizations only introduce a differ-

ence of an order of magnitude in the nucleation rate. The number of starting configurations,

one for each direct crossing of �0, is of the order of eight hundred, providing a comprehensive

sampling including ice-like clusters in the bulk of the water film as well as on top of the water

surface (albeit the latter represent about 25%).

Converging the individual crossing probabilities P (�i|�i�1) required in our case as many

as 10,000 trial MD runs for the first few interfaces. The initial velocities for each MD run
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were randomly initialized consistent with the corresponding Maxwell-Boltzmann distribution

at 230 K. In line with the coarse graining approach discussed in Ref. 5, we have decided to

compute the value of � on the fly every 4 ps, a frequency far smaller than the relaxation

time of the liquid at this temperature (about 0.5 ns) which allows us to neglect meaningless

fluctuation on very short timescales. The individual crossing probabilities, normalized by

their value after 250 crossing events, are reported in Fig. S2c. Note that at the interfaces

corresponding to critical/post-critical ice nuclei a much smaller number (about 500) of trial

MD runs have been shot, as for large ice nuclei to get back to the liquid phase simulation

times of the order of 10-40 ns are needed, dramatically increasing the computational cost -

albeit more and more nuclei proceed to grow as � increases leading to a faster convergence

of the crossing probabilities. In fact, crossings for n>250 are not reported in Fig. S2c as

the crossing probabilities are already converged well before n=250 within the last stages of

the algorithm. The confidence intervals for each P (�i|�i�1) have been computed according

to the binomial distribution of the number of successful trial runs collected at �i (see e.g.

Ref.14).

Heterogeneous Classical Nucleation Theory

Within the framework of classical nucleation theory, the homogeneous rate of nucleation

JHomo can be written as:15,16

JHomo = AHomo · e
��G⇤

Homo
kBT (3)

where AHomo is a kinetic prefactor, �G

⇤
Homo is the height of the free energy barrier for

nucleation and kB is the Boltzmann constant. On the other hand, the heterogeneous rate of

nucleation JHetero can be written as:15,16

JHetero = AHetero · e
�FS ·�G⇤

Homo
kBT (4)
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Fig. S2: a) Probability density distribution for the order parameter � (P (�) left y-axis, boxes)
and correspondent cumulative distribution function (CDF, right y-axes, empty circles). The
blue and red vertical arrows mark the upper limit of the liquid basin �Liq and the position of
�0 respectively. b) Flux rate (�0, left y-axis, filled circles) and number of direct crossing of the
�0 interface (N0, right y-axis, empty circles) as a function of simulation time. c) Individual
crossing probabilities P (�i|�i�1) (normalized by their value at N=250) as a function of the
number of crossing events.

where AHetero is a kinetic prefactor which in principle can differ from AHomo and FS is a

shape factor, or potency factor, which embeds the effectiveness of the substrate to promote

nucleation. The value of FS ranges from one (the surface does not contribute at all in

lowering the free energy barrier for nucleation) to 0 (the nucleation proceeds in a barrierless

fashion). By taking the ratio JHetero

JHomo
and assuming that AHetero = AHomo (which is in many
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cases a perfectly reasonable assumption, see e.g. Refs. 17–19), one can write the shape factor

for heterogeneous nucleation as:

FS = 1�


kBT

�G

⇤
Homo

· ln

✓
JHetero

JHomo

◆�
(5)

The value of �G

⇤
Homo =

1
2 |�µsl|N

C
Homo is 80± 5 kBT , obtained from Ref. 5 by using the

definition of � we have employed here (thus using a slighlty different lq6i cutoff and including

surface molecules, see Eq. 1) - which accounts for an homogeneous critical nucleus size of

500 ± 30 water molecules and makes a direct comparison possible. Inserting this value into

the expression above leads to a shape factor of 0.4± 0.1.

Double-Diamond and Hexagonal Cages

Double-Diamond (DDC) and Hexagonal cages (HC) are the building blocks of cubic and

hexagonal ice respectively. We have identified water molecules involved in DDC and/or HC

within the largest ice nucleus in the system (defined according to the order parameter �, see

Eqs. 1 and 2) following the topological criteria detailed in Ref. 5. The first step in order to

locate DDC and HC is the construction of the ring network of the oxygen atoms belonging to

each water molecule. In this work, we have obtained all the six-atom rings needed to build

DDC and HC using King’s shortest path criterion20,21 as implemented in the R.I.N.G.S.

code.22 The same distance cutoff of 3.2 Å used for the construction of the order parameter

� has been employed to determine the nearest neighbors of each oxygen atom. The same

algorithm described in Ref. 5 has subsequently been used to determine DDC and HC.

Asphericity Parameter

Many different choices are available to quantify the asphericity of clusters of molecules.

We have considered the gyration radius as well as the ↵ ( � in Ref. 23) and S asphericity
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parameters reported in Ref. 23. All of these quantities provided the same qualitative picture,

so we have chosen to report the asphericity trends for ↵ only, the latter being defined as:

↵ =
3

2(trT )2

3X

i=1

(µi � µ̄)2 (6)

where µi are the three eigenvalues of the inertia tensor T for a given cluster, and µ̄ =

trT
3 =

P3
i=1(µi)
3

Spatial extent �z

The spatial extent �z for a given ice nucleus has been calculated as the difference between

the minimum and maximum values of the z- components of the position vector of all the

oxygens belonging to the nucleus. As the direction normal to the kaolinite slab coincides

to the z-axis of our simulation box, �z provides a qualitative indication of the number of

ice layers in the nuclei. Ice nuclei are defined to be on top of the kaolinite surface (Surf ,

see main text) if the minimum value of the z- components of the position vector of all the

oxygens belonging to the nucleus is < 15.0 Å, which correspond to the position of the main

peak in the density profile of the water film along the z-axis. If this is not the case, the ice

nuclei are considered to sit in the bulk of the water film (Bulk, see main text).

Avoiding Finite Size Effects

Special care has to be taken when dealing with atomistic simulations of crystal nucleation

from the liquid phase. Specifically, the presence of periodic boundary conditions can in-

troduce significant finite effects, most notably spurious interactions between the crystalline

nuclei and their periodic images. This artefact results in nonphysically large nucleation rates

and/or crystal growth speeds. In this work we have considered simulation boxes with lateral

dimensions of the order of 60 Å, which is sufficient to ensure that finite size effects do not
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affect our results. We also measured the distance between the ice nuclei and their periodic

images using the average set-set distance d(A,B), which is defined as:

d(A,B) = inf lim
x2A,y2B

|x� y| (7)

where x and y are the position vectors of each oxygen atoms belonging to the largest ice

nucleus (defined according to the order parameter �) A and its first periodic image B respec-

tively. At the FFS interface closest to the critical nucleus size (�=225), d(A,B)=20±6Å,

and even at the last FFS interface we have considered (�=325) the ice nuclei are still quite

far away from their periodic images, d(A,B) being 15±7Å, which is of the order of 1/4 of

the lateral dimension of the simulation box.
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the many useful comments we have received. As detailed below, we have thoroughly 
addressed each one of them, thus improving both the content and the presentation of our 
work. !

!
1. Reviewer comment: By counting the total number of hexagonal and double-diamond 

cages, the authors conclude that a hydroxylated (001) kaolinite surface preferentially 
induces the formation of hexagonal ice (Ih). Fig. 2, however, only depicts the total 
number of HCs and DDCs at the surface and in the bulk vs. λ, supplemented with a 
picture of a cluster that is significantly more hexagonal than cubic. One major 
drawback of this analysis is that no distinction is made between the HCs and DDCs 
that participate in the largest cluster and the isolated cages that are present in the 
liquid (away from the cluster). This rather simple analysis can enable the authors– and 
the readers– to have a quantitative understanding of the extent of preference for Ih in 
heterogeneous nucleation, The authors might also consider plotting (vs. λ) the number 
of HCs(DDCs) that are separated from the surface by a certain number of cages (i.e, 
cages touching the surface, cages touching a cage that touches the surface, etc). 
Another more informative way of uncovering the mechanism is to compare the 
configurations that belong to a reactive pathway (i.e., give rise to a configuration at the 
last milestone), vs. the configurations that are dead ends (i.e., die at an intermediate 



milestone). This latter approach can not only be applied to cage statistics (the topic of 
Fig. 2), but also the shape and the z spread of the clusters."

Our reply: Fig. 2 does not depict the total number of HCs and DDCs at the surface and in 
the bulk. It depicts instead the average number of HCs and DDcs within the largest ice 
nuclei (which in turn can be either at the surface or in the bulk). As such, this plot gives a 
very clear picture of the extent of preference for hexagonal ice in the heterogeneous 
nucleation, the largest clusters being the objects of interest in terms of the FFS algorithm. 
We apologise for the misunderstanding, the caption of Fig. 2 was indeed misleading. To 
make this point clearer we have modified the caption of Fig. 2 from : “within the ice nuclei” 
to “within the largest ice nuclei (identified using the order parameter !)”. We have also 
modified on page 7: “(Hexagonal Cages, HC)” with: “(Hexagonal Cages, HC) within the 
largest ice nuclei”. !

With respect to the reactive pathways analysis: for the sake of completeness we have 
compared all the quantities reported in Fig. 2 and Fig. 3 for the subset of configurations 
that made it to the last milestone (Surviving) versus those that died along the way (Dead), 
as suggested by the Reviewer. Although this is a very interesting suggestion, it turns out 
that for our system such analysis does not provide any additional insight. Specifically, the 
fact that ice nuclei at the surface are the most “reactive” ones is demonstrated in Fig. 1a, 
and the fact that ice nuclei at the surface are almost exclusively made of hexagonal ice is 
clearly shown in Fig. 2. The reactive pathways analysis unraveled the most useful details 
of the nucleation process within the inflection region of the FFS that was observed in the 
homogeneous case [Proc. Natl. Acad. Sci. 112, 10582 (2015)]. However, it does not 
improve the presentation of our results at all, as we do not observe any substantial/
unexpected difference between the Surviving and Dead subsets. As such, we have chosen 
not to report the reactive pathways analysis in the manuscript nor in the Supporting 
Information.!

!
2. Reviewer comment:  As the authors correctly mention in the text and the SI, there are 

numerous ways of quantifying the sphericity of a cluster. In heterogeneous nucleation, 
however, clusters are not even expected to be spherical. In the heterogeneous 
nucleation CNT, for instance, a cluster is assumed to be a spherical cap. Can the 
authors think of a systematic way of quantifying how their clusters deviate from a 
spherical cap, and not a complete sphere that we know to be inaccurate any way? !

Our reply: It is true that for heterogeneous nucleation CNT predicts nuclei shaped as 
spherical caps, as opposed to the spherical nuclei that form in the homogeneous case. 
However, the exact shape (and thus the exact reference value in terms of asphericity) of 
these caps is dictated by the solid contact angle " between the nuclei and the substrate. 
One consequence of this is that the reference value for any asphericity parameter with 
respect to spherical caps becomes ambiguous. The problem is that we do not know the 
value of ", and indeed it is possible that the concept of contact angle would not make 
sense for the small nuclei observed at this strong supercooling. In addition to this, we 
discuss in the manuscript the shape of ice nuclei within the bulk of the water slab as well: 
as such, we need a measure of the asphericity that is capable of taking into account ice 
nuclei both at the surface and in the bulk. Thus, # is a very sensible choice. Nonetheless, 
we agree with the Reviewer in that this point deserves to be discussed in the manuscript. 
Thus, we have added the following sentence on page 9: “Note that heterogeneous CNT 
predicts (on flat surfaces) critical nuclei in the form of spherical caps, the exact shape of 



which is dictated by the contact angle $Ice,Surf between the nuclei and the surface11. For 
instance,  #=0.094 for a pristine hemispherical cap corresponding to $Ice,Surf=90°.” .We 
have also substituted on page 9: “quite spherical” with “quite similar to spherical caps” and 
on page 9: “more spherical” with “more isotropic”. Finally, we have also modified the 
following sentence on page 10: “In this regime, where the nuclei are small and the ice-
kaolinite contact angle is large” with “In this regime, where the size of the nuclei is small 
and the ice-kaolinite contact angle $Ice,Surf is also small”. !

3. Reviewer comment: The authors observe that the clusters obtained through FFS tend 
to have a strong two-dimensional nature. Such highly planar clusters can start 
interacting with one another much more quickly than, say, in homogeneous nucleation 
in which clusters are more or less spherical. This is because the longest length scale 
of a planar cluster will scale as ∼ N1/2 vs. ∼ N1/3 for a spherical clusters. Such 
interactions cannot only make the calculated rate estimates unreliable (due to strong 
finite size effects), but can also make the proper calculation of the gyration tensor and 
the asphericity parameter nontrivial. Can the authors comment on the importance of 
these considerations in the current system? Can they provide a measure of, say, the 
average set distance of a cluster from its periodic image? The set distance between 
two sets A, B ⊂ R3 is given by: !

Our reply: We have been especially careful in choosing the size of the system in order to 
avoid as much as possible the presence of finite size effects. In truth, we had to discard 
preliminary results obtained using simulation boxes with lateral dimensions of the order of 
30 Å. The results we have presented in here have been obtained instead using a very 
large simulation box with lateral dimensions of the order of 60 Å, which is indeed more 
than enough to ensure that finite size effects do not significantly affect our results. In fact, 
in terms of the average set distance d(A,B) suggested by the Reviewer, at the FFS 
interface closest to the critical nucleus size (!=225) d(A,B)=20+/-6 Å, and even at the last 
FFS interface we have considered (!=325) the ice nuclei are still quite far away from their 
periodic images, d(A,B) being 15+/-7 Å, that is, of the order of 1/4 of the later dimension of 
the simulation box. We have now included this discussion in the main text on page 9 as 
follows: “We note that due to the strong two-dimensional nature of the critical ice nuclei, 
special care has to be taken to avoid finite size effects. We have therefore used a 
simulation box with lateral dimensions of the order of 60 Å, which is large enough to 
prevent interactions between the ice nuclei and their periodic images (as discussed in the 
SI).”. We have also included into the Supporting Information the following paragraph on 
page 11: “Avoiding Finite Size Effects: Special care has to be taken when dealing with 
atomistic simulations of crystal nucleation from the liquid phase. Specifically, the presence 
of periodic boundary conditions can introduce significant finite effects, most notably 
spurious interactions between the crystalline nuclei and their periodic images. This artefact 
results in nonphysically large nucleation rates and/or crystal growth speeds. In this work 
we have considered simulation boxes with lateral dimensions of the order of 60 Å, which is 
sufficient to ensure that finite size effects do not affect our results. We also measured of 
the distance between the ice nuclei and their periodic images using the average set-set 
distance d(A, B), which is defined as:"

!
!

clusters.

2. As the authors correctly mention in the text and the SI, there are nu-
merous ways of quantifying the sphericity of a cluster. In heterogeneous
nucleation, however, clusters are not even expected to be spherical. In the
heterogeneous nucleation CNT, for instance, a cluster is assumed to be a
spherical cap. Can the authors think of a systematic way of quantifying
how their clusters deviate from a spherical cap, and not a complete sphere
that we know to be inaccurate any way?

3. The authors observe that the clusters obtained through FFS tend to have
a strong two-dimensional nature. Such highly planar clusters can start
interacting with one another much more quickly than, say, in homogeneous
nucleation in which clusters are more or less spherical. This is because the
longest length scale of a planar cluster will scale as ∼ N1/2 vs. ∼ N1/3 for
a spherical clusters. Such interactions can not only make the calculated
rate estimates unreliable (due to strong finite size effects), but can also
make the proper calculation of the gyration tensor and the asphericity
parameter nontrivial. Can the authors comment on the importance of
these considerations in the current system? Can they provide a measure
of, say, the average set distance of a cluster from its periodic image? The
set distance between two sets A,B ⊂ R3 is given by:

d(A,B) := inf
x∈A,y∈B

|x− y|

.

4. A major weakness of this work is the approach that the authors use for
estimating FS . The problem is with ∆G∗

homo
, which, according to CNT,

is given by 1

2
|∆µ|Nc. It is not, however, obvious, which definition of

Nc should be used in this expression. As the authors note, there are
numerous, equally valid, ways of defining a solid-like cluster that give rise
to widely different estimates of Nc (e.g., including or excluding the surface
molecules). For instance, if the surface molecules are not included in the
cluster, Nc will be smaller, and henceforth ∆G∗

homo
will be larger. Indeed,

by excluding the surface molecules, as in Ref. 22, one obtains a nucleation
barrier of 51kBT instead of the 80kBT presented here. Such a discrepancy
can give a value of FS = 0.07 instead of 0.42. I therefore think that the
error bars presented by the authors are too optimistic and do not reflect
this major limitation. The authors should discuss these limitations in the
revised manuscript and the SI.

5. Heterogeneous nucleation is an inherently interfacial phenomenon by na-
ture, and can thus be impacted by effects such ionization and polarization.
I realize that the authors make every effort to utilize the best classical force
field for this study. For a matter of completeness, however, it is important
for them to discuss the limitations of such classical representations that
are inherently unable to properly account for the aforementioned effects.

2

nuclei and their periodic images. This artifact results in nonphysically large nucleation rates

and/or crystal growth speeds. In this work we have considered simulation boxes with lateral

dimensions of the order of 60 Å, which is sufficient to ensure that finite size effects do not

affect our results. One option to provide a measure of the distance between the ice nuclei

and their periodic images is the average set-set distance d(A,B) defined as:

d(A,B) = inf lim
x2A,y2B

|x� y| (7)

where x and y are the position vectors of each oxygen atoms belonging to the largest ice

nucleus (defined according to the order parameter �) A and its first periodic image B respec-

tively. At the FFS interface closest to the critical nucleus size (�=225), d(A,B)=20±6Å,

and even at the last FFS interface we have considered (�=325) the ice nuclei are still quite

far away from their periodic images, d(A,B) being 15±7Å, that is, of the order of 1/4 of the

lateral dimension of the simulation box.
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where x and y are the position vectors of each oxygen atoms belonging to the largest ice 
nucleus (defined according to the order parameter λ) A and its first periodic image B 
respectively. At the FFS interface closest to the critical nucleus size (λ=225), 
d(A,B)=20±6Å, and even at the last FFS interface we have considered (λ=325) the ice 
nuclei are still quite far away from their periodic images, d(A,B) being 15±7Å, which is of 
the order of 1/4 of the lateral dimension of the simulation box.”"

4. Reviewer comment: A major weakness of this work is the approach that the authors 
use for estimating FS. The problem is with ∆G∗

homo, which, according to CNT,  
is given by 1/2 |∆μ| Nc. It is not, however, obvious, which definition of Nc should be 
used in this expression. As the authors note, there are numerous, equally valid, ways 
of defining a solid-like cluster that give rise to widely different estimates of Nc (e.g., 
including or excluding the surface molecules). For instance, if the surface molecules 
are not included in the cluster, Nc will be smaller, and henceforth ∆G∗

homo will be 
larger. Indeed, by excluding the surface molecules, as in Ref. 22, one obtains a 
nucleation barrier of 51kB T instead of the 80kB T presented here. Such a discrepancy 
can give a value of FS = 0.07 instead of 0.42. I therefore think that the error bars 
presented by the authors are too optimistic and do not reflect this major limitation. The 
authors should discuss these limitations in the revised manuscript and the SI."

Our reply: We agree with the Reviewer in that different order parameters lead to different 
values of the critical nucleus size NC, and that this does result in substantial uncertainties 
with respect to the free energy barrier for nucleation. This issue is important and in our 
opinion quite underrepresented in the literature. However, in this work we are interested in 
relative comparisons between the homogeneous case and our results for the 
heterogeneous case. There is thus no ambiguity at all in the calculation of the potency (or 
shape) factor FS as long as the same order parameter is used to define NC for the 
homogeneous and the heterogeneous case, as we did. In addition, in our case, excluding 
the surface molecules is not a good choice when it comes to the definition of NC, as the 
strong two-dimensional nature of the nuclei implies that most of the water molecules in the 
ice nuclei within the early stages of nucleation are in fact “surface like”. In order to make 
this point clearer we have added the following sentence on page 10: “Note that while 
different, equally valid ways of defining an ice-like cluster can lead to different values of 
NC, there is no ambiguity in the estimate of FS and FV as long as the same order 
parameter is used to define both NC

Homo and NC
Hetero.”"

5. Reviewer comment: Heterogeneous nucleation is an inherently interfacial 
phenomenon by nature, and can thus be impacted by effects such ionization and 
polarization. I realize that the authors make every effort to utilize the best classical 
force field for this study. For a matter of completeness, however, it is important for 
them to discuss the limitations of such classical representations that are inherently 
unable to properly account for the aforementioned effects. "

Our reply: We have added the following sentence on page 11: “We also note that our 
simulations of crystal nucleation are the very edge of what molecular dynamics can 
presently achieve. However, there is still room for improvement: for instance, 
heterogeneous ice formation can be affected by the presence of electric fields42,43, and 
similarly, water dissociation is common on many reactive surfaces44; these effects cannot 
be accounted for at present with the traditional force fields employed here.”!



6. Reviewer comment: In p. 2 of the SI (line 20), the authors say:"

“However, we have verified that compensating the dipole moment by means of a 
mirror slab does not affect our simulations, as we have been able to replicate the 
results of Ref. 3 independently of the computational geometry.”"

This statement is confusing as Ref. 3 in the SI (Ref. 22 in the main text) has nothing to 
do with heterogeneous nucleation. Does the authors mean Ref. 3 in the main text?"

Our reply: We thank the Reviewer for having spotted this one. We actually refer to [J. 
Phys. Chem. B 120, 1726 (2016)]. We have fixed this mistake in the revised version of the 
SI.!

!
Reply to Reviewer 2!!
Reviewer response:!!
Dear Editor!!
I have read with great interest the manuscript “Microscopic Mechanism and Kinetics of Ice 
Formation at Complex Interfaces: Zooming in on Kaolinite” by  Sosso, Li, Donadio,Tribello, 
and Michaelides.!!
In their work, the authors study the molecular details of heterogeneous ice nucleation from 
kaolinite by means of full atomistic interaction potentials and advanced rare event 
numerical techniques. !
Even though Classical Nucleation Theory holds to represent heterogeneous ice 
nucleation, !
it  fails in predicting the surprisingly flat critical cluster, that contains mainly hexagonal ice 
as selected by the kaolinite surface.!!
I have found the manuscript clearly written and the supporting information nicely 
complementing the main text. !!
To conclude, I consider this paper very relevant for the scientific community working on ice 
nucleation and strongly recommend to publish this work in the Journal of Physical 
Chemistry Letters as it is.!!
Urgency: Top 10%!
Significance: Top 10%!
Novelty: Top 10%!
Scholarly Presentation: Top 10%!
Is the paper likely to interest a substantial number of physical chemists, not just specialists 
working in the authors' area of research?: Yes!!
Our reply: We thank the Reviewer for the very positive feedback we have received.


