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ABSTRACT 13 

 14 

Biotic interactions can have large effects on species distributions yet their role in shaping species ranges 15 

is seldom explored due to historical difficulties in incorporating biotic factors into models without a 16 

priori knowledge on interspecific interactions. Improved SDMs, which account for biotic factors and 17 

do not require a priori knowledge on species interactions, are needed to fully understand species 18 

distributions. Here, we model the influence of abiotic and biotic factors on species distribution patterns 19 

and explore the robustness of distributions under future climate change. We fit hierarchical spatial 20 

models using Integrated Nested Laplace Approximation (INLA) for lagomorph species throughout 21 

Europe and test the predictive ability of models containing only abiotic factors against models 22 

containing abiotic and biotic factors. We account for residual spatial autocorrelation using a conditional 23 

autoregressive (CAR) model. Model outputs are used to estimate areas in which abiotic and biotic 24 

factors determine species’ ranges. INLA models containing both abiotic and biotic factors had 25 

substantially better predictive ability than models containing abiotic factors only, for all but one of the 26 

four species. In models containing abiotic and biotic factors, both appeared equally important as 27 

determinants of lagomorph ranges, but the influences were spatially heterogeneous. Parts of widespread 28 

lagomorph ranges highly influenced by biotic factors will be less robust to future changes in climate, 29 

whereas parts of more localised species ranges highly influenced by the environment may be less robust 30 

to future climate. SDMs that do not explicitly include biotic factors are potentially misleading and omit 31 

a very important source of variation. For the field of species distribution modelling to advance, biotic 32 

factors must be taken into account in order to improve the reliability of predicting species distribution 33 

patterns both presently and under future climate change.    34 

 35 

Keywords:  biotic interactions; climate; competition; INLA; Order Lagomorpha; 36 

species distribution modelling.  37 
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1.1 INTRODUCTION 38 

The factors shaping species spatial distributions are crucial for our understanding of patterns 39 

of biodiversity, and, hence, are commonly studied. Species distributions are constrained by 40 

abiotic conditions, for example, suitable climate, and biotic conditions, for example, 41 

competitive interspecific interactions, as well as movement behaviour, such as dispersal or 42 

colonisation (Soberon & Nakamura, 2009). Species Distribution Models (SDMs) are widely 43 

used in ecology and typically relate species occurrences to (abiotic) environmental variables to 44 

produce models of environmental suitability, which can be spatially or temporally extrapolated 45 

to unsurveyed areas or into past or future conditions (e.g. Elith et al., 2006). Most SDMs use 46 

only environmental variables to predict species distributions and often do not offer credible 47 

statistical tests of the relative influence of these abiotic factors. Typically, they also ignore 48 

other key determinants of species ranges, most pertinently, biotic interactions, as including 49 

these has tended to require a priori knowledge on species interactions (see Elith & Leathwick, 50 

2009; Beale et al., 2014).  51 

Although macroclimate drives distribution patterns at large scales (Whittaker, 1975; 52 

Pearson & Dawson, 2003; Thuiller et al., 2003), there is growing evidence of the important 53 

role of biotic interactions in delineating species’ range extents (Jablonski, 2008; Wiens, 2011; 54 

Wisz et al., 2012). Biotic interactions can take place at local scales, for example, predation, 55 

parasitism, competition and disturbance, or regional scales, for example, dispersal, speciation, 56 

extinction and expansions or contractions of species ranges (Cornell & Lawton, 1992; 57 

Amarasekare, 2003). Competitive interactions, in particular, tend to produce biogeographical 58 

patterns in species distributions; species may meet at a sharp boundary with little or no overlap 59 

(Flux, 2008). Parapatric distributions, whereby two species have separate, but contiguous 60 

ranges, with no physical barrier between them and only co-occur, if at all, in a narrow contact 61 

zone, may result from such competitive interactions (Bull, 1991, Gutiérrez et al., 2014). In 62 
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order to fully understand species distributions, we need to recognise the role of biotic 63 

interactions in shaping geographic ranges (Wisz et al., 2012) and develop novel SDM 64 

techniques to disaggregate the effects of the abiotic environment and biotic interactions.  65 

    Despite the many limitations with current correlative SDM methods, they remain one of the 66 

only methods to predict species distributions. Further, they have practical applications in 67 

conservation management as well as providing insights into the past and future distributions of 68 

organisms and the factors that shape their biogeography. However, if predictions do not 69 

explicitly include biotic factors, they could potentially misinform conservation management 70 

decisions. Accurate representations of species distributions are vital for the design and 71 

implementation of appropriate conservation measures, e.g. protected areas, but SDMs are 72 

unlikely to produce reliable predictions if they rely on abiotic factors alone (Hof et al., 2012; 73 

Kissling et al., 2012). 74 

Studies using SDMs are beginning to consider biotic interactions by including the 75 

occurrence of other species’ as additional covariates (e.g. Pellissier et al., 2010) and this has 76 

been central in improving performance (Araujo & Luoto, 2007; Mod et al., 2015). Surrogates 77 

for biotic-interaction gradients are also used; for example, habitat productivity, which is known 78 

to be a basis of competition in plants (Maestre et al., 2010), or species richness patterns. SDMs 79 

may also be hybridised with dynamic models, such as BIOMOVE (Midgley et al., 2010), but 80 

these methods all require a priori ecological knowledge and can only be applied to one 81 

interacting species’ pair at a time (Wisz et al., 2012).  82 

Markov Chain Monte Carlo (MCMC) simulations offer a flexible framework for species 83 

distribution modelling (Beale et al., 2014) but they come with a wide range of problems 84 

regarding convergence, processing time and implementation (Beguin et al., 2012). An 85 

alternative for fitting such Bayesian hierarchical spatial models uses Integrated Nested Laplace 86 
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Approximation (INLA; Rue et al., 2009) which does not require advanced programming skills, 87 

yields comparable results to MCMC and is rapid (Beguin et al., 2012). Both methods can model 88 

spatial associations within the data using conditional autoregressive (CAR) models, but 89 

because INLA substitutes accurate, deterministic approximations to posterior marginal 90 

distributions in place of long MCMC simulations, in the majority of occasions INLA requires 91 

less processing time to model spatial effects (Beguin et al., 2012). However, INLA is not yet a 92 

completely adequate replacement for MCMC because some models, for example observation 93 

effort models (Illian, 2013), cannot be fitted with INLA but can with MCMC. More recently 94 

‘Joint SDMs’ have been introduced, which simultaneously estimate the ranges of multiple 95 

coexisting species producing mixtures of possible species assemblages (Pollock et al., 2014; 96 

Harris, 2014). Joint SDMs are a substantial step forward, but most do not directly take into 97 

account spatial autocorrelation. A major advantage of using INLA is the ability to account for 98 

spatial autocorrelation with relative ease. SDM studies are especially sensitive to spatial 99 

autocorrelation, which arises when nearby locations are not independent of each other 100 

(Legendre, 1993), and if spatial autocorrelation is not considered it can result in misleading 101 

and biased models (Lennon, 2000; Beale et al., 2010).  102 

Extending the use of hierarchical spatial models to project species distributions under future 103 

climate scenarios is problematic as species interactions can be unstable in space or time (Wisz 104 

et al., 2012). Climatic changes may impact the distribution of interacting species which could, 105 

in turn, alter interactions (Wisz et al., 2012), but species interactions may also influence the 106 

impacts of climate change, for example by altering community dynamics (Gilman et al., 2010). 107 

If interactions have minimal effects on predicted distributions then projection may be possible, 108 

however, if interactions are influential then projection is difficult because the strength and/or 109 

direction of these interactions is likely to change (Beale et al., 2014). Due to the difficulties 110 

with quantitatively modelling the multiple impacts of future change on interacting species, 111 
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proxies for studying climate change impacts, i.e. using measures which indicate change, for 112 

example ecoregional climatic stability, can be useful in determining likely effects (Iwamura et 113 

al., 2010; Iwamura et al., 2013; Watson et al., 2013). Regions highly influenced by biotic 114 

interactions with a low robustness to future climate change (or low climatic stability) may be 115 

particularly susceptible to altered distributions and/ or interactions.  116 

Here, we fit hierarchical spatial models using INLA to quantify the influence of biotic 117 

factors on species distribution patterns and test the difference in predictive ability between 118 

INLA models containing only abiotic factors and models containing abiotic and biotic factors. 119 

Using a number of explanatory factors, including climatic variables, co-occurring species, 120 

vegetation, topography and human influence, we aim to produce more reliable predictions of 121 

species distributions as well as estimating the areas in which abiotic and biotic factors 122 

determine species’ ranges. Post-hoc tests exploring the climatic stability of these areas can 123 

highlight, for example, if areas influenced to a greater extent by biotic factors are likely to be 124 

less robust to future changes, and, therefore, direct future management actions towards either 125 

the conservation of co-occurring species or the conservation of particular habitats. This 126 

approach could be implemented widely, for a number of species, but here we use lagomorphs 127 

in Europe, a fairly large spatial extent, as a test dataset because their biotic interactions are well 128 

known (see Acevedo et al., 2012 and Leach et al., 2015a) and can, therefore, be easily 129 

validated. There are six lagomorph species found throughout Europe (Lepus castroviejoi, L. 130 

corsicanus, L. europaeus, L. granatensis, L. timidus and Oryctolagus cuniculus) and they 131 

occupy a wide range of environmental conditions. We expect large influences of biotic factors 132 

on lagomorph species distributions, and given the wide-ranging climatic conditions occupied, 133 

we anticipate significant implications for conservation management in a changing climate. We 134 

expect to recover competitive interactions between L. europaeus and L. timidus, given studies 135 

in Ireland and across Europe (Thulin, 2003; Reid & Montgomery, 2007; Reid, 2011; Caravaggi 136 
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et al., 2014; 2016), and also between L. europaeus and L. granatensis, given their parapatric 137 

distributions and field studies in Iberia (Gortazar et al., 2007). 138 
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1.2 MATERIALS AND METHODS 139 

1.2.1 Species data  140 

International Union for Conservation of Nature (IUCN) geographic range polygons for 141 

European lagomorph species (Fig. 1) were rasterised in R version 3.1.1 at 30 arc-minute 142 

resolution (~50km2 grid cells), with a value of 1 for species presence and 0 for absence. IUCN 143 

polygons have been used in a number of species distribution modelling studies to date (e.g. 144 

Lawler et al., 2009; Visconti et al., 2015), and whilst they may have higher omission errors 145 

(Graham & Hijmans, 2006; Murray et al., 2011), the detailed construction of the polygons 146 

together with the internal review process and expert assessments by the IUCN can lead to the 147 

production of more realistic distribution models. To illustrate the consequences of using 148 

different input data, species distributions models will be built with IUCN polygons and 149 

compared to those built using point occurrence data. For this exercise, point data was 150 

downloaded from the Global Biodiversity Information Facility (GBIF) Data Portal 151 

(http://data.gbif.org) and prepared as per Leach et al. (2015b). Models for two highly range-152 

restricted species: L. castroviejoi and L. corsicanus, were extremely poor and are not 153 

considered further. 154 
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 155 

Fig. 1. IUCN geographic range polygons (black) for the European lagomorph species 156 

modelled. L. castroviejoi and L. corsicanus models were extremely poor and so their ranges 157 

are not shown here. 158 

 159 

1.2.2 Environmental data  160 

Current climate variables (~1950-2000) known to determine lagomorph species distributions 161 

were downloaded from WorldClim (www.worldclim.org) and resampled to the same resolution 162 

as the species data. Evapotranspiration was calculated using the Hargreaves equation (see 163 

Leach et al., 2015b for more details) and annual water balance was calculated by subtracting 164 

annual evapotranspiration from mean annual precipitation. The number of months with a 165 

Positive Water Balance (PWB) was calculated by subtracting each monthly evapotranspiration 166 

from its corresponding monthly precipitation, then converting into a binary format, where a 167 

value greater than zero was given a value of one and a value less than zero was kept at zero, 168 

finally summing the twelve binary scores (Kremen et al., 2008). Mean annual Normalised 169 
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Difference Vegetation Index (NDVI) was calculated from monthly values which were 170 

downloaded from the European Distributed Institute of Taxonomy (EDIT) Geoplatform 171 

(http://edit.csic.es/Soil-Vegetation-LandCover.html). Hilliness, an index of surface roughness, 172 

was calculated by finding the difference between maximum and minimum gradient values, 173 

based on a global Digital Elevation Model at 30 arc-minute resolution (Newton-Cross et al., 174 

2007). Human Influence Index data were downloaded from the NASA Socioeconomic Data 175 

and Applications Centre (SEDAC) website (http://sedac.ciesin.columbia.edu/; WCS CIESIN, 176 

2005). Subsequently, correlated environmental variables (minimum precipitation, minimum 177 

temperature, mean annual precipitation, mean annual temperature, solar radiation, annual water 178 

balance and annual evapotranspiration) were removed, leaving the following: maximum 179 

temperature, temperature seasonality, maximum precipitation, precipitation seasonality, PWB, 180 

NDVI, Hilliness and Human Influence Index. All environmental variables were rescaled to 181 

have a mean of zero and unit variance. Environmental data were extracted for each grid cell 182 

across Europe and combined in a dataset with species presence/absence data.  183 

 184 

1.2.3 Model structure 185 

Hierarchical spatial models were fit using INLA (Fig. 2). Code and sample data are available 186 

from: https://github.com/katieleach/BioticSDMs. Relationships between the response variable 187 

and individual covariates were restricted to functional forms with simple shapes (Austin, 2002) 188 

and the flexibility of these forms was part of the modelling approach. Each covariate was fitted 189 

as a smooth term represented by a penalised regression spline with two knots to describe 190 

biologically realistic unimodal response terms; regression splines were recombined to obtain 191 

fitted values for environmental variables as per Beale et al. (2014). Greater or lesser flexibility 192 

can be permitted by altering the number of knots in the spline terms. The spline models are 193 

detailed further in the R script. Species known to co-occur with the target (modelled) species 194 
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i.e. response variable were included as biotic covariates in addition to the environmental 195 

variables. Residual spatial autocorrelation was accounted for using an intrinsic conditional 196 

autoregressive (iCAR) error structure. This represents a spatial random effect and accounts for 197 

spatially structured residuals, e.g. missing abiotic and biotic variables and processes, not 198 

modelled by the included covariates. A vague Gaussian prior was assumed for the model 199 

parameters and values of the shape parameters were defined so that the ratio of data points to 200 

the number of effective parameters was >20; for more details see Beguin et al. (2012).  201 

 202 

Fig. 2. Conceptual diagram of abiotic and biotic models.  203 

Abiotic model

Species presence/absence

Environmental data

Scaled, penalised regression splines with 
two knots

INLA

Species~Environment + Conditional 
Autoregressive component (distance 

between cells)

Biotic model

Species presence/absence

Environmental data

Scaled, penalised regression splines with 
two knots

Co-occurring species

Presence/absence of species known to co-
occur with the modelled species

INLA

Species~Environment+Co-occurring 
Species + Conditional Autoregressive 
component (distance between cells)
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1.2.4 Model evaluation 204 

Predictive ability of species distribution models is typically assessed using metrics such as Area 205 

Under the Curve (AUC) or alternatives such as the True Skill Statistic (TSS) or Kappa values. 206 

However, these metrics have been criticised when using presence/pseudo-absence data and 207 

have limitations with respect to sensitivity, specificity, omission and commission errors 208 

(Allouche et al., 2006). These performance metrics require arbitrary designation of training 209 

and test data, and comparison of values between models for hypothesis testing is difficult. In 210 

Bayesian statistics, common methods of model evaluation include Bayesian Information 211 

Criterion (BIC; unavailable in R-INLA), Deviance Information Criterion (DIC) and Watanabe-212 

Akaike information criterion (WAIC). But, all these methods over fit because of their 213 

equivalence to cross-validation (Plummer, 2008; Gelman et al., 2014). WAIC has recently been 214 

made available in R-INLA for model comparison and is recommended because it is a more 215 

fully Bayesian approach for out-of-sample prediction (Watanabe, 2010; Gelman et al., 2014), 216 

however, WAIC is not recommended for spatial analyses (Gelman et al., 2014). DIC is known 217 

to penalise for model complexity (Plummer, 2008), but Spiegelhalter et al. (2002) recommend 218 

DIC for spatial analyses. Given that there is no perfect solution to date, we evaluate models 219 

containing only abiotic factors against models containing both abiotic and biotic factors using 220 

both WAIC and DIC.   221 
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1.2.5 Analysis 222 

All analyses were carried out in R version 3.1.1. Separate models were fit for each lagomorph 223 

species, with the abiotic and biotic model for one species defined as: 224 

 225 

ሺݐ݅݃݋݈	 ௜ܲሻ ൌ ݁଴ ൅ ሺ݁ଵ 	ൈ 1௜ݒ݊݁ ൅ ݁ଶ 	ൈ 2௜ሻݒ݊݁ ൅ ሺܾଵ	ൈ 1௜ݏ݁݅ܿ݁݌ݏ ൅ ⋯ܾଶ 	ൈ 2௜ሻݏ݁݅ܿ݁݌ݏ ൅   226	௜ܧܵ

ሺ࢔࢕࢏࢚ࢇ࢛ࢗࡱ	૚ሻ,  227 

 228 

and the abiotic only model defined as: 229 

 230 

ሺݐ݅݃݋݈	 ௜ܲሻ ൌ ݁଴ ൅ ሺ݁ଵ 	ൈ 1௜ݒ݊݁ ൅ ⋯݁ଶ 	ൈ 2௜ሻݒ݊݁ ൅   231	௜ܧܵ

ሺ࢔࢕࢏࢚ࢇ࢛ࢗࡱ	૛ሻ,  232 

 233 

where ௜ܲ 		was the probability of presence in cell i, ݁଴ was the intercept, ݁ଵ and ݁ଶ	the estimated 234 

parameters for abiotic factors, ݁݊1ݒ௜and ݁݊2ݒ௜	the two spline bases for ݁ଵ and ݁ଶ		in cell i, ܾଵ 235 

and ܾଶ	 the estimated parameters for biotic factors, 1ݏ݁݅ܿ݁݌ݏ௜	and 2ݏ݁݅ܿ݁݌ݏ௜  the two spline 236 

bases for ܾଵ and ܾଶ		in cell i, and ܵܧ was the estimated spatially explicit error term for cell i. 237 

The total number of fixed-effect parameters differs between models due to differing numbers 238 

of co-occurring species; however, there were always 17 fixed-effect abiotic parameters 239 

(intercept plus two parameters for each abiotic factor – due to the two knots in the penalised 240 

regression spline).  241 
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Equations 1 and 2 can be separated into multiple terms in order to explore the relative 242 

influence of abiotic and biotic factors in each cell. Contributions of each term to the model 243 

were calculated as follows: the contribution of the spatially explicit error term or spatially 244 

structured residuals in cell i, ܵܧ஼ைெ௉೔ ൌ .ݒ݊݅ ,௜ሻܧሺܵݐ݅݃݋݈  the contribution of the abiotic 245 

component,	ܰܧ ஼ܸைெ௉೔ ൌ .ݒ݊݅ ሺ݁ଵݐ݅݃݋݈ 	ൈ 1௜ݒ݊݁ ൅ ⋯݁ଶ 	ൈ  2௜) and the contribution of the 246ݒ݊݁

biotic component, ஼ைெ௉೔ܱܫܤ	 ൌ .ݒ݊݅ ൈ	ሺܾଵݐ݅݃݋݈ 1௜ݏ݁݅ܿ݁݌ݏ ൅ ⋯ܾଶ 	ൈ 2௜ݏ݁݅ܿ݁݌ݏ . The logit 247 

transform ensures that probabilities close to 0 or 1 are explained equally well by a number of 248 

components because the function is flat at extremes. Adapting equations from Beale et al. 249 

(2014), the proportion of the probability of presence explained by abiotic effects was calculated 250 

by: 251 

 252 

ாே௏೔ሻ݌݋ݎሺܲݐ݅݃݋݈ ൌ
ห ௜ܲ െ ஼ைெ௉೔ܧܵ െ ஼ைெ௉೔หܱܫܤ

ห ௜ܲ െ ஼ைெ௉೔ܧܵ െ ܰܧ ஼ܸைெ௉೔ห ൅ ห ௜ܲ െ ஼ைெ௉೔ܧܵ െ ஼ைெ௉೔หܱܫܤ ൅ ห ௜ܲ െ ஼ைெ௉೔ܱܫܤ െ ܰܧ ஼ܸைெ௉೔ห
	 253 

ሺ࢔࢕࢏࢚ࢇ࢛ࢗࡱ	૜ሻ, 254 

 255 

And the proportion of the probability of presence explained by biotic factors: 256 

 257 

஻ூை೔ሻ݌݋ݎሺܲݐ݅݃݋݈ ൌ
ห ௜ܲ െ ஼ைெ௉೔ܧܵ െ ܰܧ ஼ܸைெ௉೔ห

ห ௜ܲ െ ஼ைெ௉೔ܧܵ െ ஼ைெ௉೔หܱܫܤ ൅ ห ௜ܲ െ ஼ைெ௉೔ܧܵ െ ܰܧ ஼ܸைெ௉೔ห ൅ ห ௜ܲ െ ஼ைெ௉೔ܱܫܤ െ ܰܧ ஼ܸைெ௉೔ห
	 258 

ሺ࢔࢕࢏࢚ࢇ࢛ࢗࡱ	૝ሻ. 259 

 260 

Outputs from the calculation of ܲ݌݋ݎ஻ூை೔	 and ܲ݌݋ݎாே௏೔ were plotted spatially by 261 

reassigning coordinates to each grid cell. Marginal effect plots for environmental covariates 262 
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were produced using original variable values and predicted probability of presence values ௜ܲ 	 263 

from INLA models. Marginal effect plots for biotic interactions were produced as boxplots due 264 

to the binary input data.  265 

Ecoregional climatic stability was defined as “the proportion of an ecoregion which was 266 

predicted to be climatically stable under [future] climate change” (Iwamura et al., 2013). The 267 

climatic stability index was calculated by estimating the overlap between present and future 268 

climatic envelopes for each ecoregion using results from seven global circulation models 269 

(GCMs). It ranges from 0, no overlap between current and future climates, to 1, complete 270 

overlap and high robustness to climate change (Watson et al., 2013). Linear regressions were 271 

performed to test the relationship between climatic stability and ܲ݌݋ݎ஻ூை೔/ܲ݌݋ݎாே௏೔ for each 272 

species.   273 
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1.3 RESULTS 274 

Predicted probabilities of presence for four European lagomorph species varied substantially 275 

between INLA models built with IUCN geographic range polygons (Fig. 3a) and those built 276 

with point occurrence data (Fig. 3b). Although using IUCN data may result in false positives, 277 

in this case, point occurrence data resulted in false positive and false negative predictions of 278 

occurrence. For example, the range of L. granatensis is restricted to the Iberian Peninsula yet 279 

models utilising point occurrence predicted areas in Northern Europe to be suitable; 280 

erroneously. In addition, L. europaeus and O. cuniculus are distributed throughout Central 281 

Europe extending into Eastern Europe, yet models using point occurrence data predicted 282 

distributions skewed to Western Europe. This reflects the sparsity and biased nature of point 283 

occurrence data, whilst suggesting that IUCN polygons, at least for this taxon, lead to more 284 

realistic species distribution models. However, it is possible that the disparity within species 285 

between Fig. 3a and Fig. 3b may in fact be a result of differences in rate of movement within 286 

the observed area of occurrence for spatially autocorrelated (Fig. 3a) and uncorrelated 287 

distribution patterns (Fig. 3b), with rates likely to be larger for animal species, i.e. lagomorphs, 288 

than plants.  289 

 290 
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Fig. 3. Predicted probability of presence using (a) IUCN geographic range polygons as species 291 

input data, and (b) using point occurrence data. 292 

 293 

Evaluation of the predictive ability of INLA models for four lagomorph species in Europe, 294 

as assessed using both WAIC and DIC (which both showed similar results), indicated that those 295 

incorporating both abiotic and biotic factors were substantially better for all species except L. 296 

timidus (Table 1). For this species, the abiotic only model had much higher WAIC and DIC 297 

values, potentially indicating little influence of biotic factors on its distribution. The difference 298 

in WAIC and DIC values for full and abiotic only models of L. europaeus and O. cuniculus 299 

suggested that they differed with a high degree of confidence. Although, the difference was 300 

smaller for L. granatensis, a ΔWAIC/DIC of ~150 suggests models with abiotic and biotic 301 

factors had better predictive power.  302 

 303 

Table 1. Predictive ability of INLA models with abiotic and biotic factors compared to models 304 

with only abiotic factors. Watanabe-Akaike information criterion (WAIC) and deviance 305 

information criterion (DIC) were used to assess predictive ability, where a lower value 306 

indicates better predictive power (*) and a greater ΔWAIC/DIC suggests greater differences 307 

between the two models. 308 

 DIC values WAIC values 

Species Abiotic + 
Biotic 

Abiotic 
only 

ΔDIC Abiotic + 
Biotic 

Abiotic 
only 

ΔWAIC 

       

Lepus europaeus 2765.06* 3363.69 598.63 2778.80* 3372.87 594.07 

Lepus granatensis 420.91* 576.34 155.43 431.32* 581.86 150.54 

Lepus timidus 3095.65 2584.00* -511.65 3095.58 2757.06* -338.52 

Oryctolagus cuniculus 1880.04* 2204.49 324.45 1891.10* 2210.25 319.15 

       

  309 



18 
 

The average influences of abiotic and biotic factors on predicted distributions were largely 310 

comparable for all species, with the average proportion of ranges explained by abiotic effects 311 

0.916 and the average proportion explained by biotic factors 0.915, however, the range of L. 312 

granatensis was explained to a greater extent by abiotic effects (0.907 vs. 0.824) and the range 313 

of O. cuniculus explained to a greater extent by biotic factors (0.873 vs. 0.925). Though, the 314 

proportion of species’ presence explained by abiotic (Fig. 4a) and biotic factors (Fig. 4b) varied 315 

considerably over space. For example, the range of L. timidus was influenced to a greater extent 316 

by potential interspecific interactions and to a lesser extent by abiotic factors at its southern 317 

range edge, whilst the range of O. cuniculus was influenced more by potential interspecific 318 

interactions in the western part of its distribution than abiotic factors.  319 

 320 

 321 

Fig. 4. Proportion of predicted probability of presence explained by (a) abiotic factors or (b) 322 

biotic factors mapped spatially. These maps were clipped to the IUCN geographic range 323 

polygons.  324 
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Our models suggest the potential for mutualistic as well as competitive interactions within 325 

European lagomorph species. L. granatensis and O. cuniculus, as well as L. europaeus and O. 326 

cuniculus, had higher probabilities of presence where they co-occur with each other, indicating 327 

possible mutualism (Fig. 5). Whereas L. europaeus had a higher probability of presence in the 328 

absence of L. granatensis and L. timidus, L. granatensis and L. timidus had higher probabilities 329 

in the absence of L. europaeus, and O. cuniculus had higher predicted probabilities of presence 330 

in the absence of L. timidus and vice versa, indicating possible competition (Fig. 5).  331 

 332 

 333 

Fig. 5. Marginal effect plots showing the influence of biotic factors, i.e. co-occurring species 334 

(where 0 indicates absence and 1 presence), on predicted probabilities of presence for all 335 

combinations of species.  336 

 337 

In terms of abiotic factors, L. europaeus was positively associated with NDVI (high 338 

productivity landscapes) and maximum temperature, and more likely to be found in areas of 339 



20 
 

approximately 100mm maximum precipitation, with little precipitation seasonality (Fig. 6 & 340 

Table 2). L. granatensis was associated with high maximum temperatures above 20°C. L. 341 

timidus was positively associated with temperature seasonality, as well as low human influence 342 

and extremely hilly areas. O. cuniculus was more likely to be present in flat landscapes, at low 343 

and high NDVI values i.e. semi-arid regions in Iberia and the Mediterranean, and high 344 

productivity landscapes i.e. farmland, and in areas with approximately 150mm maximum 345 

precipitation.  346 
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 347 

Fig. 6. Marginal effect plots showing the relationships between environmental covariates and 348 

predicted probabilities of species presence. Grey shaded regions show 95% credible intervals 349 

and solid lines the mean estimate.  350 
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Table 2. Parameter estimates for abiotic effects on the predicted probabilities of presence of 351 

European lagomorph species plus 2.5% and 97.5% credible intervals. Significant parameter 352 

estimates, i.e. those with credible intervals that do not cross 0.5, are shown in bold.  353 

Effect  
Lepus 

europaeus 
Lepus 

granatensis 
Lepus 

timidus 
Oryctolagus 

cuniculus 

Human 
Influence 

Mean <0.001 0.067 0.844 0.117 

97.5% 0.071 0.913 0.876 0.152 

2.5% <0.001 0.003 0.805 0.016 

Hilliness 

Mean 0.502 0.496 0.513 0.509 

97.5% 0.508 0.500 0.516 0.512 

2.5% 0.496 0.492 0.510 0.505 

Max. 
Prec. 
(mm) 

Mean 0.943 0.944 0.055 0.941 

97.5% 0.969 0.999 0.060 0.951 

2.5% 0.927 0.921 0.047 0.930 

Max. 
Temp. 
(°C) 

Mean 0.704 0.787 <0.001 <0.001 

97.5% 1.000 1.000 <0.001 <0.001 

2.5% 0.522 0.717 <0.001 <0.001 

NDVI 

Mean 0.648 0.495 0.474 0.588 

97.5% 0.669 0.515 0.490 0.603 

2.5% 0.624 0.474 0.458 0.573 

Prec. 
Season. 
(mm) 

Mean 0.970 <0.001 0.932 0.989 

97.5% 0.999 0.012 0.958 0.999 

2.5% 0.960 <0.001 <0.001 0.015 

Temp. 
Season. 

(°C) 

Mean 0.000 0.485 0.524 0.503 

97.5% 0.328 1.000 0.533 0.516 

2.5% 0.000 0.000 0.517 0.493 

Positive 
Water 

Balance 

Mean 0.839 0.364 0.019 0.133 

97.5% 0.985 0.722 0.090 0.468 

2.5% 0.161 0.111 0.010 0.031 

 354 

 355 

The relationship between climatic stability and the proportion of the range influenced by 356 

abiotic or biotic factors varied for each species. L. europaeus showed a similar response to O. 357 

cuniculus, and L. granatensis a similar response to L. timidus despite the geographically 358 

distinct distributions (Fig. 7). For L. europaeus and O. cuniculus areas highly influenced by 359 

abiotic factors were positively related to climatic stability (average slope = 0.342), i.e. these 360 
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areas are likely to become more climatically stable in the future, whereas areas for those species 361 

highly influenced by biotic factors were negatively associated with climatic stability (average 362 

slope = -0.142), i.e. these areas are likely to become less climatically stable in the future. For 363 

L. granatensis and L. timidus areas influenced by abiotic factors are predicted to be less stable 364 

under future climates (average slope = -0.227) and areas influenced by biotic factors more 365 

stable (average slope = 0.240).  366 

 367 

 368 

Fig. 7. Relationship between climatic stability and the proportion of predicted probability of 369 

presence explained by abiotic (PropENV) or biotic factors (PropBIO) for each species. The 370 

grey areas surrounding fitted linear regression lines indicate credible intervals.  371 
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1.4 DISCUSSION 372 

Predictive ability was substantially better in models built using abiotic and biotic factors, than 373 

in models built solely with abiotic variables, for all but one lagomorph, suggesting the potential 374 

for interspecific drivers in determining species distribution patterns. Abiotic factors alone are 375 

likely to build a better model for the mountain hare, L. timidus, due to its distribution being 376 

primarily driven by cooler temperatures at high latitudes and elevations. For the majority of 377 

lagomorph species in Europe, abiotic factors and interspecific interaction effects appeared 378 

equally important in determining their ranges. Our models suggest directional associations 379 

consistent with field-based observations reported in the literature between L. granatensis and 380 

L. europaeus (Gortazar et al., 2007), L. europaeus and L. timidus (Thulin, 2003; Reid & 381 

Montgomery, 2007; Reid, 2011; Caravaggi et al., 2014; 2016) and O. cuniculus and L. timidus 382 

(though this latter relationship has not been empirically documented their ranges show 383 

significant overlap and biotic interactions are both possible and probable, particularly at the 384 

southerly range edge of L. timidus). In addition, a potential mutualistic interaction is suggested 385 

between O. cuniculus and L. granatensis, which to the best of our knowledge has not yet been 386 

reported. However, these correlative analyses may only identify associations which cannot be 387 

used to attribute causation; underlying mechanisms, for example, the strength and direction of 388 

interspecific competition, can only be established using field observations and/or hypothesis 389 

testing experiments (Beale et al., 2014). Furthermore, these results do not consider the 390 

influence of additional biotic factors, for example pikas (Ochotona roylei) and birds (Pnoepyge 391 

albiventer) are known to exhibit mutualism in some locations (Khanal, 2007), and also do not 392 

consider that possible mutualistic relationships could be due to competitive interactions of 393 

species in the same niche, not reaching equilibrium. 394 

The influence of biotic factors was spatially heterogeneous. For example, it is predicted that 395 

biotic factors disproportionately influenced the southern range of L. timidus, a predominately 396 
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high latitude species which overlaps with its competitor L. europaeus, a predominately 397 

temperate climate, lowland farmland species at its southern range margin (Thulin, 2003). The 398 

western regions of the range of O. cuniculus were also suggested to be disproportionately 399 

influenced by biotic factors presumably where it overlaps with other lagomorphs.  400 

Environmental covariates identified as important to the predicted presence of European 401 

lagomorphs in our models were largely supported in the literature. O. cuniculus prefers flat 402 

landscapes (Fa et al., 1999; Tapia et al., 2010), and L. europaeus and O. cuniculus occupy 403 

landscapes of differing productivity and vegetation (Smith & Boyer, 2008; Smith & Johnston, 404 

2008). In addition, L. europaeus and O. cuniculus prefer less seasonal and lower levels of 405 

precipitation (Rödel & Dekker, 2012), whereas L. granatensis is only found in areas of 406 

relatively high temperatures (Alves & Rocha, 2003). L. timidus occupies regions with high 407 

winter snowfall (Angerbjorn & Flux, 1995), and, therefore, tolerates large seasonal variations 408 

in temperature. Also, L. timidus is known to occupy high elevations, especially in the Alps, and 409 

inhabits areas of low human influence (Thulin, 2003).  410 

Projecting species distributions under future climate scenarios is inherently challenging, 411 

especially with the inclusion of biotic factors which may introduce the potential for 412 

multicollinearity (Kissling et al., 2012). Associating proxies for climate change with the results 413 

of spatial hierarchical models can provide insight into the potential impacts of future change 414 

(e.g. Watson et al., 2013). We show that areas of O. cuniculus and L. europaeus ranges 415 

influenced by biotic factors will be less robust to future changes in climate, whereas areas of 416 

L. granatensis and L. timidus ranges highly influenced by the environment will be less robust 417 

to future climate. The narrow climatic conditions occupied by the latter two species and the 418 

uniqueness of these conditions within Europe, i.e. high temperatures in Iberia (Alves & Rocha, 419 

2003) and cold temperatures in Northern Europe (Thulin, 2003), probably explains why the 420 

areas influenced by abiotic factors are less robust – these particularly arid and arctic ecoregions 421 
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are highly susceptible to even small changes in climate (Beaumont et al., 2011), and the species 422 

found here, which are adapted to these narrow conditions, may therefore struggle to cope with 423 

small changes to temperature or precipitation. The widespread lagomorphs, L. europaeus and 424 

O. cuniculus, on the other hand, are predicted to be less robust to future climatic changes in 425 

areas determined by biotic factors. This may lead to substantial changes in future distributions, 426 

given that these species co-occur with most other lagomorph species in Europe, and may lead 427 

to altered interactions, for example one of the more range-restricted species may outcompete 428 

one of the widespread species in the future, potentially changing the direction of interactions. 429 

The effects on range-restricted species, e.g. L. castroviejoi and L. corsicanus, are still unknown, 430 

but we expect them to be particularly sensitive to projected changes due to the restricted 431 

climatic envelopes that they occupy. On the basis of these results we suggest that the 432 

management of L. timidus and L. granatensis in the future is directed towards habitat 433 

conservation in areas of climate particularly favoured by these species, whereas for L. 434 

europaeus and O. cuniculus conservation strategies should be directed at areas where these 435 

species overlap with co-occurring lagomorphs, for example conservation of O. cuniculus in 436 

Iberia, France and the UK, and L. europaeus in the UK, Central Europe and the more southerly 437 

regions of its overlap with L. timidus.  438 

Although our species-specific results are consistent with environmental and interspecific 439 

effects reported in the literature, given unbiased and adequate point occurrences with reliable 440 

data on observer effort, models could be improved (see Royle et al., 2007; Beale et al., 2014). 441 

Here, we concentrated on determining interspecific interaction effects at the same trophic level 442 

with congeneric species (for simplicity), but future improvements might also include top-down 443 

(predator-prey), bottom-up (plant-grazer) and host-parasite interactions as these are equally, if 444 

not more likely, to have strong impacts on species distributions (Kissling et al., 2012).  445 

 446 
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1.4.1 Conclusions 447 

The approach demonstrated here allowed biotic factors to be included in modelling species 448 

distributions, without the need for a priori knowledge on species interactions. SDMs that do 449 

not explicitly include biotic, as well as abiotic factors are missing a large source of variation 450 

that appears, for European lagomorphs, equally important in determining species distributions. 451 

Even though the results are limited to European lagomorphs and the approach might not be 452 

relevant for some taxa, for example plants, it is likely that it can be applied to a wide range of 453 

species given adequate species occurrence and environmental data. In addition, through the 454 

production of accurate species distribution models, built with abiotic and biotic factors, 455 

effective and appropriate conservation measures can be suggested. However, these approaches 456 

must be extended to model rare, and/or highly range-restricted species which are likely to be 457 

particularly vulnerable in the future, yet are seldom included due to sparse data and poor model 458 

performance.  The evaluation of risk to future conservation status of a species by extrapolation 459 

under future climate scenarios of SDMs that do not include biotic factors is likely to result in 460 

biased and unrealistic results (except in those cases where the effect of biotic interactions is 461 

small, which we suspect likely to be the case for a minority of species only). Species 462 

distributions largely defined by biotic interactions cannot be extrapolated without 463 

simultaneously extrapolating the distribution of all potentially interacting species, including 464 

top-down and bottom-up processes. Even if the statistical challenges of creating such complex 465 

models are overcome, they are unlikely to account for changes in the strength and direction of 466 

biotic interactions in the future because species range determinants are likely to have 467 

multivariate influences. Thus, the development of Joint SDM approaches and network analysis 468 

to quantify the strength of biotic interactions at all trophic levels accounting for spatial 469 

autocorrelation whilst minimising computational power is needed.   470 
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