

CityZEN strategy plan #1: Colin, Belfast

Keeffe, G. (Designer), van den Dobblesteen, A. (Designer), Martin, C. L. (Designer), Puselli, R. (Designer), Boersma, S. (Designer), Vandevyvere, H. (Designer), & Peters, L. (Designer). (2016). CityZEN strategy plan #1: Colin, Belfast.

Document Version: Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal

General rights

copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other

Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Co-funded by the European Union's Seventh Programme for research, technological development and demonstration

CITYZEN INVOLVEMENT

The goal is to **motivate** and **empower end-users** to a long term energy saving attitude via:

- serious games
- an energy savings challenge
- monitoring their own energy
- retrofitting houses
- usage of district heat and cold sources
- using an electrical car to store energy
- using home batteries to increase self consumption of solar power
- **Roadshow**

'The COLIN Roadshow' - Belfast

Presented by Dr Craig Lee Martin (TU Delft)

BACKGROUND

 Context for roadshow: The Trias Energetica

BACKGROUND

• Context for roadshow:

BACKGROUND

Roadshow activities & events over the 5 Day programme include:

Energy Mapping

Design workshops

Mini-Masterclasses

Future Innovation Technology lectures

Tradeshows

Carbon Accounting

Serious Gaming

ITS NOT A COMMUNITY CONSULTATION SESSION!

THE 'ROADIES':

Travelling with the Roadshow is an experienced team of internationally renowned sustainability experts, whose specialisms will combine with multidisciplinary stakeholder groups and students from each hosting city.

- energy synergies

energy synergies

(Workshop 1) spatial & social synergies

Methodology

THE COLIN SUSTAINABLE VISION

THE COLIN SUSTAINABLE VISION

THE COLIN SUSTAINABLE VISION

'Future Cities & Their Neighbourhoods' (Workshop 1): DEVELOPMENT WORK:

Prof. Greg Keeffe Workshop Content: "Vure Clies & Their Neighbourhoods" (Workshop 1) - spatial & social synergies

Dr Craig L. Martin Workshop Content: SWAT Studio (Pre-RS Analysis) & Roadshow

Tour Guide

THE 9 'LAWS' OF COLIN:

1. DO NOT NEGOTIATE WITH PAST ERRORS – BUILD A NEW FUTURE

2. CREATE OPPORTUNITY – TAKE RISKS!

3. WHEN TOO COMPLICATED? PLACE RENEWABLE INFRA-STRUCTURE

4. CONSOLIDATE URBANITY – BE PART OF A CITY ...

5. GREEN SPACE IS NOT ALWAYS GOOD, SURROUND IT!

6. SUCCESSFUL STREETS ARE SLOW, CULTIVATE CONGESTION!

7. RESPOND TO ENVIRONMENT

8. ENCOURAGE GOOD BEHAVIOUR

9. LOCAL NOT GLOBAL!

Prof. Greg Keeffe Workshop Content: "Future Cities & Their Heighbourhoods (Workshop 1) - spetial & social synergies

Dr Craig L. N Workshop Content: SWAT Studio (Pre-RS Analysis) & Roadshow Methodology

CONTEXT

PROGRAMME

SUSTAINABILITY

ST COLMS SCHOOL:

Prof. Greg Keeffe Workshop Content: "Future Cities & Their Neighbourhoods" (Workshop 1) - spatial & social synergies

Dr Craig L. Martin Workshop Content: SWAT Studio (Pre-RS Analysis) & Roadshow Methodoay

THE 9 'LAWS' OF COLIN: SITE INTERPRETED

Prof. Greg Keeffe Workshop Content: "Future Citles & Their Neighbourhoods' (Workshop 1) - spatial & social synergies

Dr Craig L. Martin Workshop Content: SWAT Studio (Pre-RS Analysis) & Roadshow Methodology

STRATEGY

Prof. Greg Keeffe Workshop Content: "Future Cities & Their Neighbourhoods" (Workshop 1) - spatial & social synergies

Dr Craig L. Martin Workshop Content: SWAT Studio (Pre-RS Analysis) & Roadshow Methodopay

'Future Cities & Their Neighbourhoods' (Workshop 1): SECTION PROPOSAL

proposed colin town centre section

Prof. Greg Keeffe Workshop Content: "Future Cities & Their Neighbourhoods" (Workshop 1) - spatial & social synergies

Dr Craig L. Martin Workshop Content: SWAT Studio (Pre-RS Analysis) & Roadshow Methodology

'Future Cities & Their Neighbourhoods' (Workshop 1): STREET SECTION

Prof. Greg Keeffe Workshop Content: "Vure Cities & Their Neighbourhoods" (Workshop 1) - spatial & social synergies Dr Craig L. Martin Workshop Content: SWAT Studio (Pre-RS Analysis) & Roadshow Methodoay

URBAN FARM SECTION

Prof. Greg Keeffe Workshop Content: "Future Citles & Their Neighbourhoods" (Workshop 1) - spetial & social synergies Dr Craig L. Martin Workshop Content: SWAT Studio (Pre-RS Analysis) & Roadshow Methodoay

'Future Cities & Their Neighbourhoods' (Workshop 1):3D VISUALISATION

Prof. Greg Keeffe Workshop Content: "Future Cities & Their Neighbourhoods" (Workshop 1) - spatial & social synergies

Dr Craig L. Martin Workshop Content: SWAT Studio (Pre-RS Analysis) & Roadshow Methodology

THE NUMBERS:

Prof. Greg Keeffe Workshop Content: "Future Cities & Their Neighbourhoode" (Workshop 1) - spetiel & social synergies

Dr Craig L. Martin Workshop Content: SWAT Studio (Pre-RS Analysis) & Roadshow Methodology

350 hones 35 shops 18 pannie bandings 3 x William finnas 1 x momans space 1 x dectrie car share 1 x heater Outre

ROADSHOW **COLIN ENERGY SCENARIOS**

Siebe Broersma, Riccardo Pulselli, Han Vandevyvere, Kirstin O' Regan, Aimee McAvoy, Cathal Crumley, Brendan Holbeach **Colin, Belfast, 22.01.2016**

>>> ENERGY MASTER PLAN FRAMEWORK

avg floor area 82.6 m² CARBON FOOTPRINT PER HOUSE = 5.92 t CO₂eq/yr avg built area 35.4 m² CARBON EMISSION **ENERGY** 5.55 t CO, eq electricity demand 3191 kWh/yr heat demand 15383 kWh/yr gas for heating (52% of households) 1042 m³/yr oil for heating (48% of households) 926 kg/yr MOBILITY CARBON EMISSION 0.2 t CO2eq vehicles 0.6 n. driven distance 1314 km/yr WASTE MANAGEMENT CARBON EMISSION waste production 284 kg/yr 0.17 t CO, eq waste to landfill 40% waste to energy 16% waste to recycling & compost 44% GARDEN CARBON UPTAKE - 3 kg CO,eq private garden 9.9 m²

CARBON FOOTPRINT PER HOUSE

includes energy use, car driving and waste management

households 2.68 n.

ECOLOGICAL FOOTPRINT PER HOUSE

includes energy use, car driving and waste management

450 m

TOTAL ECOLOGICAL FOOTPRINT per HOUSEHOLD

avg. ecological footprint per capita: 5 gha/person; 2.7 people/household

COLIN DISTRICT ECOLOGICAL FOOTPRINT, HOUSEHOLD RATE = 13,951 gha

COLIN DISTRICT TOTAL ECOLOGICAL FOOTPRINT = 124,071 gha

households n. 9259 Population 24,814 n. avg ecological footprint 5gha/person

HOUSEHOLDS RATE includes: energy use car driving waste management

TOTAL FOOTPRIN includes: purchased goods food consumption extended transport other waste

COLIN DISTRICT ECOLOGICAL FOOTPRINT

avg ecological footprint 5 gha per person

From the catalogue of measures (single techniques, measures, combination of technologies) From the atlas of case studies (built examples)

List of potentially suitable energy measures Energy Efficiency

Insulation;

- \circ roof
- high performance windows
- \circ Wall
- \circ Floor
- Air tightness
- Installation efficiency
 - \circ upgrade heating installation
 - \circ efficient mechanical ventilation/ ventilation with heat recovery
- Add greenhouse
- Demolition & reconstruction
- Urban densification with higher building compactness
- Smart grid (electric demand side management)

List of potentially suitable energy provision measures

- PV on roofs (facades); road-side PV; PV power plant
- Solar thermal on roofs; Solar thermal plant; Road solar collector
- Large wind turbine; Micro wind turbine

Biomass

- \circ individual biomass boiler
- local heat network + central boiler/ CHP
- \odot local heat network + bio digester + CHP
- Heat pump individual (incl buffer),
 - \circ on air
 - \circ ground loop heat exchanger (horizontal)
 - \circ ground loop heat exchanger (vertical)
- Collective heat pump + heat network
 - ground loop heat exchanger (horizontal)
 - ground loop heat exchanger (vertical)
 - H/C storage in aquifer; in ground; watertank
- Waste heat utilization
- Smart grid (electric)

List of non-technical and landscape measures

- Behavioural change
- Subsidies
- Local energy company (e.g. cooperative)
- Smart financing schemes
- Local Food production
 Change in mobility
 Biomass production

Large scale ground source heat-pumps
 Inter-seasonal storage

SUITABLE ENERGY SYSTEMS

Combined energy measures:

Scheme 1: Basic short term individual improvement (standard home renovation) + long term scenario development

- Basic insulation + high performance individual condensing gas boiler olnsulation;
 - roof
 - high performance windows
 - insulating existing cavity of walls
 - improving air tightness
 - Installation efficiency
 - upgrade heating installation: individual condensing boiler
 - basic mechanical ventilation
 - \circ Optional:
 - PV-roof
 - Solar thermal boiler

Next phase planning

- ${\scriptstyle \circ}$ organise LT stepwise transition to high energy performance
- organise corresponding financial planning

 at the neighbourhood scale: (1) plan urban **densification** on empty spaces where appropriate and (2) plan **replacement** of worst performing patrimony (demolition and reconstruction on site or elsewhere). Approach prevents dislocating people expect to new and better housing.

Scenario 1: Basic short term individual improvement (standard home renovation) + long term scenario development at Woodside

Action

	 Existing Neighbourhood Minimal insulation 	Heat demand Electricity demand CO ₂ emissions	4200 MWh/y 874 MWh/y 1516 t CO ₂ өq/y
	 Basic Insulation Solution Insulation; Roof High performance windows Insulating existing cavity of walls Improving air tightness Installation efficiency Changing heating system Basic mechanical ventilation 	H E CO ₂ (avoided)	2706 MWh/y 874 MWh/y 371 t CO ₂ eq/y
EXating	Optional • PV-roof • Solar thermal boiler		
S/ 15/ 15/ 5	Next Planning Phase	Phase A	
Encies Encies Encies	 Organise LT stepwise transition to high energy performance Organise corresponding financial planning At the neighbourhood scale: 	H E CO2 (avoided) Phase B	1982 MWh/y 640 MWh/y 777 t CO ₂ eq/y
Phase 01 Phase 02 Phase 03	 plan urban densification on empty spaces where appropriate 	Н	991 MWh/y
N 20 1 20 N 20	and	CO2 (avoided)	420 t CO ₂ eq/y
	 plan replacement of worst per- forming patrimony (demolition and reconstruction on site or else- where). 	Phase C H E CO2 (avoided)	0 MWh/y 0 MWh/y 420 t CO.eg/y
Phase 04 Phase 05 Phase 06	Approach prevents dislocating people expect to new and better housing.		2-45

Bottière-Chênaie, Nantes, France

Hannover Kronsberg, Habitat

Anemoon Project, Tienen

Hannover Kronsberg, Habitat

Orsoyer Strasse, Düsseldorf, Germany

Calculations scheme 1.

1. Basic retrofit + densification and replacement		energy demand	energy saved	CO2 emmision	avoided CO2
Woodside area		(MWh/y)	(MWh/y)	(t CO2eq/y)	(t CO2eq/y)
0 N houses	273				
heat demand	4200105 kWh	4200		1042	
electricity demand	873600 kWh	874		474	
	Total:	5074		1516	
1 heat demand after retrofit	120 kWh/m2				
heat demand neighbourhood	2705976 kWh/y	2706	1494		371
2 N old houses	200				
N new houses	146				
electricity demand	640000 kWh	640	234		127
heat demand	1982400 kWh	1982	2218		550
3 N old houses	100				
N new houses	346				
electricity demand	320000 kWh	320	320		174
heat demand	991200 kWh	991	991		246
4 N old houses	0				
N new houses	546				
electricity demand	0 kWh	0	320		174
heat demand	0 kWh	0	991		246

Scheme 2: Biomass based high performance neighbourhood with deep renovation and PV

High performance improvement

oinsulation;

- roof
- high performance windows
- walls
- floors

 optional: greenhouse addition, other high performance additions to dwellings based on family needs

oair tightness

 \circ installation efficiency

change heating system

• efficient mechanical ventilation / ventilation with heat recovery

Biomass

local heat network + central boiler

• PV

○PV on roof tops

central small PV power plant

Scenario 2: Biomass based high performance neighbourhood with deep renovation at Laural Bank & Glenwood

Action Result Existing build Heat demand 5600 MWh/y Heat demand Electricity demand 1165 MWh/y Electricity demand CO₂ emissions 2021 t CO2eq/y CO, emissions High performance improvement Insulation; Roof High performance windows н 1503 MWh/y Walls E 1165 MWh/y Floors CO₂ (avoided) 1016 t CO, eq/y Air Tighness Installation Efficiency; Area for Biomass change heating system Waste from 119 Hectares · efficient mechanical ventilation / ventimaintenance (Half of Colin) lation with heat recovery of green space **Electricity production** · PV on roofs 1503 MWh/y H **Optional:** 284 MWh/y · Greenhouse addition, other high perfor-CO2 (avoided) 478 t CO, eq/y mance additions to dwellings based on PV per roof 18m² family needs Biomass н 0 MWh/y Local heat network + Central boiler Е 0 MWh/y CO2 (avoided) 527 t CO2eq/y **Electricty Production** Area of PV power 2076m² • Central PV power plant plant 1...... Eco Zathe Heat and Power Plant, Leeuwarden

Calculations scheme 2.

2. High performance retrofit & biomass heat network & PV		energy demand	energy saved	CO2 emmision	avoided CO2	
Lauralbankstreet & Glenwood		(MWh/y)	(MWh/y)	(t CO2eq/y)	(t CO2eq/y)	
0 N houses	364					
heat demand	5600140	kWh	5600		1389	
electricity demand	1164800	kWh	1165		632	
Total:			6765		2021	
1 A-label heat demand	50	kWh/m2				
heat demand	1503320	kWh	1503	4097		1016
2 harvestable woody biomass per hectare	12667	kWh/ha				
hectare needed to heat the area	119	ha	0	1503		373
3 avg solar insolation	876	kWh/m2hor-y				
avg solar insolation	912	kWh/m2-30deg-y				
avg PV system efficiency	15%					
projected hor surface area buildings	12878	m2				
avg hor surf area per house	35,4	m2				
av available part for solar production	50%					
available surface per house	17,7	m2				
annual elctricity production on roofs	880855	kWh	284	881		478
stil needed electricity	283945	kWh				
PV power plant	2076	m2	0	284		154

Scheme 3A: Heat pump based high performance individual with deep renovation (horizontal collectors)

High performance improvement

oinsulation;

- roof
- high performance windows
- walls
- floors

 optional: greenhouse addition, other high performance additions to dwellings based on family needs

oair tightness

 $\ensuremath{\circ}$ installation efficiency

change heating system

• efficient mechanical ventilation / ventilation with heat recovery

Heat pump

- o individual HP + buffer (e.g. 200 l)
- $_{\odot}$ horizontal heat exchanger
- PV on roofs

Note: PV is added to become fully energy neutral

Scenario 3a: Heat pump based high performance individual with deep renovation (horizontal collectors) at Glenkeen

Result

Action

Calculations scheme 3A.

3A. high perf retrofit individual with deep renovation (horizontal collectors)		energy demand	energy saved	CO2 emmision	avoided CO2	
Glenkeen		(MWh/y)	(MWh/y)	(t CO2eq/y)	(t CO2eq/y)	
0 N houses	106					
heat demand	1630810	kWh	1631		404	
electricity demand	339200	kWh	339		184	
Total:			1970		589	
1 A-label heat demand	50	kWh/m2				
heat demand	437780	kWh	438	1193		296
2 Indiv heat pump with hor heat exchangers	4	C.O.P.				
heat demand	0	kWh	0			
new electricity demand for heat pump	109445		109	328		81
total electricity demand	448645		449			
3 avg solar insolation	912	kWh/m2-30deg-y				
avg PV system efficiency	15%					
available surface per house	30,0	m2				
annual elctricity production on roofs	435024	kWh	14	435		236
stil needed electricity/ excess energy	13621	kWh	14			

Scheme 3B: Heat pump based high performance individual with deep renovation (vertical collectors)

High performance improvement

oinsulation;

- roof
- high performance windows
- walls
- floors

 optional: greenhouse addition, other high performance additions to dwellings based on family needs

oair tightness

 \circ installation efficiency

change heating system

• efficient mechanical ventilation / ventilation with heat recovery

Heat pump

- individual HP + buffer (e.g. 200 l)
- $_{\odot}$ vertical heat exchanger
- PV on roofs

Scenario 3b: Heat pump based high performance individual with deep renovation (vertical collectors) at Glenbawn

Result

	Existing build • Heat demand • Electricity demand • CO ₂ emissions	Heat demand 2031 MWh/y Electricity demand 422 MWh/y CO ₂ emissions 733 t CO ₂ eq/y
	High performance improvement Insulation; • Roof • High performance windows • Walls • Floors Air Tighness Installation Efficiency; • change heating system • efficient mechanical ventilation / ventilation with heat recovery	H 545 MWh/y E 422 MWh/y CO ₂ (avoided) 368 t CO ₂ eq/y
	Optional • Greenhouse addition, other high perfor- mance additions to dwellings based on family needs	
	Heat Pump • Individual HP + buffer (e.g. 200 I) • Vertical heat exchanger PV on roofs	H 0 MWh/y E 531 MWh/y CO2 (avoided) 108 t CO ₂ eq/y Electricity demand goes up due to the use of the heatpump H 0 MWh/y E -10 MWh/y CO2 (avoided) 238 t CO ₂ eq/y PV area: 30m2/house
Vertical Heat pump collectors Deep renovation - External wall Insulation		

Action

Calculations scheme 3B.

3B. high perf retrofit individual with deep renovation (vertical collectors)		energy demand	energy saved	CO2 emmision	avoided CO2	
Glenkeen		(MWh/y)	(MWh/y)	(t CO2eq/y)	(t CO2eq/y)	
0 N houses	132					
heat demand	2030820	kWh	2031		504	
electricity demand	422400	kWh	422		229	
Total:			2453		733	
1 A-label heat demand	50	kWh/m2				
heat demand	545160	kWh	545	1486		368
2 Indiv heat pump with hor heat exchangers	5	С.О.Р.				
heat demand	0	kWh	0			
new electricity demand for heat pump	109032		109	436		108
total electricity demand	531432		531			
3 avg solar insolation	912	kWh/m2-30deg-y				
avg PV system efficiency	15%					
available surface per house	30,0	m2				
annual elctricity production on roofs	541728	kWh	-10	542		294
stil needed electricity/ excess energy	-10296	kWh	-10			

Scheme 3C: Heat pump based high performance individual with deep renovation (air to water)

High performance improvement

oinsulation;

- roof
- high performance windows
- walls
- floors

 optional: greenhouse addition, other high performance additions to dwellings based on family needs

oair tightness

 $\ensuremath{\circ}$ installation efficiency

change heating system

• efficient mechanical ventilation / ventilation with heat recovery

Heat pump

- individual HP + buffer (e.g. 200 l)
- $\ensuremath{\circ}$ air to water

PV on roofs

Note: PV is added to become fully energy neutral

SUITABLE ENERGY SYSTEMS

Combined energy measures:

Scheme 4: central solar thermal power plant with seasonal high temperature buffer

Basic insulation

Insulation;

roof

- high performance windows
- insulating existing cavity of walls
- improving air tightness
- Installation efficiency
 - changing heating system
 - basic mechanical ventilation
- Collective central solar thermal power plant
- Local heat network
- Collective heat pumps
- PV on roofs

Note 1: may not be feasible without deep building renovation Note 2: PV is add to become fully energy neutral

SUITABLE ENERGY SYSTEMS

Combined energy measures:

Scheme 5: Wind based energy cooperative & with power to heat seasonal high temp buffer + PV on roofs

Basic insulation

Insulation;

• roof

- high performance windows
- insulating existing cavity of walls
- improving air tightness
- Installation efficiency
 - changing heating system
 - basic mechanical ventilation
- Collective central solar thermal power plant(s)
- Large collective buffer(s)
- Power to heat (from wind)
- Local heat network(s)
- PV on roofs

Note: scenario based on Northern Ireland situation with excess wind electricity

Scenario 5: Wind based energy cooperative & with power to heat seasonal high temp buffer at Cherry Shilin

Action

Result

1

	Existing build Heat demand Electricity demand CO₂ emissions 	Heat demand Electricity demand CO ₂ emissions	3862 MWh/y 803 MWh/y 1394 t CO ₂ eq/y
	Basic insulation Insulation; • Roof • High performance windows • Insulating existing cavity of walls • Improving air tightness Air Tighness Installation Efficiency; • change heating system • efficient mechanical ventilation / ventilation with heat recovery	H E CO ₂ (avoided)	2073 MWh/y 803 MWh/y 444 t CO ₂ eq/y
	 Collective central solar thermal power plant(s) Large collective buffer(s) based on solar and power to heat (from wind) Local heat network(s) 	H E CO2 (avoided)	0 MWh/y 803 MWh/y 478 t CO _g eq/y
	PV on roofs	H E CO2 (avoided) PV per roof	0 MWh/y 0 MWh/y 995 t CO ₂ eq/y 30m²
		Note: scenario ba:	sed on North-
Zoneiland, Almere Concerto, Slazburg		ern Ireland situation wind electricity	on with excess

Calculations scheme 5

5. Solar thermal powered heat network + wind excess and PV electricity		energy demand	energy saved	CO2 emmision	avoided CO2	
Cherry Shilin		(MWh/y)	(MWh/y)	(t CO2eq/y)	(t CO2eq/y)	
0 N houses	251					
heat demand	3861635 kWh		3862		958	
electricity demand	803200 kWh		803		436	
Total:			4665		1394	
1 heat demand after retrofit	100 kWh/mź	2				
heat demand neighbourhood	2073260 kWh/y		2073	1788		444
2 solar thermal production	2500 kWh/4.3	3m2				
solar thermal production	581 kWh/m2	2				
amount of power to heat from wind	33%					
amount of heat from solar collectors	67%					
system efficiency solar collectors and buffer	50%					
electricity into heat from wind turbines	684176 kWh/y		1389	684		344
heat produced by solar collectors	2778168 kWh/y		705	0		175
area of solar collectors	<mark>4778</mark> m2					
area of solar collectors per house	19 m2					
storage buffer per household	12 m3					
total storage	<mark>3012</mark> m3					
3 avg solar insolation	912 kWh/m2	2-30deg-y				
avg PV system efficiency	15%					
available surface per house	30,0 m2					
annual electricity production on roofs	1030104 kWh		0	-227		995

Scheme 6a: Maximum PV + wind with individual seasonal heat buffers

- Basic insulation
 - Insulation;
 - roof
 - high performance windows
 - insulating existing cavity of walls
 - improving air tightness
 - Installation efficiency
 - changing heating system
 - basic mechanical ventilation
- Maximum rooftop PV + PV farms
- Individual seasonal buffers and/or V2G storage
- Individual heat pumps (see other schemes)

Note 1: scenario based on Northern Ireland situation with excess wind electricity Note 2: may not be feasible without deep building renovation Note 3: batteries not required as grid can take variations

Scheme 6b: Maximum PV + wind with collective seasonal heat buffers

- Basic insulation
 - oInsulation;
 - roof
 - high performance windows
 - insulating existing cavity of walls
 - improving air tightness
 - Installation efficiency
 - changing heating system
 - basic mechanical ventilation
- Maximum rooftop PV + PV farms
- Collective seasonal buffers (may be supplemented with solar thermal)
- Combination of individual and collective heat pumps (see other schemes)

Note 1: scenario based on Northern Ireland situation with excess wind electricity Note 2: may not be feasible without deep building renovation Note 3: batteries not required as grid can take variations

Scheme 7: Deep geothermal + district heating + urban densification

- Basic insulation
 - oInsulation;
 - roof
 - high performance windows
 - insulating existing cavity of walls
 - improving air tightness
 - $\ensuremath{\circ}$ Installation efficiency
 - upgrade heating installation: individual condensing boiler
 - basic mechanical ventilation
- Single deep geothermal CHP plant for Colin or Colin+
- Local heat network

Urban densification both for housing needs and for increasing local heat demand nearby plant

Towards a roadmap

- Design 1 or more future visions with technical interventions that meet the final goals
- Back-casting: put the technical interventions on a timeline
- What are drivers and barriers to reach the targets?
- Define non-technical actions that deal with the barriers.

